Title: | Calculate Pairwise Multiple Comparisons of Mean Rank Sums |
---|---|
Description: | Note, that the 'PMCMR' package is superset by the novel 'PMCMRplus' package. The 'PMCMRplus' package contains all functions from 'PMCMR' and many more parametric and non-parametric multiple comparison procedures, one-factorial trend tests, as well as improved method functions, such as print, summary and plot. The 'PMCMR' package is no longer maintained, but kept for compatibility of reverse depending packages for some time. |
Authors: | Thorsten Pohlert [aut, cre] |
Maintainer: | Thorsten Pohlert <[email protected]> |
License: | GPL (>= 3) |
Version: | 4.4 |
Built: | 2024-12-08 06:51:23 UTC |
Source: | CRAN |
Returns a vector of pvalues that includes the names of the pairwise
groups (i.e. the null hypothesis). The output can be used by
multcompLetters
to find homogeneous groups.
get.pvalues(object, ...)
get.pvalues(object, ...)
object |
either an object of class |
... |
further arguments, currently ignored. |
a named vector with p-values
The functions or methods listed here are no longer part of PMCMR. You will find functions and methods in the PMCMRplus package https://cran.r-project.org/package=PMCMRplus.
dunn.test.control(x, g, p.adjust.method = p.adjust.methods, ...) jonckheere.test(x, ...) ## Default S3 method: jonckheere.test( x, g, alternative = c("monotonic", "increasing", "decreasing"), ... ) posthoc.friedman.conover.test(y, ...) ## Default S3 method: posthoc.friedman.conover.test( y, groups, blocks, p.adjust.method = p.adjust.methods, ... ) posthoc.friedman.nemenyi.test(y, ...) ## Default S3 method: posthoc.friedman.nemenyi.test(y, groups, blocks, ...) ## S3 method for class 'formula' posthoc.friedman.nemenyi.test(formula, data, subset, na.action, ...) durbin.test(y, ...) ## Default S3 method: durbin.test(y, groups, blocks, ...) ## S3 method for class 'formula' durbin.test(formula, data, subset, na.action, ...) posthoc.kruskal.conover.test(x, ...) ## Default S3 method: posthoc.kruskal.conover.test(x, g, p.adjust.method = p.adjust.methods, ...) ## S3 method for class 'formula' posthoc.kruskal.conover.test( formula, data, subset, na.action, p.adjust.method = p.adjust.methods, ... ) posthoc.kruskal.dunn.test(x, ...) ## Default S3 method: posthoc.kruskal.dunn.test(x, g, p.adjust.method = p.adjust.methods, ...) ## S3 method for class 'formula' posthoc.kruskal.dunn.test( formula, data, subset, na.action, p.adjust.method = p.adjust.methods, ... ) posthoc.kruskal.nemenyi.test(x, ...) ## Default S3 method: posthoc.kruskal.nemenyi.test(x, g, dist = c("Tukey", "Chisquare"), ...) ## S3 method for class 'formula' posthoc.kruskal.nemenyi.test( formula, data, subset, na.action, dist = c("Tukey", "Chisquare"), ... ) posthoc.quade.test(y, ...) ## Default S3 method: posthoc.quade.test( y, groups, blocks, dist = c("TDist", "Normal"), p.adjust.method = p.adjust.methods, ... ) posthoc.vanWaerden.test(x, ...) ## Default S3 method: posthoc.vanWaerden.test(x, g, p.adjust.method = p.adjust.methods, ...) ## S3 method for class 'formula' posthoc.vanWaerden.test( formula, data, subset, na.action, p.adjust.method = p.adjust.methods, ... ) vanWaerden.test(x, ...) ## Default S3 method: vanWaerden.test(x, g, ...) ## S3 method for class 'formula' vanWaerden.test(formula, data, subset, na.action, ...)
dunn.test.control(x, g, p.adjust.method = p.adjust.methods, ...) jonckheere.test(x, ...) ## Default S3 method: jonckheere.test( x, g, alternative = c("monotonic", "increasing", "decreasing"), ... ) posthoc.friedman.conover.test(y, ...) ## Default S3 method: posthoc.friedman.conover.test( y, groups, blocks, p.adjust.method = p.adjust.methods, ... ) posthoc.friedman.nemenyi.test(y, ...) ## Default S3 method: posthoc.friedman.nemenyi.test(y, groups, blocks, ...) ## S3 method for class 'formula' posthoc.friedman.nemenyi.test(formula, data, subset, na.action, ...) durbin.test(y, ...) ## Default S3 method: durbin.test(y, groups, blocks, ...) ## S3 method for class 'formula' durbin.test(formula, data, subset, na.action, ...) posthoc.kruskal.conover.test(x, ...) ## Default S3 method: posthoc.kruskal.conover.test(x, g, p.adjust.method = p.adjust.methods, ...) ## S3 method for class 'formula' posthoc.kruskal.conover.test( formula, data, subset, na.action, p.adjust.method = p.adjust.methods, ... ) posthoc.kruskal.dunn.test(x, ...) ## Default S3 method: posthoc.kruskal.dunn.test(x, g, p.adjust.method = p.adjust.methods, ...) ## S3 method for class 'formula' posthoc.kruskal.dunn.test( formula, data, subset, na.action, p.adjust.method = p.adjust.methods, ... ) posthoc.kruskal.nemenyi.test(x, ...) ## Default S3 method: posthoc.kruskal.nemenyi.test(x, g, dist = c("Tukey", "Chisquare"), ...) ## S3 method for class 'formula' posthoc.kruskal.nemenyi.test( formula, data, subset, na.action, dist = c("Tukey", "Chisquare"), ... ) posthoc.quade.test(y, ...) ## Default S3 method: posthoc.quade.test( y, groups, blocks, dist = c("TDist", "Normal"), p.adjust.method = p.adjust.methods, ... ) posthoc.vanWaerden.test(x, ...) ## Default S3 method: posthoc.vanWaerden.test(x, g, p.adjust.method = p.adjust.methods, ...) ## S3 method for class 'formula' posthoc.vanWaerden.test( formula, data, subset, na.action, p.adjust.method = p.adjust.methods, ... ) vanWaerden.test(x, ...) ## Default S3 method: vanWaerden.test(x, g, ...) ## S3 method for class 'formula' vanWaerden.test(formula, data, subset, na.action, ...)
