Title: | Population Fisher Information Matrix |
---|---|
Description: | Evaluate or optimize designs for nonlinear mixed effects models using the Fisher Information matrix. Methods used in the package refer to Mentré F, Mallet A, Baccar D (1997) <doi:10.1093/biomet/84.2.429>, Retout S, Comets E, Samson A, Mentré F (2007) <doi:10.1002/sim.2910>, Bazzoli C, Retout S, Mentré F (2009) <doi:10.1002/sim.3573>, Le Nagard H, Chao L, Tenaillon O (2011) <doi:10.1186/1471-2148-11-326>, Combes FP, Retout S, Frey N, Mentré F (2013) <doi:10.1007/s11095-013-1079-3> and Seurat J, Tang Y, Mentré F, Nguyen TT (2021) <doi:10.1016/j.cmpb.2021.106126>. |
Authors: | France Mentré [aut], Romain Leroux [aut, cre], Jérémy Seurat [aut], Lucie Fayette [aut] |
Maintainer: | Romain Leroux <[email protected]> |
License: | GPL (>= 2) |
Version: | 6.1 |
Built: | 2024-10-24 04:24:46 UTC |
Source: | CRAN |
Evaluate or optimize designs for nonlinear mixed effects models using the Fisher Information matrix. Methods used in the package refer to Mentré F, Mallet A, Baccar D (1997) doi:10.1093/biomet/84.2.429, Retout S, Comets E, Samson A, Mentré F (2007) doi:10.1002/sim.2910, Bazzoli C, Retout S, Mentré F (2009) doi:10.1002/sim.3573, Le Nagard H, Chao L, Tenaillon O (2011) doi:10.1186/1471-2148-11-326, Combes FP, Retout S, Frey N, Mentré F (2013) doi:10.1007/s11095-013-1079-3 and Seurat J, Tang Y, Mentré F, Nguyen TT (2021) doi:10.1016/j.cmpb.2021.106126.
Nonlinear mixed effects models (NLMEM) are widely used in model-based drug development and use to analyze longitudinal data. The use of the "population" Fisher Information Matrix (FIM) is a good alternative to clinical trial simulation to optimize the design of these studies. The present version, PFIM 6.1, is an R package that uses the S4 object system for evaluating and/or optimizing population designs based on FIM in NLMEMs.
This version of PFIM now includes a library of models implemented also using the object oriented system S4 of R. This library contains two libraries of pharmacokinetic (PK) and/or pharmacodynamic (PD) models. The PK library includes model with different administration routes (bolus, infusion, first-order absorption), different number of compartments (from 1 to 3), and different types of eliminations (linear or Michaelis-Menten). The PD model library, contains direct immediate models (e.g. Emax and Imax) with various baseline models, and turnover response models. The PK/PD models are obtained with combination of the models from the PK and PD model libraries. PFIM handles both analytical and ODE models and offers the possibility to the user to define his/her own model(s). In PFIM 6.1, the FIM is evaluated by first order linearization of the model assuming a block diagonal FIM as in [3]. The Bayesian FIM is also available to give shrinkage predictions [4]. PFIM 6.1 includes several algorithms to conduct design optimization based on the D-criterion, given design constraints : the simplex algorithm (Nelder-Mead) [5], the multiplicative algorithm [6], the Fedorov-Wynn algorithm [7], PSO (Particle Swarm Optimization) and PGBO (Population Genetics Based Optimizer) [9].
Documentation and user guide are available at http://www.pfim.biostat.fr/
PFIM 6.1 also provides quality control with tests and validation using the evaluated FIM to assess the validity of the new version and its new features. Finally, PFIM 6.1 displays all the results with both clear graphical form and a data summary, while ensuring their easy manipulation in R. The standard data visualization package ggplot2 for R is used to display all the results with clear graphical form [10]. A quality control using the D-criterion is also provided.
/R
folderPFIM 6.1 contains a hierarchy of S4 classes with corresponding methods and functions serving as constructors.
All of the source code related to the specification of a certain class is contained in a file named [Name_of_the_class]-Class.R
.
These classes include:
1. all roxygen @include
to insure the correctly generated collate for the DESCRIPTION file,
2. \setClass
preceded by a roxygen documentation that describes the purpose and slots of the class,
3. specification of an initialize method,
4. all getter and setter, respectively returning attributes of the object and associated objects.
/R
folderClass Administration
Class AdministrationConstraints
Class Arm
Class BayesianFim
Class Combined1
See class ModelError
Class Constant
See class ModelError
Class Design
Class Distribution
Class Evaluation
Class FedorovWynnAlgorithm
Class FedorovWynnAlgorithm
Class Fim
Class GenericMethods
Class IndividualFim
Class LibraryOfModels
Class LibraryOfPKPDModels
Class LogNormal
Class Model
Class ModelAnalytic
Class ModelAnalyticBolus
See class ModelAnalytic
Class ModelAnalyticBolusSteadyState
See class ModelAnalyticBolus
Class ModelBolus
See class Model
Class ModelError
Class ModelInfusion
Class ModelODE
See class Model
Class ModelODEBolus
Class ModelODEDoseInEquations
Class ModelODEDoseNotInEquations
Class ModelODEInfusion
See class ModelInfusion
Class ModelODEInfusionDoseInEquations
Class ModelParameter
Class MultiplicativeAlgorithm
Class Normal
Class Optimization
Class PFIMProject
Class PGBOAlgorithm
Class PlotEvaluation
Class PopulationFim
Class Proportional
See class ModelError
Class PSOAlgorithm
Class SamplingTimeConstraints
Class SamplingTimes
Class SimplexAlgorithm
Maintainer: Romain Leroux [email protected]
Authors:
France Mentré [email protected]
Jérémy Seurat [email protected]
Lucie Fayette [email protected]
[1] Dumont C, Lestini G, Le Nagard H, Mentré F, Comets E, Nguyen TT, et al. PFIM 4.0, an extended R program for design evaluation and optimization in nonlinear mixed-effect models. Comput Methods Programs Biomed. 2018;156:217-29.
