Package 'PRECAST'

Title: Embedding and Clustering with Alignment for Spatial Datasets
Description: An efficient data integration method is provided for multiple spatial transcriptomics data with non-cluster-relevant effects such as the complex batch effects. It unifies spatial factor analysis simultaneously with spatial clustering and embedding alignment, requiring only partially shared cell/domain clusters across datasets. More details can be referred to Wei Liu, et al. (2023) <doi:10.1038/s41467-023-35947-w>.
Authors: Wei Liu [aut, cre], Yi Yang [aut], Jin Liu [aut]
Maintainer: Wei Liu <[email protected]>
License: GPL-3
Version: 1.6.5
Built: 2024-11-15 06:58:20 UTC
Source: CRAN

Help Index


Add embeddings for a Seurat object

Description

Add embeddings for a Seurat object.

Usage

Add_embed(embed, seu, embed_name='tSNE' , assay = "RNA")

Arguments

embed

an embedding matrix.

seu

a Seurat object.

embed_name

an optional string, the name of embeddings.

assay

Name of assay that that embed is being put

Details

Nothing

Value

Return a revised Seurat object by adding a embedding matrix to the Reduc slot in Seurat object.

Note

nothing

Author(s)

Wei Liu

See Also

None


Add adjacency matrix list for a PRECASTObj object

Description

Add adjacency matrix list for a PRECASTObj object to prepare for PRECAST model fitting.

Usage

AddAdjList(PRECASTObj, type="fixed_distance", platform="Visium", ...)

Arguments

PRECASTObj

a PRECASTObj object created by CreatePRECASTObject.

type

an optional string, specify which type of neighbors' definition. Here we provide two definition: one is "fixed_distance", the other is "fixed_number".

platform

a string, specify the platform of the provided data, default as "Visium". There are more platforms to be chosen, including "Visuim", "ST" and "Other_SRT" ("Other_SRT" represents the other SRT platforms except for 'Visium' and 'ST'), which means there are spatial coordinates information in the metadata of PRECASTObj. The platform helps to calculate the adjacency matrix by defining the neighborhoods when type="fixed_distance" is chosen.

...

other arguments to be passed to getAdj, getAdj_auto and getAdj_fixedNumber funciton.

Details

When the type = "fixed_distance", then the spots within the Euclidean distance cutoffs from one spot are regarded as the neighbors of this spot. When the type = "fixed_number", the K-nearest spots are regarded as the neighbors of each spot.

Value

Return a revised PRECASTObj object by adding the adjacency matrix list.

Note

nothing

Author(s)

Wei Liu

See Also

AddParSetting.


Add model settings for a PRECASTObj object

Description

The main interface function provides serveral PRECAST submodels, so a model setting is required to specified in advance for a PRECASTObj object.

Usage

AddParSetting(PRECASTObj, ...)

Arguments

PRECASTObj

a PRECASTObj object created by CreatePRECASTObject.

...

other arguments to be passed to model_set funciton.

Details

Nothing

Value

Return a revised PRECASTObj object.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

data(PRECASTObj)
  PRECASTObj <-AddParSetting(PRECASTObj)
  PRECASTObj@parameterList

Add tSNE embeddings for a Seurat object

Description

Run t-SNE dimensionality reduction on selected features.

Usage

AddTSNE(seuInt, n_comp=3, reduction='PRECAST', assay='PRE_CAST', seed=1)

Arguments

seuInt

a Seurat object.

n_comp

an optional positive integer, specify the number of features to be extracted.

reduction

an optional string, means which dimensional reduction (e.g. PRECAST, PCA) to use for the tSNE. Default is PRECAST.

assay

Name of assay that that t-SNE is being run on.

seed

an optional integer, the random seed to evaluate tSNE.

Details

Nothing

Value

Return a revised Seurat object by adding tSNE reduction object.

Note

nothing

Author(s)

Wei Liu

See Also

None


Add UMAP embeddings for a Seurat object

Description

Run UMAP dimensionality reduction on selected features.

Usage

AddUMAP(seuInt, n_comp=3, reduction='PRECAST', assay='PRE_CAST', seed=1)

Arguments

seuInt

a Seurat object.

n_comp

an optional positive integer, specify the number of features to be extracted.

reduction

an optional string, means which dimensional reduction (e.g. PRECAST, PCA) to use for the UMAP. Default is PRECAST.

assay

Name of assay that that t-SNE is being run on.

seed

an optional integer, the random seed to evaluate UMAP.