x |
a numeric vector of data values, or a list of numeric data vectors. |
g |
a vector or factor object giving
the group for the corresponding elements of |
p.adjust.method |
Method for adjusting
p values (see |
... |
further arguments to be passed to or from methods. |
alternative |
The alternative hypothesis. |
y |
either a numeric vector of data values, or a data matrix. |
groups |
a vector giving the group for
the corresponding elements of |
blocks |
a vector giving the block for
the corresponding elements of |
formula |
a formula of the form |
data |
an optional matrix or data frame
(or similar: see |
subset |
an optional vector specifying a subset of observations to be used. |
na.action |
a function which indicates what
should happen when the data contain |
dist |
the test distribution |
.Defunct
NA
These functions are provided for reverse-dependencies issues of other R-packages. They should no longer be used, as actively maintained functions can be found in the package PMCMRplus. The functions may be defunct as soon as the next release.
posthoc.durbin.test(y, ...) ## Default S3 method: posthoc.durbin.test(y, groups, blocks, p.adjust.method = p.adjust.methods, ...)
posthoc.durbin.test(y, ...) ## Default S3 method: posthoc.durbin.test(y, groups, blocks, p.adjust.method = p.adjust.methods, ...)
y |
either a numeric vector of data values, or a data matrix. |
... |
further arguments to be passed to or from methods. |
groups |
a vector giving the group for
the corresponding elements of |
blocks |
a vector giving the block for the
corresponding elements of |
p.adjust.method |
Method for adjusting p values
(see |
A list with class "PMCMR"
method The applied method.
data.nameThe name of the data.
p.valueThe two-sided p-value according to the student-t-distribution.
statisticThe estimated quantiles of the student-t-distribution.
p.adjust.methodThe applied method for p-value adjustment.
The function does not test, whether it is a true BIBD.
This function does not test for ties.
W. J. Conover and R. L. Iman (1979), On multiple-comparisons procedures, Tech. Rep. LA-7677-MS, Los Alamos Scientific Laboratory.
W. J. Conover (1999), Practical nonparametric Statistics, 3rd. Edition, Wiley.
## Not run: ## Example for an incomplete block design: ## Data from Conover (1999, p. 391). y <- matrix(c(2, NA, NA, NA, 3, NA, 3, 3, 3, NA, NA, NA, 3, NA, NA, 1, 2, NA, NA, NA, 1, 1, NA, 1, 1, NA, NA, NA, NA, 2, NA, 2, 1, NA, NA, NA, NA, 3, NA, 2, 1, NA, NA, NA, NA, 3, NA, 2, 2), ncol=7, nrow=7, byrow=FALSE, dimnames=list(1:7, LETTERS[1:7])) posthoc.durbin.test(y) ## End(Not run)
## Not run: ## Example for an incomplete block design: ## Data from Conover (1999, p. 391). y <- matrix(c(2, NA, NA, NA, 3, NA, 3, 3, 3, NA, NA, NA, 3, NA, NA, 1, 2, NA, NA, NA, 1, 1, NA, 1, 1, NA, NA, NA, NA, 2, NA, 2, 1, NA, NA, NA, NA, 3, NA, 2, 1, NA, NA, NA, NA, 3, NA, 2, 2), ncol=7, nrow=7, byrow=FALSE, dimnames=list(1:7, LETTERS[1:7])) posthoc.durbin.test(y) ## End(Not run)
print
method for class "PMCMR"
.
## S3 method for class 'PMCMR' print(x, ...)
## S3 method for class 'PMCMR' print(x, ...)
x |
an object of class |
... |
further arguments, currently ignored. |
The function print.PMCMR
returns the lower
triangle of the (adjusted) p-values from any of
the posthoc tests included in the package PMCMR.
summary
method for class "PMCMR"
.
## S3 method for class 'PMCMR' summary(object, ...)
## S3 method for class 'PMCMR' summary(object, ...)
object |
an object of class |
... |
further arguments, currently ignored. |
The function summary.PMCMR
computes and returns a list of the
pairwise comparisons including the H0, the corresponding statistic and
the (adjusted) p-value.