[2] Chambers JM. Object-Oriented Programming, Functional Programming and R. Stat Sci. 2014;29:167-80.
[3] Mentré F, Mallet A, Baccar D. Optimal Design in Random-Effects Regression Models. Biometrika. 1997;84:429-42.
[4] Combes FP, Retout S, Frey N, Mentré F. Prediction of shrinkage of individual parameters using the Bayesian information matrix in nonlinear mixed effect models with evaluation in pharmacokinetics. Pharm Res. 2013;30:2355-67.
[5] Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7:308-13.
[6] Seurat J, Tang Y, Mentré F, Nguyen, TT. Finding optimal design in nonlinear mixed effect models using multiplicative algorithms. Computer Methods and Programs in Biomedicine, 2021.
[7] Fedorov VV. Theory of Optimal Experiments. Academic Press, New York, 1972.
[8] Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. Proc. of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, 4-6 October 1995, 39-43.
[9] Le Nagard H, Chao L, Tenaillon O. The emergence of complexity and restricted pleiotropy in adapting networks. BMC Evol Biol. 2011;11:326.
[10] Wickham H. ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, 2016.
Useful links:
Add a model to a library of models.
addModel(object, model) ## S4 method for signature 'LibraryOfModels' addModel(object, model)
addModel(object, model) ## S4 method for signature 'LibraryOfModels' addModel(object, model)
object |
An object from the class LibraryOfModels. |
model |
An object from the class Model. |
The library of models with the added model.
Add a models to a library of models.
addModels(object, models) ## S4 method for signature 'LibraryOfModels' addModels(object, models)
addModels(object, models) ## S4 method for signature 'LibraryOfModels' addModels(object, models)
object |
An object from the class LibraryOfModels. |
models |
A list of object from the class Model. |
The library of models with the added models.
The class Administration
defines information concerning the parametrization and the type of administration:
single dose, multiple doses. Constraints can also be added on the allowed times, doses and infusion duration.
Objects form the class Administration
can be created by calls of the form Administration(...)
where
(...) are the parameters for the Administration
objects.
Administration
objectsoutcome
:A character string giving the name for the response of the model.
timeDose
:A numeric vector giving the times when doses are given.
dose
:A numeric vector giving the amount of doses.
Tinf
:A numeric vector giving the infusion duration Tinf (Tinf can be null).
tau
:A numeric giving the frequency.
The class AdministrationConstraints
represents the constraint of an input to the system.
The class stores information concerning the constraints for the dosage regimen:
response of the model, amount of dose.
Objects form the class AdministrationConstraints
can be created by calls of the form AdministrationConstraints(...)
where
(...) are the parameters for the AdministrationConstraints
objects.
AdministrationConstraints
objectsoutcome
:A character string giving the name for the response of the model.
doses
:A numeric vector giving the amount of doses.
The class Arm
combines the treatment and the sampling schedule.
Objects form the class Arm
can be created by calls of the form Arm(...)
where (...) are the parameters for the Arm
objects.
Arm
objectsname
:A string giving the name of the arm.
size
:An integer giving the number of subjects in the arm. By default set to 1.
administrations
:A list of the administrations.
initialConditions
:A list of the initial conditions.
samplingTimes
:A list of the sampling times.
administrationsConstraints
:A list of the administrations constraints.
samplingTimesConstraints
:A list of the sampling times constraints.
The class BayesianFim
represents the population Fisher information matrix.
The class BayesianFim
inherits from the class Fim
.
Check for the samplingTime constraints for continuous optimization
checkSamplingTimeConstraintsForContinuousOptimization( object, arm, newSamplings, outcome ) ## S4 method for signature 'SamplingTimeConstraints' checkSamplingTimeConstraintsForContinuousOptimization( object, arm, newSamplings, outcome )
checkSamplingTimeConstraintsForContinuousOptimization( object, arm, newSamplings, outcome ) ## S4 method for signature 'SamplingTimeConstraints' checkSamplingTimeConstraintsForContinuousOptimization( object, arm, newSamplings, outcome )
object |
An object from the class SamplingTimeConstraints. |
arm |
An object from the class Arm. |
newSamplings |
A vector giving the new sampling. |
outcome |
The outcomes for the model. |
A list of Boolean giving true if the minimal sampling times is in the vector of sampling times & the number of sampling for each windows is respected false otherwise.