Details

Nothing

Value

Return a revised Seurat object by adding UMAP reduction object.

Note

nothing

Author(s)

Wei Liu

See Also

None


Boxplot for a matrix

Description

Boxplot for a matrix.

Usage

boxPlot(mat, ylabel='ARI', cols=NULL, ...)

Arguments

mat

a matrix with columns.

ylabel

an optional string, the name of ylabel.

cols

colors used in the plot

...

Other parameters passed to geom_boxplot.

Details

Nothing

Value

Return a ggplot2 object.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

mat <- matrix(runif(100*3, 0.6, 1), 100, 3)
   colnames(mat) <- paste0("Method", 1:3)
   boxPlot(mat)

Choose color schema from a palette

Description

Choose color schema from a palette

Usage

chooseColors(
  palettes_name = c("Nature 10", "Light 13", "Classic 20", "Blink 23", "Hue n"),
  n_colors = 7,
  alpha = 1,
  plot_colors = FALSE
)

Arguments

palettes_name

a string, the palette name, one of "Nature 10", "Light 13", "Classic 20", "Blink 23" and "Hue n", default as 'Nature 10'.

n_colors

a positive integer, the number of colors.

alpha

a positive real, the transparency of the color.

plot_colors

a logical value, whether plot the selected colors.

Examples

chooseColors()

Coordinates rotation for visualization

Description

Coordinates rotation for visualization.

Usage

coordinate_rotate(pos, theta=0)

Arguments

pos

a matrix, the n-by-d coordinates, where n is the number of coordinates, d is the dimension of coordinates.

theta

a real number, the angle for counter-clock-wise rotation.

Details

Nothing

Value

Return a rotated coordinate matrix.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

x <- 1:100
    pos <- cbind(x, sin(pi/4*x))
    oldpar <- par(mfrow = c(1,2))
    plot(pos)
    plot(coordinate_rotate(pos, 40))
    par(oldpar)

Create the PRECAST object with preprocessing step.

Description

Create the PRECAST object with preprocessing step.

Usage

CreatePRECASTObject(seuList,  project = "PRECAST",  gene.number=2000, 
                    selectGenesMethod='SPARK-X',numCores_sparkx=1,  
                    customGenelist=NULL, premin.spots = 20,  
                    premin.features=20, postmin.spots=15, postmin.features=15,
                              rawData.preserve=FALSE,verbose=TRUE)

Arguments

seuList

a list consisting of Seurat objects, where each object is a SRT data batch. The default assay of each Seurat object will be used for data preprocessing and followed model fitting. The specified format about seuList argument can be referred to the details and example.

project

An optional string, name of the project, default as "PRECAST".

gene.number

an optional integer, the number of top spatially variable genes (SVGs) or highly variable genes (HVGs) to be chosen.

selectGenesMethod

an optional integer, the method to select genes for each sample. It supports 'SPARK-X' and 'HVGs' to select genes now. Users can provide self-selected genes using customGenelist argument.

numCores_sparkx

an optional integer, specify the number of CPU cores in SPARK package to use when selecting spatial genes.

customGenelist

an optional string vector, the list of user specified genes to be used for PRECAST model fitting. If this argument is given, SVGs/HVGs will not be selected.

premin.spots

An optional integer, the features (genes) are retained in raw data filtering step with at least premin.spots number of spots, default is 20.

premin.features

An optional integer, the locations are retained in raw data filtering step with at least premin.features number of nonzero-count features (genes), default is 20.

postmin.spots

An optional integer, the features (genes) are retained in filtering step after common genes selected among all data batches with at least postmin.spots number of spots, default is 15.

postmin.features

An optional integer, the locations are retained in filtering step after common genes selected among all data batches with at least postmin.features number of nonzero-count features (genes), default is 15.

rawData.preserve

An optional logical value, whether preserve the raw seuList data.

verbose

whether display the message in the creating process.

Details

seuList is a list with Seurat object as component, and each Seurat object includes the raw expression count matrix, spatial coordinates and meta data for each data batch, where the spatial coordinates information must be saved in the metadata of Seurat, named "row" and "col" for each data batch.

Value

Returns PRECAST object prepared for PRECAST model fitting. See PRECASTObj-class for more details.