Check the validity of he sampling times constraints
checkValiditySamplingConstraint(object) ## S4 method for signature 'Design' checkValiditySamplingConstraint(object)
checkValiditySamplingConstraint(object) ## S4 method for signature 'Design' checkValiditySamplingConstraint(object)
object |
An object from the class Design. |
An error message if a constraint is not valid.
The class Combined1
defines the the residual error variance according
to the formula g(sigmaInter, sigmaSlope, cError, f(x, theta)) = sigmaInter + sigmaSlope*f(x,theta)).
The class Combined1
inherits from the class ModelError
.
Combined1 objects are typically created by calls to Combined1
and contain the following slots that are inherited from
the class ModelError:
outcome
:A string giving the name of the outcome.
equation
:An symbolic expression of the model error.
derivatives
:A list containing the derivatives of the model error expression.
sigmaInter
:A numeric value giving the sigma inter of the error model.
sigmaSlope
:A numeric value giving the sigma slope of the error model.
cError
:A numeric value giving the exponant c of the error model.
function computeVMat
computeVMat(varParam1, varParam2, invCholV)
computeVMat(varParam1, varParam2, invCholV)
varParam1 |
varParam1 |
varParam2 |
varParam2 |
invCholV |
invCholV |
VMat
The class Constant
defines the the residual error variance according
to the formula g(sigma_inter, sigma_slope, c_error, f(x, theta)) = sigma_inter.
The class Constant
inherits from the class ModelError
.
Constant
objects are typically created by calls to Constant
and contain the following slots that are inherited from the class ModelError:
outcome
:A string giving the name of the outcome.
equation
:An symbolic expression of the model error.
derivatives
:A list containing the derivatives of the model error expression.
sigmaInter
:A numeric value giving the sigma inter of the error model.
sigmaSlope
:A numeric value giving the sigma slope of the error model.
cError
:A numeric value giving the exponant c of the error model.
Convert an analytic model to a ode model.
convertPKModelAnalyticToPKModelODE(object) ## S4 method for signature 'ModelAnalytic' convertPKModelAnalyticToPKModelODE(object) ## S4 method for signature 'ModelAnalyticSteadyState' convertPKModelAnalyticToPKModelODE(object) ## S4 method for signature 'ModelAnalyticInfusion' convertPKModelAnalyticToPKModelODE(object)
convertPKModelAnalyticToPKModelODE(object) ## S4 method for signature 'ModelAnalytic' convertPKModelAnalyticToPKModelODE(object) ## S4 method for signature 'ModelAnalyticSteadyState' convertPKModelAnalyticToPKModelODE(object) ## S4 method for signature 'ModelAnalyticInfusion' convertPKModelAnalyticToPKModelODE(object)
object |
An object from the class Model. |
A ode model.
dataForArmEvaluation
dataForArmEvaluation(object, arm, model) ## S4 method for signature 'Design' dataForArmEvaluation(object, arm, model)
dataForArmEvaluation(object, arm, model) ## S4 method for signature 'Design' dataForArmEvaluation(object, arm, model)
object |
An object |
arm |
... |
model |
An object |
A list containing data for arm evaluation in the design.
Define a model.
defineModel(object, designs) ## S4 method for signature 'Model' defineModel(object, designs)
defineModel(object, designs) ## S4 method for signature 'Model' defineModel(object, designs)
object |
An object from the class Model. |
designs |
A list of objects from the class Design. |
A model defined either from the library of models or user defined.
defineModelEquationsFromStringToFunction
defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration ) ## S4 method for signature 'ModelAnalytic' defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration ) ## S4 method for signature 'ModelAnalyticSteadyState' defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration ) ## S4 method for signature 'ModelAnalyticInfusion' defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration ) ## S4 method for signature 'ModelAnalyticInfusionSteadyState' defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration ) ## S4 method for signature 'ModelODEBolus' defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration ) ## S4 method for signature 'ModelODEDoseInEquations' defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration ) ## S4 method for signature 'ModelODEDoseNotInEquations' defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration ) ## S4 method for signature 'ModelODEInfusionDoseInEquations' defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration )
defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration ) ## S4 method for signature 'ModelAnalytic' defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration ) ## S4 method for signature 'ModelAnalyticSteadyState' defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration ) ## S4 method for signature 'ModelAnalyticInfusion' defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration ) ## S4 method for signature 'ModelAnalyticInfusionSteadyState' defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration ) ## S4 method for signature 'ModelODEBolus' defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration ) ## S4 method for signature 'ModelODEDoseInEquations' defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration ) ## S4 method for signature 'ModelODEDoseNotInEquations' defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration ) ## S4 method for signature 'ModelODEInfusionDoseInEquations' defineModelEquationsFromStringToFunction( object, parametersNames, outcomesWithAdministration, outcomesWithNoAdministration )
object |
An object from the class Model. |
parametersNames |
Vector of parameter names. |
outcomesWithAdministration |
Vector of the name of the outcome with administration. |
outcomesWithNoAdministration |
Vector of the name of the outcome with no administration. |
....
Define a model from the library of models.
defineModelFromLibraryOfModels(object, designs) ## S4 method for signature 'Model' defineModelFromLibraryOfModels(object, designs)
defineModelFromLibraryOfModels(object, designs) ## S4 method for signature 'Model' defineModelFromLibraryOfModels(object, designs)
object |
An object from the class Model. |
designs |
A list of objects from the class Design. |
A model defined from the library of models.
Define the type of a model.
defineModelType(object, designs) ## S4 method for signature 'Model' defineModelType(object, designs)
defineModelType(object, designs) ## S4 method for signature 'Model' defineModelType(object, designs)
object |
An object from the class Model. |
designs |
A list of objects from the class Design. |
Return a model defined as analytic, ode, etc.
Define a user defined model.
defineModelUserDefined(object, designs) ## S4 method for signature 'Model' defineModelUserDefined(object, designs)
defineModelUserDefined(object, designs) ## S4 method for signature 'Model' defineModelUserDefined(object, designs)
object |
An object from the class Model. |
designs |
A list of objects from the class Design. |
A model giving a user defined model.
Define a PK model.
definePKModel(object, outcomes) ## S4 method for signature 'ModelAnalytic' definePKModel(object, outcomes) ## S4 method for signature 'ModelAnalyticSteadyState' definePKModel(object, outcomes) ## S4 method for signature 'ModelAnalyticInfusion' definePKModel(object, outcomes) ## S4 method for signature 'ModelODEDoseInEquations' definePKModel(object, outcomes) ## S4 method for signature 'ModelODE' definePKModel(object, outcomes) ## S4 method for signature 'ModelODEInfusionDoseInEquations' definePKModel(object, outcomes)
definePKModel(object, outcomes) ## S4 method for signature 'ModelAnalytic' definePKModel(object, outcomes) ## S4 method for signature 'ModelAnalyticSteadyState' definePKModel(object, outcomes) ## S4 method for signature 'ModelAnalyticInfusion' definePKModel(object, outcomes) ## S4 method for signature 'ModelODEDoseInEquations' definePKModel(object, outcomes) ## S4 method for signature 'ModelODE' definePKModel(object, outcomes) ## S4 method for signature 'ModelODEInfusionDoseInEquations' definePKModel(object, outcomes)
object |
An object from the class Model. |
outcomes |
A list giving the outcomes of the PK model. |
A model giving a PK model.
Define a PKPD model.
definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelAnalytic,ModelAnalytic' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelAnalytic,ModelODE' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelAnalyticSteadyState,ModelAnalyticSteadyState' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelAnalyticSteadyState,ModelODE' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelAnalyticInfusion,ModelAnalytic' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelAnalyticInfusion,ModelODE' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelODEBolus,ModelODE' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelODEDoseInEquations,ModelODE' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelODEDoseNotInEquations,ModelODE' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelODEInfusion,ModelODE' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelODEInfusionDoseInEquations,ModelODE' definePKPDModel(PKModel, PDModel, outcomes)
definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelAnalytic,ModelAnalytic' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelAnalytic,ModelODE' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelAnalyticSteadyState,ModelAnalyticSteadyState' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelAnalyticSteadyState,ModelODE' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelAnalyticInfusion,ModelAnalytic' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelAnalyticInfusion,ModelODE' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelODEBolus,ModelODE' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelODEDoseInEquations,ModelODE' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelODEDoseNotInEquations,ModelODE' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelODEInfusion,ModelODE' definePKPDModel(PKModel, PDModel, outcomes) ## S4 method for signature 'ModelODEInfusionDoseInEquations,ModelODE' definePKPDModel(PKModel, PDModel, outcomes)
PKModel |
An object from the class Model. |
PDModel |
An object from the class Model. |
outcomes |
A list giving the outcomes of the PKPD model. |
A model giving a PKPD model.
The class Design
defines information concerning the parametrization of the designs.
Objects form the class Design
can be created by calls of the form Design(...)
where (...) are the parameters for the Design
objects.
Design
objectsname
:A string giving the name of the design.
size
:An integer giving the number of subjects in the design.
arms
:A list of the arms.
outcomesEvaluation
:A list of the results of the design evaluation for the outcomes.
outcomesGradient
:A list of the results of the design evaluation for the sensitivity indices.
numberOfArms
:A numeric giving the number of arms in the design.
fim
:An object of the class Fim
containing the Fisher Information Matrix of the design.
The class defines all the required methods for a distribution object.
Objects form the class Distribution
can be created by calls of the form Distribution(...)
where
(...) are the parameters for the Distribution
objects.
Distribution
objectsparameters
:A list containing the distribution parameters.
Evaluate an arm.
EvaluateArm(object, model, dataForModelEvaluation, fim) ## S4 method for signature 'Arm' EvaluateArm(object, model, dataForModelEvaluation, fim)
EvaluateArm(object, model, dataForModelEvaluation, fim) ## S4 method for signature 'Arm' EvaluateArm(object, model, dataForModelEvaluation, fim)
object |
An object |
model |
An object |
dataForModelEvaluation |
.... |
fim |
An object |
The object fim
containing the Fisher Information Matrix
the two lists evaluationOutcomes
, outcomesGradient
containing the results of
the evaluation of the outcome and the sensitivity indices.
Evaluate an design
EvaluateDesign(object, model, fim) ## S4 method for signature 'Design' EvaluateDesign(object, model, fim)
EvaluateDesign(object, model, fim) ## S4 method for signature 'Design' EvaluateDesign(object, model, fim)
object |
An object |
model |
An object |
fim |
An object |
The object Design
with its slot fim
, evaluationOutcomes
, outcomesGradient
updated.