Examples

data(PRECASTObj)
  library(Seurat)
  seuList <- PRECASTObj@seulist
  ## Check the input of seuList for create PRECAST object.
  ## Check the default assay for each data batch
  lapply(seuList, DefaultAssay)
  ## Check the spatial coordinates in the meta data named "row" and "col".
  head(seuList[[1]]@meta.data)
  ## Then create PRECAST object using this seuList.
  ## For convenience, we show the  user-specified genes' list for creating PRECAST object.
  ## Users can use SVGs from SPARK-X or HVGs.
  PRECASTObj2 <- CreatePRECASTObject(seuList, 
   customGenelist= row.names(seuList[[1]]), verbose=FALSE)

Low-dimensional embeddings' plot

Description

Low-dimensional embeddings' plot colored by a specified meta data in the Seurat object.

Usage

dimPlot(seuInt, item=NULL, reduction=NULL, point_size=1,text_size=16, 
                    cols=NULL,font_family='', border_col="gray10",
                    fill_col="white", ...)

Arguments

seuInt

an object named "Seurat".

item

the item used for coloring the plot in the meta data of seuInt object.

reduction

the reduction used for plot in the seuInt object. If reduction is null, the last added one is used for plotting.

point_size

the size of point in the scatter plot.

text_size

the text size in the plot.

cols

colors used in the plot

font_family

the font family used for the plot.

border_col

the border color in the plot.

fill_col

the color used in backgroup.

...

other arguments passed to plot_scatter

.

Details

Nothing

Value

Return a ggplot2 object.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

data(PRECASTObj)
  PRECASTObj <- SelectModel(PRECASTObj)
  seuInt <- IntegrateSpaData(PRECASTObj, species='unknown')
  dimPlot(seuInt, reduction = 'PRECAST')
  ## or use the Seurat::DimPlot(seuInt, reduction = 'PRECAST')

Heatmap for spots-by-feature matrix

Description

Plot heatmap for a Seurat object with expressioin data.

Usage

doHeatmap(seu, features=NULL, cell_label='Cell type', grp_label = FALSE,
                      pt_size=4, grp_color=NULL, ...)

Arguments

seu

an object named "Seurat". The object of class "Seurat" must include slot "scale.data".

features

an optional string vector, the features to be plotted.

cell_label

an optional string, the name of legend.

grp_label

an optional logical value, whether display the group names.

pt_size

the point size used in the plot

grp_color

the colors to use for the group color bar.

...

Other paramters passed to DoHeatmap.

Details

Nothing

Value

Return a ggplot2 object.

Note

nothing

Author(s)

Wei Liu

See Also

featurePlot

Examples

library(Seurat)
  data(PRECASTObj)
  PRECASTObj <- SelectModel(PRECASTObj)
  seuInt <- IntegrateSpaData(PRECASTObj, species='unknown')
  seuInt <- ScaleData(seuInt)
  doHeatmap(seuInt, features=row.names(seuInt)[1:5])

Draw a figure using a group of ggplot objects

Description

Draw a figure using a group of ggplot objects

Usage

drawFigs(
  pList,
  layout.dim = NULL,
  common.legend = FALSE,
  legend.position = "right",
  ...
)

Arguments

pList

a list with component ggplot objects.

layout.dim

a integer vector with length 2, the layout of subplots in rows and columns.

common.legend

a logical value, whether use common legend for all subplots.

legend.position

a string, the position of legend.

...

other arguments that pass to ggarrange.

Value

return a new ggplot object.


Spatial expression heatmap

Description

Plot spatial heatmap for a feature of Seurat object with spatial transcriptomics data.

Usage

featurePlot(seu, feature=NULL, cols=NULL, pt_size=1, title_size =16, quant=0.5, 
  assay='RNA' , reduction="position")

Arguments

seu

an object named "Seurat". The object of class "Seurat" must include slot "scale.data".

feature

an optional string, specify the name of feature to be plotted. If it is null, the first feature will be plotted.

cols

colors used in the plot

pt_size

the size of point in the spatial heatmap plot.

title_size

the title size used for the plot.

quant

the quantile value to generate the gradient color map.

assay

the assay selected for plot.

reduction

the Reduc object for plot.

Details

Nothing

Value

Return a ggplot2 object.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

library(Seurat)
  data(PRECASTObj)
  PRECASTObj <- SelectModel(PRECASTObj)
  seuInt <- IntegrateSpaData(PRECASTObj, species='unknown')
  seuInt <- ScaleData(seuInt)
  featurePlot(seuInt, assay='PRE_CAST')

Set the first letter of a string vector to captial

Description

Set the first letter of a string vector to captial.