Evaluate the error model derivatives.
EvaluateErrorModelDerivatives(object, evaluationOutcome) ## S4 method for signature 'ModelError' EvaluateErrorModelDerivatives(object, evaluationOutcome)
EvaluateErrorModelDerivatives(object, evaluationOutcome) ## S4 method for signature 'ModelError' EvaluateErrorModelDerivatives(object, evaluationOutcome)
object |
An object from the class ModelError. |
evaluationOutcome |
A list giving the results of the model evaluation. |
A list giving the error variance and the Sigma derivatives.
Evaluate the Fisher matrix ( population, individual and Bayesian )
EvaluateFisherMatrix(object, model, arm, modelEvaluation, modelVariance) ## S4 method for signature 'BayesianFim' EvaluateFisherMatrix(object, model, arm, modelEvaluation, modelVariance) ## S4 method for signature 'IndividualFim' EvaluateFisherMatrix(object, model, arm, modelEvaluation, modelVariance) ## S4 method for signature 'PopulationFim' EvaluateFisherMatrix(object, model, arm, modelEvaluation, modelVariance)
EvaluateFisherMatrix(object, model, arm, modelEvaluation, modelVariance) ## S4 method for signature 'BayesianFim' EvaluateFisherMatrix(object, model, arm, modelEvaluation, modelVariance) ## S4 method for signature 'IndividualFim' EvaluateFisherMatrix(object, model, arm, modelEvaluation, modelVariance) ## S4 method for signature 'PopulationFim' EvaluateFisherMatrix(object, model, arm, modelEvaluation, modelVariance)
object |
An object from the class Fim. |
model |
An object from the class Model. |
arm |
An object from the class Arm. |
modelEvaluation |
A list containing the evaluation results. |
modelVariance |
A list containing the model variance. |
An object from the class Fim containing the Fisher matrix.
Evaluate a model.
EvaluateModel(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelAnalytic' EvaluateModel(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelAnalyticSteadyState' EvaluateModel(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelAnalyticInfusion' EvaluateModel(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelAnalyticInfusionSteadyState' EvaluateModel(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelODEBolus' EvaluateModel(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelODEDoseInEquations' EvaluateModel(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelODEDoseNotInEquations' EvaluateModel(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelODEInfusionDoseInEquations' EvaluateModel(object, dataForModelEvaluation, arm)
EvaluateModel(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelAnalytic' EvaluateModel(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelAnalyticSteadyState' EvaluateModel(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelAnalyticInfusion' EvaluateModel(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelAnalyticInfusionSteadyState' EvaluateModel(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelODEBolus' EvaluateModel(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelODEDoseInEquations' EvaluateModel(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelODEDoseNotInEquations' EvaluateModel(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelODEInfusionDoseInEquations' EvaluateModel(object, dataForModelEvaluation, arm)
object |
An object from the class Model. |
dataForModelEvaluation |
... |
arm |
An object from the class Arm. |
A list giving the results of the model evaluation.
Evaluate model gradient.
EvaluateModelGradient(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelAnalytic' EvaluateModelGradient(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelAnalyticSteadyState' EvaluateModelGradient(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelAnalyticInfusion' EvaluateModelGradient(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelAnalyticInfusionSteadyState' EvaluateModelGradient(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelODEBolus' EvaluateModelGradient(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelODEDoseInEquations' EvaluateModelGradient(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelODEDoseNotInEquations' EvaluateModelGradient(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelODEInfusionDoseInEquations' EvaluateModelGradient(object, dataForModelEvaluation, arm)
EvaluateModelGradient(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelAnalytic' EvaluateModelGradient(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelAnalyticSteadyState' EvaluateModelGradient(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelAnalyticInfusion' EvaluateModelGradient(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelAnalyticInfusionSteadyState' EvaluateModelGradient(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelODEBolus' EvaluateModelGradient(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelODEDoseInEquations' EvaluateModelGradient(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelODEDoseNotInEquations' EvaluateModelGradient(object, dataForModelEvaluation, arm) ## S4 method for signature 'ModelODEInfusionDoseInEquations' EvaluateModelGradient(object, dataForModelEvaluation, arm)
object |
An object from the class Model. |
dataForModelEvaluation |
... |
arm |
An object from the class Arm. |
A list giving the results of the model evaluation.
Evaluate the variance of the Fisher information matrix.
EvaluateVarianceFIM(object, model, arm, modelEvaluation, modelVariance) ## S4 method for signature 'IndividualFim' EvaluateVarianceFIM(object, model, arm, modelEvaluation, modelVariance) ## S4 method for signature 'PopulationFim' EvaluateVarianceFIM(object, model, arm, modelEvaluation, modelVariance)
EvaluateVarianceFIM(object, model, arm, modelEvaluation, modelVariance) ## S4 method for signature 'IndividualFim' EvaluateVarianceFIM(object, model, arm, modelEvaluation, modelVariance) ## S4 method for signature 'PopulationFim' EvaluateVarianceFIM(object, model, arm, modelEvaluation, modelVariance)
object |
An object from the class Fim. |
model |
An object from the class Model. |
arm |
An object from the class Arm. |
modelEvaluation |
A list containing the evaluation results. |
modelVariance |
A list containing the model variance. |
A list containing the matrices of the variance of the FIM.