Usage

firstup(x)

Arguments

x

a string vector.

Details

Nothing

Value

Return a string vector with first letter capital.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

x <- c("good", "Morning")
  firstup(x)

Calculate adjacency matrix by user-specified number of neighbors

Description

an efficient function to find the neighborhood based on the matrix of position and a user-specified number of neighbors of each spot.

Usage

getAdj_fixedNumber(pos, number=6)

Arguments

pos

is a n-by-d matrix of position, where n is the number of spots, and d is the dimension of coordinates.

number

is the number of neighbors of each spot. Euclidean distance to decide whether a spot is an neighborhood of another spot.

Value

A sparse matrix containing the neighbourhood.

See Also

getAdj_auto, getAdj.


Calculate adjacency matrix for regular spatial coordinates.

Description

Calculate adjacency matrix for regular spatial coordinates from ST or Visium platform.

Usage

getAdj_reg(pos, platform= "Visium")

Arguments

pos

is a n-by-d matrix of position, where n is the number of spots, and d is the dimension of coordinates.

platform

a string, specify the platform of the provided data, default as "Visium", and only support "ST" and "Visium" platform.

Value

A sparse matrix containing the neighbourhood.

See Also

getAdj_auto, getAdj, getAdj_fixedNumber.


Human housekeeping genes database

Description

Human housekeeping genes database.

Details

This data is a data.frame and include the Human housekeeping genes information in the columns named "Gene" and "Ensembl".


ICM-EM algorithm implementation

Description

ICM-EM algorithm for fitting PRECAST model

Usage

ICM.EM(XList, q, K, AdjList=NULL,  Adjlist_car=NULL, posList = NULL, 
      platform = "ST", beta_grid=seq(0.2,4, by=0.2),maxIter_ICM=6,
      maxIter=20, epsLogLik=1e-5, verbose=TRUE,mix_prop_heter=TRUE, 
      Sigma_equal=FALSE, Sigma_diag=TRUE,error_heter=TRUE, Sp2=TRUE,
      wpca_int=FALSE, int.model='EEE', seed=1,coreNum = 1, coreNum_int=coreNum)

Arguments

XList

an M-length list consisting of multiple matrices with class dgCMatrix or matrix that specify the log-normalization gene expression matrix for each data sample used for PRECAST model.

q

a positive integer, specify the number of latent features to be extracted, default as 15.

K

a positive integer allowing scalar or vector, specify the number of clusters in model fitting.

AdjList

an M-length list of sparse matrices with class dgCMatrix, specify the adjacency matrix used for Potts model in PRECAST. We provide this interface for those users who would like to define the adjacency matrix by their own.

Adjlist_car

an M-length list of sparse matrices with class dgCMatrix, specify the adjacency matrix used for CAR model in PRECAST, default as AdjList in the Potts model. We provide this interface for those users who would like to use the different adjacency matrix in CAR model.

posList

an M-length list composed by spatial coordinate matrix for each data sample.

platform

a string, specify the platform of the provided data, default as "Visium". There are many platforms to be supported, including ("Visuim", "ST", "SeqFISH", 'merFISH', 'slide-seqv2', 'seqscope', "HDST"). If AdjList is not given, the The platform helps to calculate the adjacency matrix by defining the neighbors.

beta_grid

an optional vector of positive value, the candidate set of the smoothing parameter to be searched by the grid-search optimization approach.

maxIter_ICM

an optional positive value, represents the maximum iterations of ICM.

maxIter

an optional positive value, represents the maximum iterations of EM.

epsLogLik

an optional positive vlaue, tolerance vlaue of relative variation rate of the observed pseudo log-loglikelihood value, defualt as '1e-5'.

verbose

an optional logical value, whether output the information of the ICM-EM algorithm.

mix_prop_heter

an optional logical value, specify whether betar are distict, default as TRUE.

Sigma_equal

an optional logical value, specify whether Sigmaks are equal, default as FALSE.

Sigma_diag

an optional logical value, specify whether Sigmaks are diagonal matrices, default as TRUE.

error_heter

an optional logical value, whether use the heterogenous error for DR-SC model, default as TRUE. If error_heter=FALSE, then the homogenuous error is used for probabilistic PCA model in PRECAST.