Evaluate the variance of a model.
EvaluateVarianceModel(object, arm, evaluationModel, data) ## S4 method for signature 'Model' EvaluateVarianceModel(object, arm, evaluationModel, data)
EvaluateVarianceModel(object, arm, evaluationModel, data) ## S4 method for signature 'Model' EvaluateVarianceModel(object, arm, evaluationModel, data)
object |
An object from the class Model. |
arm |
An object from the class Arm. |
evaluationModel |
A list giving the outputs of the model evaluation. |
data |
... |
Return a list giving the results of the evaluation of the model variance.
A class storing information concerning the evaluation of a design.
Objects form the class Evaluation
can be created by calls of the form Evaluation(...)
where (...) are the parameters for the Evaluation
objects.
Evaluation
objectsname
:A string giving the name of the project.
model
:A object of class Model giving the model.
modelEquations
:A list giving the model equations.
modelParameters
:A list giving the model parameters.
modelError
:A list giving the model error for each outcome of the model.
outcomes
:A list giving the model outcomes.
designs
:A list giving the designs to be evaluated.
fim
:An object of the class Fim
containing the Fisher Information Matrix of the design.
odeSolverParameters
:Run the FedorovWynnAlgorithm in Rcpp
FedorovWynnAlgorithm_Rcpp( protocols_input, ndimen_input, nbprot_input, numprot_input, freq_input, nbdata_input, vectps_input, fisher_input, nok_input, protdep_input, freqdep_input )
FedorovWynnAlgorithm_Rcpp( protocols_input, ndimen_input, nbprot_input, numprot_input, freq_input, nbdata_input, vectps_input, fisher_input, nok_input, protdep_input, freqdep_input )
protocols_input |
parameter protocols_input |
ndimen_input |
parameter ndimen_input |
nbprot_input |
parameter nbprot_input |
numprot_input |
parameter numprot_input |
freq_input |
parameter freq_input |
nbdata_input |
parameter nbdata_input |
vectps_input |
parameter vectps_input |
fisher_input |
parameter fisher_input |
nok_input |
parameter nok_input |
protdep_input |
parameter protdep_input |
freqdep_input |
parameter freqdep_input |
A list giving the results of the outputs of the FedorovWynn algorithm.
Class FedorovWynnAlgorithm
represents an initial variable for ODE model.
FedorovWynnAlgorithm
Objects form the class FedorovWynnAlgorithm
can be created by calls of the form FedorovWynnAlgorithm(...)
where (...) are the parameters for the FedorovWynnAlgorithm
objects.
FedorovWynnAlgorithm
objectselementaryProtocols
:A list of vector for the initial elementary protocols.
numberOfSubjects
:A vector for the number of subjects.
proportionsOfSubjects
:A vector for the number of subjects.
OptimalDesign
:A object Design giving the optimal Design.
showProcess
:A boolean to show the process or not.
FisherMatrix
:A vector giving the Fisher Information
optimalFrequencies
:A vector of the optimal frequencies.
optimalSamplingTimes
:A list of vectors for the optimal sampling times.
optimalDoses
:A vector for the optimal doses.
A class storing information regarding the Fisher matrix. Type of the Fisher information: population ("PopulationFIM"), individual ("IndividualFIM") or Bayesian ("BayesianFIM").
Objects form the class Fim
can be created by calls of the form Fim(...)
where
(...) are the parameters for the Fim
objects.
Fim
objectsfisherMatrix
:A matrix giving the Fisher matrix.
fixedEffects
:A matrix giving the fixed effects of the Fisher matrix.
varianceEffects
:A matrix giving the variance effects of the Fisher matrix.
shrinkage
:A vector giving the shrinkage value of the parameters.
Compute the fisher.simplex
fisher.simplex(simplex, optimizationObject, outcomes)
fisher.simplex(simplex, optimizationObject, outcomes)
simplex |
A list giving the parameters of the simplex. |
optimizationObject |
An object from the class Optimization. |
outcomes |
A vector giving the outcomes of the arms. |
A list giving the results of the optimization.
function fun.amoeba
fun.amoeba(p, y, ftol, itmax, funk, outcomes, data, showProcess)
fun.amoeba(p, y, ftol, itmax, funk, outcomes, data, showProcess)
p |
input is a matrix p whose ndim+1 rows are ndim-dimensional vectors which are the vertices of the starting simplex. |
y |
vector whose components must be pre-initialized to the values of funk evaluated at the ndim+1 vertices (rows) of p. |
ftol |
the fractional convergence tolerance to be achieved in the function value. |
itmax |
maximal number of iterations. |
funk |
multidimensional function to be optimized. |
outcomes |
A vector giving the outcomes. |
data |
a fixed set of data. |
showProcess |
A boolean for showing the process or not. |
A list containing the components of the optimized simplex. 'getColumnAndParametersNamesFIMInLatex.
Generate the fim from the constraints
generateFimsFromConstraints(object, fims) ## S4 method for signature 'Optimization' generateFimsFromConstraints(object)
generateFimsFromConstraints(object, fims) ## S4 method for signature 'Optimization' generateFimsFromConstraints(object)
object |
An object from the class Optimization. |
fims |
A list of object from the class Fim. |
A list giving the arms with their fims.
Generate the report for the evaluation
generateReportEvaluation( object, evaluationObject, outputPath, outputFile, plotOptions ) ## S4 method for signature 'BayesianFim' generateReportEvaluation( object, evaluationObject, outputPath, outputFile, plotOptions ) ## S4 method for signature 'IndividualFim' generateReportEvaluation( object, evaluationObject, outputPath, outputFile, plotOptions ) ## S4 method for signature 'PopulationFim' generateReportEvaluation( object, evaluationObject, outputPath, outputFile, plotOptions )
generateReportEvaluation( object, evaluationObject, outputPath, outputFile, plotOptions ) ## S4 method for signature 'BayesianFim' generateReportEvaluation( object, evaluationObject, outputPath, outputFile, plotOptions ) ## S4 method for signature 'IndividualFim' generateReportEvaluation( object, evaluationObject, outputPath, outputFile, plotOptions ) ## S4 method for signature 'PopulationFim' generateReportEvaluation( object, evaluationObject, outputPath, outputFile, plotOptions )
object |
An object from the class Fim. |
evaluationObject |
A list giving the results of the evaluation of the model. |
outputPath |
A string giving the output path. |
outputFile |
A string giving the name of the output file. |
plotOptions |
A list giving the plot options. |
Return the report for the evaluation in html.
Generate report for the optimization.
generateReportOptimization( object, optimizationObject, outputPath, outputFile, plotOptions ) ## S4 method for signature 'FedorovWynnAlgorithm' generateReportOptimization( object, optimizationObject, outputPath, outputFile, plotOptions ) ## S4 method for signature 'MultiplicativeAlgorithm' generateReportOptimization( object, optimizationObject, outputPath, outputFile, plotOptions ) ## S4 method for signature 'PGBOAlgorithm' generateReportOptimization( object, optimizationObject, outputPath, outputFile, plotOptions ) ## S4 method for signature 'PSOAlgorithm' generateReportOptimization( object, optimizationObject, outputPath, outputFile, plotOptions ) ## S4 method for signature 'SimplexAlgorithm' generateReportOptimization( object, optimizationObject, outputPath, outputFile, plotOptions )
generateReportOptimization( object, optimizationObject, outputPath, outputFile, plotOptions ) ## S4 method for signature 'FedorovWynnAlgorithm' generateReportOptimization( object, optimizationObject, outputPath, outputFile, plotOptions ) ## S4 method for signature 'MultiplicativeAlgorithm' generateReportOptimization( object, optimizationObject, outputPath, outputFile, plotOptions ) ## S4 method for signature 'PGBOAlgorithm' generateReportOptimization( object, optimizationObject, outputPath, outputFile, plotOptions ) ## S4 method for signature 'PSOAlgorithm' generateReportOptimization( object, optimizationObject, outputPath, outputFile, plotOptions ) ## S4 method for signature 'SimplexAlgorithm' generateReportOptimization( object, optimizationObject, outputPath, outputFile, plotOptions )
object |
An object from the class OptimizationAlgorithm. |
optimizationObject |
An object from the class Optimization. |
outputPath |
A string giving the output path. |
outputFile |
A string giving the name of the output file. |
plotOptions |
A list giving the plot options. |
The report for the optimization in html.
Generate samplings from sampling constraints
generateSamplingsFromSamplingConstraints(object) ## S4 method for signature 'SamplingTimeConstraints' generateSamplingsFromSamplingConstraints(object)
generateSamplingsFromSamplingConstraints(object) ## S4 method for signature 'SamplingTimeConstraints' generateSamplingsFromSamplingConstraints(object)
object |
An object from the class SamplingTimeConstraints. |
A list of sampling times generated from the sampling constraints.
Generate the tables for the report.
generateTables(object, plotOptions) ## S4 method for signature 'Evaluation' generateTables(object, plotOptions) ## S4 method for signature 'Optimization' generateTables(object, plotOptions)
generateTables(object, plotOptions) ## S4 method for signature 'Evaluation' generateTables(object, plotOptions) ## S4 method for signature 'Optimization' generateTables(object, plotOptions)
object |
An object from the class PFIMProject. |
plotOptions |
A list giving the plot options. |
A list giving the kable able for the report ( evaluation and optimization).
Get the adjusted gradient.
getAdjustedGradient(object, outcomesGradient) ## S4 method for signature 'LogNormal' getAdjustedGradient(object, outcomesGradient) ## S4 method for signature 'Normal' getAdjustedGradient(object, outcomesGradient)
getAdjustedGradient(object, outcomesGradient) ## S4 method for signature 'LogNormal' getAdjustedGradient(object, outcomesGradient) ## S4 method for signature 'Normal' getAdjustedGradient(object, outcomesGradient)
object |
An object |
outcomesGradient |
A list containing the evaluation of the outcome gradients. |
A list giving the adjusted gradient.