Sp2

an optional logical value, whether add the ICAR model component in the model, default as TRUE. We provide this interface for those users who don't want to include the ICAR model.

wpca_int

an optional logical value, means whether use the weighted PCA to obtain the initial values of loadings and other paramters, default as FALSE which means the ordinary PCA is used.

int.model

an optional string, specify which Gaussian mixture model is used in evaluting the initial values for PRECAST, default as "EEE"; and see Mclust for more models' names.

seed

an optional integer, the random seed in fitting PRECAST model.

coreNum

an optional positive integer, means the number of thread used in parallel computating.

coreNum_int

an optional positive integer, means the number of cores used in parallel computation for initial values when K is a vector, default as same as coreNum.

Details

Nothing

Value

ICM.EM returns a list with class "SeqKiDRSC_Object" with the number of components equal to the length of K, where each component includes the model fitting results for one number of cluster and is a list consisting of following components:

cluster

an M-length list that includes the inferred class labels for each data sample.

hZ

an M-length list that includes the batch corrected low-dimensional embeddings for each data sample.

hV

an M-length list that includes the estimate the ICAR component for each sample.

Rf

an M-length list that includes the posterior probability of domain clusters for each sample.

beta

an M-length vector that includes the estimated smoothing parameters for each sample.

Mu

mean vectors of mixtures components.

Sigma

covariance matrix of mixtures components.

W

estimated loading matrix

Lam

estimated variance of errors in probabilistic PCA model

loglik

pseudo observed log-likelihood.

Note

nothing

Author(s)

Wei Liu

References

Wei Liu, Liao, X., Luo, Z. et al, Jin Liu* (2023). Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST. Nature Communications, 14, 296

See Also

None

Examples

## we generate the spatial transcriptomics data with lattice neighborhood, i.e. ST platform.
  library(Matrix)
  q <- 10; K <- 4
  data(PRECASTObj)
  posList <- lapply(PRECASTObj@seulist, function(x) cbind(x$row, x$col))
  AdjList <- lapply(posList, getAdj_reg, platform='ST')
  XList <- lapply(PRECASTObj@seulist, function(x) t(x[['RNA']]@data))
  XList <- lapply(XList, scale, scale=FALSE)
  ## For illustration, maxIter is set to 4
  resList <- ICM.EM(XList,AdjList = AdjList, maxIter=4,
                   q=q, K=K, verbose=TRUE)

ICM-EM algorithm implementation with organized paramters

Description

Efficient data integration as well as spatial clustering for multiple spatial transcriptomics data

Usage

ICM.EM_structure(XList,  K, AdjList, q=15,parameterList=NULL)

Arguments

XList

an M-length list consisting of multiple matrices with class dgCMatrix or matrix that specify the log-normalization gene expression matrix for each data sample used for PRECAST model.

K

a positive integer allowing scalar or vector, specify the number of clusters in model fitting.

AdjList

an M-length list of sparse matrices with class dgCMatrix, specify the adjacency matrix used for Potts model and Intrisic CAR model in PRECAST model. We provide this interface for those users who would like to define the adjacency matrix by their own.

q

a positive integer, specify the number of latent features to be extracted, default as 15.

parameterList

Other arguments in PRECAST model, it can be set by model_set.

Details

Nothing

Value

ICM.EM_structure returns a list with class "SeqK_PRECAST_Object" with the number of components equal to the length of K, where each component includes the model fitting results for one number of cluster and is a list consisting of following components:

cluster

an M-length list that includes the inferred class labels for each data sample.

hZ

an M-length list that includes the batch corrected low-dimensional embeddings for each data sample.

hV

an M-length list that includes the estimate the ICAR component for each sample.

Rf

an M-length list that includes the posterior probability of domain clusters for each sample.

beta

an M-length vector that includes the estimated smoothing parameters for each sample.

Mu

mean vectors of mixtures components.

Sigma

covariance matrix of mixtures components.

W

estimated loading matrix

Lam

estimated variance of errors in probabilistic PCA model

loglik

pseudo observed log-likelihood.

Note

nothing

Author(s)

Wei Liu

References

Wei Liu, Liao, X., Luo, Z. et al, Jin Liu* (2023). Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST. Nature Communications, 14, 296

See Also

None

Examples

## we generate the spatial transcriptomics data with lattice neighborhood, i.e. ST platform.
  library(Matrix)
  q <- 10; K <- 4
  data(PRECASTObj)
  posList <- lapply(PRECASTObj@seulist, function(x) cbind(x$row, x$col))
  AdjList <- lapply(posList, getAdj_reg, platform='ST')
  XList <- lapply(PRECASTObj@seulist, function(x) t(x[['RNA']]@data))
  XList <- lapply(XList, scale, scale=FALSE)
  parList <- model_set(maxIter=4)
  resList <- ICM.EM_structure(XList,  AdjList = AdjList, 
                   q=q, K=K, parameterList=parList)

Integrate multiple SRT data

Description

Integrate multiple SRT data based on the PRECASTObj by PRECAST model fitting.

Usage

IntegrateSpaData(PRECASTObj, species="Human", 
                 custom_housekeep=NULL, covariates_use=NULL,
                 seuList=NULL, subsample_rate=1, sample_seed=1)

Arguments

PRECASTObj

a PRECASTObj object after finishing the PRECAST model fitting and model selection.

species

an optional string, one of 'Human', 'Mouse' and 'Unknown', specify the species of the SRT data to help choose the housekeeping genes. 'Unknown' means only using the PRECAST results reconstruct the alligned gene expression.

custom_housekeep

user-specified housekeeping genes.

covariates_use

a string vector, the colnames in 'PRECASTObj@seulist[[1]]@meta.data', representing other biological covariates to considered when removing batch effects. This is achieved by adding additional covariates for biological conditions in the regression, such as case or control. Default as 'NULL', denoting no other covariates to be considered.

seuList

an optional Seurat list object, 'seuList' plays a crucial role in the integration process. If 'seuList' is set to 'NULL' and 'PRECASTObj@seuList' is not NULL, then 'seuList' will adopt the values of 'PRECASTObj@seuList'. Subsequently, the genes within 'seuList' will be utilized for integration. Conversely, if 'seuList' is not NULL, the integration will directly employ the genes specified within 'seuList'. In the event that both 'seuList' and 'PRECASTObj@seuList' are set to NULL, integration will proceed using the genes outlined in 'PRECASTObj@seulist', i.e., the variable genes. To preserve the 'seuList' not NULL in 'PRECASTObj@seuList', user can set 'rawData.preserve=TRUE' when running 'CreatePRECASTObject'. This parameter empowers users to integrate the entire set of genes in 'seuList' when implementing the integration, as opposed to exclusively considering the variable genes within 'PRECASTObj@seuList'.

subsample_rate

an optional real number ranging from zero to one, this parameter specifies the subsampling rate during integration to enhance computational efficiency, default as 1 (without subsampling).

sample_seed

an optional integer, with a default value of 1, serves to designate the random seed when 'subsample_rate' is set to a value less than one, ensuring reproducibility in the sampling process.

Details

Nothing

Value

Return a Seurat object by integrating all SRT data batches into a SRT data, where the column "batch" in the meta.data represents the batch ID, and the column "cluster" represents the clusters obtained by PRECAST.

Note

nothing

Author(s)

Wei Liu

References

Wei Liu, Liao, X., Luo, Z. et al, Jin Liu* (2023). Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST. Nature Communications, 14, 296

Gagnon-Bartsch, J. A., Jacob, L., & Speed, T. P. (2013). Removing unwanted variation from high dimensional data with negative controls. Berkeley: Tech Reports from Dep Stat Univ California, 1-112.

See Also

None

Examples

data(PRECASTObj)
  PRECASTObj <- SelectModel(PRECASTObj)
  seuInt <- IntegrateSpaData(PRECASTObj, species='unknown')

PRECAST model setting

Description

Set the PRECAST model structure and paramters in the algorithm.

Usage

model_set(Sigma_equal=FALSE, Sigma_diag=TRUE,mix_prop_heter=TRUE,
                      error_heter=TRUE, Sp2=TRUE, wpca_int=FALSE,int.model='EEE',
                      coreNum = 1, coreNum_int=coreNum,
                      beta_grid=seq(0.2,4, by=0.2),
                      maxIter_ICM=6,maxIter=20, epsLogLik=1e-5, verbose=TRUE, seed=1)

Arguments

Sigma_equal

an optional logical value, specify whether Sigmaks are equal, default as FALSE.

Sigma_diag

an optional logical value, specify whether Sigmaks are diagonal matrices, default as TRUE.

mix_prop_heter

an optional logical value, specify whether betar are distict, default as TRUE.

error_heter

an optional logical value, whether use the heterogenous error i.e. lambdarj != lambdark for each sample r, default as TRUE. If error_heter=FALSE, then the homogenuous error is used for probabilistic PCA model.

Sp2

an optional logical value, whether add the ICAR model component in the model, default as TRUE. We provide this interface for those users who don't want to include the ICAR model.

wpca_int

an optional logical value, means whether use the weighted PCA to obtain the initial values of loadings and other paramters, default as FALSE which means the ordinary PCA is used.

int.model

an optional string, specify which Gaussian mixture model is used in evaluting the initial values for PRECAST, default as "EEE"; and see Mclust for more models' names.

coreNum

an optional positive integer, means the number of thread used in parallel computating.

coreNum_int

an optional positive integer, means the number of cores used in parallel computation for initial values when K is a vector, default as same as coreNum.

beta_grid

an optional vector of positive value, the candidate set of the smoothing parameter to be searched by the grid-search optimization approach.

maxIter_ICM

an optional positive value, represents the maximum iterations of ICM.

maxIter

an optional positive value, represents the maximum iterations of EM.

epsLogLik

an optional positive vlaue, tolerance vlaue of relative variation rate of the observed pseudo log-loglikelihood value, defualt as '1e-5'.

verbose

an optional logical value, whether output the information of the ICM-EM algorithm.

seed

an optional integer, the random seed in fitting PRECAST model.

Details

Nothing

Value

Return a list including all paramters' setting.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

model_set()

Mouse housekeeping genes database

Description

Mouse housekeeping genes database.

Details

This data is a data.frame and include the mouse housekeeping genes information in the columns named "Gene" and "Ensembl".


Spatial RGB heatmap

Description

Plot spatial RGB heatmap.

Usage

plot_RGB(position, embed_3d, pointsize=2,textsize=15)

Arguments

position

a coordinates matrix with two columns: x-coordinate and y-coordinate.

embed_3d

a embedding matrix with three columns: x, y and z embeddings.

pointsize

the size of point in the scatter plot.

textsize

the text size in the plot.

Details

Nothing

Value

Return a ggplot2 object.

Note

nothing

Author(s)

Wei Liu

See Also

None


Scatter plot for two-dimensional embeddings

Description

Scatter plot for two-dimensional embeddings

Usage

plot_scatter(embed_use, meta_data, label_name, 
    xy_names=c('tSNE1', 'tSNE2'), no_guides = FALSE, 
    cols = NULL, 
    point_size = 0.5, point_alpha=1, 
    base_size = 12, do_points = TRUE, do_density = FALSE, border_col='gray',
    legend_pos='right', legend_dir='vertical', nrow.legend=NULL)

Arguments

embed_use

an object named "Seurat", "maxtrix" or "dgCMatrix". The object of class "Seurat" must include slot "scale.data".

meta_data

an optional positive integer, specify the number of features to be extracted.

label_name

the size of point in the scatter plot.

xy_names

the text size in the plot.

no_guides

whether display the legend.

cols

colors used in the plot.

point_size

the point size of scatter plot.

point_alpha

the transparency of the plot.

base_size

the base text size.

do_points

Plot point plot.

do_density

Plot density plot

border_col

the border color in the plot.

legend_pos

the position of legend.

legend_dir

the direction of legend.

nrow.legend

the number of rows of legend.

Details

Nothing

Value

Return a ggplot2 object.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

embed_use <- cbind(1:100, sin((1:100)*pi/2))
  meta_data <- data.frame(cluster=factor(rep(1:2, each=50)))
  plot_scatter(embed_use, meta_data, label_name='cluster')

Fit a PRECAST model

Description

Fit a PRECAST model.

Usage

PRECAST(PRECASTObj, K=NULL, q= 15)

Arguments

PRECASTObj

an object named "PRECASTObj". The object PRECASTObj is created by CreatePRECASTObject.

K

An optional integer or integer vector, specify the candidates of number of clusters. if K=NULL, it will be set to 4~12.

q

An optional integer, specify the number of low-dimensional embeddings to extract in PRECAST.

Details

The model fitting results are saved in the slot of resList.

Value

Return a revised PRECASTObj object.

Note

nothing

Author(s)

Wei Liu

References

Wei Liu, Liao, X., Luo, Z. et al, Jin Liu* (2023). Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST. Nature Communications, 14, 296

See Also

None


A simple PRECASTObj for example

Description

A simple PRECASTObj for example.

Details

This PRECASTObj include the basic slots in PRECAST object; see PRECASTObj-class for more details.


Each PRECASTObj object has a number of slots which store information.

Description

Each PRECASTObj object has a number of slots which store information. Key slots to access are listed below.

Slots

seuList

A list with Seurat object as component, representing the raw expression count matrix, spatial coordinates and meta data for each data batch, where the spatial coordinates information is saved in the metadata of Seurat, named "row" and "col" for eahc data batch.

seulist

A Seurat list after the preprocessing step in preparation for PRECAST model.

AdjList

The adjacency matrix list for a PRECASTObj object.

parameterList

The model parameter settings for a PRECASTObj object

resList

The results after fitting PRECAST models.

project

Name of the project.


Select common genes for multiple data batches

Description

selectIntFeatures prioritizes genes based on the number of times they were selected as HVGs/SVGs in all data baches, and chose the top genes as the input for the analysis. We broke ties by examining the ranks of the tied genes in each original dataset and taking those with the highest median rank.

Usage

selectIntFeatures(seulist, spaFeatureList, IntFeatures=2000)

Arguments

seulist

a list consisting of Seurat objects, where each object is a SRT data batch.

spaFeatureList

an list consisting of SVGs vectors, where each vector is the top HVGs/SVGs for each SRT data batch.

IntFeatures

the number of common HVGs/SVGs genes to be chosen.

Details

Nothing

Value

Return a string vector, the selected gene list for integration in PRECAST.

Note

nothing

Author(s)

Wei Liu

References

Wei Liu, Liao, X., Luo, Z. et al, Jin Liu* (2023). Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST. Nature Communications, 14, 296

See Also

None


Select best PRECAST model from candidated models

Description

Select best PRECAST model from candidated models with different number of clusters.

Usage

## S3 method for class 'SeqK_PRECAST_Object'
SelectModel(obj, criteria = 'MBIC',pen_const=1, return_para_est=FALSE)
  ## S3 method for class 'PRECASTObj'
SelectModel(obj, criteria = 'MBIC',pen_const=1, return_para_est=FALSE)

Arguments

obj

a SeqK_PRECAST_Object or PRECASTObj object after PRECAST model fitting.

criteria

a string, specify the criteria used for selecting the number of clusters, supporting "MBIC", "BIC" and "AIC".

pen_const

an optional positive value, the adjusted constant used in the MBIC criteria.

return_para_est

an optional logical value, whether return the other paramters' estimators in PRECAST.

Details

Nothing

Value

Return a revised PRECASTObj object.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

data(PRECASTObj)
  PRECASTObj <- SelectModel(PRECASTObj)

Spatial heatmap

Description

Plot spatial heatmap for a Seurat object with spatial transcriptomics data.

Usage

SpaPlot(seuInt, batch=NULL, item=NULL, point_size=2,text_size=12, 
                    cols=NULL,font_family='', border_col="gray10",
                    fill_col='white', ncol=2, combine = TRUE,
                    title_name="Sample", ...)

Arguments

seuInt

an object named "Seurat".

batch

an optional positive integer or integer vector, specify the batches to be extracted. Users can check the batches' names by unique(seuInt$batch).

item

an optional string, which column is plotted in the meta data of seuInt. Users can check the meta data by head([email protected]). If item takes value from ("RGB_UMAP", "RGB_tSNE"), this function will plot the RGB plot.

point_size

the size of point in the scatter plot.

text_size

the text size in the plot.

cols

colors used in the plot

font_family

the font family used for the plot, default as Times New Roman.

border_col

the border color in the plot.

fill_col

the color used in backgroup.

ncol

the number of columns in the layout of plots.

combine

an optional logical value, whether plot all on a figure. If TRUE, all figures are plotted; otherwise, return a list with each plot as component.

title_name

an optional string, title name in the plot.

...

other arguments passed to plot_scatter

.

Details

Nothing

Value

Return a ggplot2 object or list of ggplots objects.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

data(PRECASTObj)
  PRECASTObj <- SelectModel(PRECASTObj)
  seuInt <- IntegrateSpaData(PRECASTObj, species='unknown')
  SpaPlot(seuInt)

Volin/boxplot plot

Description

Plot volin/boxplot.

Usage

volinPlot(mat, ylabel='ARI', cols=NULL)

Arguments

mat

a matrix with columns.

ylabel

an optional string, the name of ylabel.

cols

colors used in the plot

Details

Nothing

Value

Return a ggplot2 object.

Note

nothing

See Also

None

Examples

mat <- matrix(runif(100*3, 0.6, 1), 100, 3)
   colnames(mat) <- paste0("Method", 1:3)
   volinPlot(mat)