Get the administrations by outcome.
getAdministration(object, outcome) ## S4 method for signature 'Arm' getAdministration(object, outcome)
getAdministration(object, outcome) ## S4 method for signature 'Arm' getAdministration(object, outcome)
object |
An object |
outcome |
A string giving the name of the outcome. |
The element of the list administrations
containing the administration of the outcome outcome
Get the administration constraints by outcome.
getAdministrationConstraint(object, outcome) ## S4 method for signature 'Arm' getAdministrationConstraint(object, outcome)
getAdministrationConstraint(object, outcome) ## S4 method for signature 'Arm' getAdministrationConstraint(object, outcome)
object |
An object |
outcome |
A string giving the name of the outcome. |
The element of the list getAdministrationConstraint
containing the administration constraints of the outcome outcome
Get all the administration for an arm.
getAdministrations(object) ## S4 method for signature 'Arm' getAdministrations(object)
getAdministrations(object) ## S4 method for signature 'Arm' getAdministrations(object)
object |
An object |
A list administrations
of objects from the class Administration
class giving
the parameters of the administration for the object Arm
.
Get the administrations constraints.
getAdministrationsConstraints(object) ## S4 method for signature 'Arm' getAdministrationsConstraints(object)
getAdministrationsConstraints(object) ## S4 method for signature 'Arm' getAdministrationsConstraints(object)
object |
An object |
The list administrationsConstraints
.
Get the arms of an object.
getArms(object) ## S4 method for signature 'Design' getArms(object) ## S4 method for signature 'OptimizationAlgorithm' getArms(object)
getArms(object) ## S4 method for signature 'Design' getArms(object) ## S4 method for signature 'OptimizationAlgorithm' getArms(object)
object |
An object defined form a class of PFIM. |
A list containing the arms of the object.
Get the parameter c.
getcError(object) ## S4 method for signature 'ModelError' getcError(object)
getcError(object) ## S4 method for signature 'ModelError' getcError(object)
object |
An object from the class ModelError. |
A numeric giving the parameter c.
Get the names of the names of the parameters associated to each column of the fim.
getColumnAndParametersNamesFIM(object, model) ## S4 method for signature 'BayesianFim' getColumnAndParametersNamesFIM(object, model) ## S4 method for signature 'IndividualFim' getColumnAndParametersNamesFIM(object, model) ## S4 method for signature 'PopulationFim' getColumnAndParametersNamesFIM(object, model)
getColumnAndParametersNamesFIM(object, model) ## S4 method for signature 'BayesianFim' getColumnAndParametersNamesFIM(object, model) ## S4 method for signature 'IndividualFim' getColumnAndParametersNamesFIM(object, model) ## S4 method for signature 'PopulationFim' getColumnAndParametersNamesFIM(object, model)
object |
An object from the class Fim. |
model |
An object from the class Model. |
A list giving the names of the parameters associated to each column of the fim.
Get the names of the names of the parameters associated to each column of the fim in Latex format.
getColumnAndParametersNamesFIMInLatex(object, model) ## S4 method for signature 'BayesianFim' getColumnAndParametersNamesFIMInLatex(object, model) ## S4 method for signature 'IndividualFim' getColumnAndParametersNamesFIMInLatex(object, model) ## S4 method for signature 'PopulationFim' getColumnAndParametersNamesFIMInLatex(object, model)
getColumnAndParametersNamesFIMInLatex(object, model) ## S4 method for signature 'BayesianFim' getColumnAndParametersNamesFIMInLatex(object, model) ## S4 method for signature 'IndividualFim' getColumnAndParametersNamesFIMInLatex(object, model) ## S4 method for signature 'PopulationFim' getColumnAndParametersNamesFIMInLatex(object, model)
object |
An object from the class Fim. |
model |
An object from the class Model. |
A list giving the names of the parameters associated to each column of the fim in Latex format.
Get the condition number of the matrix of the fixed effects.
getConditionNumberFixedEffects(object) ## S4 method for signature 'Fim' getConditionNumberFixedEffects(object)
getConditionNumberFixedEffects(object) ## S4 method for signature 'Fim' getConditionNumberFixedEffects(object)
object |
An object from the class Fim. |
A numeric giving the condition number of the matrix of the fixed effects.
Get the condition number of the matrix of the variance effects.
getConditionNumberVarianceEffects(object) ## S4 method for signature 'Fim' getConditionNumberVarianceEffects(object) ## S4 method for signature 'BayesianFim' getConditionNumberVarianceEffects(object)
getConditionNumberVarianceEffects(object) ## S4 method for signature 'Fim' getConditionNumberVarianceEffects(object) ## S4 method for signature 'BayesianFim' getConditionNumberVarianceEffects(object)
object |
An object from the class Fim.. |
A numeric giving the condition number of the matrix of the variance effects.
Get content of a library of models.
getContent(object) ## S4 method for signature 'LibraryOfModels' getContent(object)
getContent(object) ## S4 method for signature 'LibraryOfModels' getContent(object)
object |
An object from the class LibraryOfModels. |
A list giving the content of the library of models.
Get the correlation matrix.
getCorrelationMatrix(object) ## S4 method for signature 'Fim' getCorrelationMatrix(object) ## S4 method for signature 'Evaluation' getCorrelationMatrix(object) ## S4 method for signature 'Optimization' getCorrelationMatrix(object)
getCorrelationMatrix(object) ## S4 method for signature 'Fim' getCorrelationMatrix(object) ## S4 method for signature 'Evaluation' getCorrelationMatrix(object) ## S4 method for signature 'Optimization' getCorrelationMatrix(object)
object |
An object from the class Fim. |
The correlation matrix of the fim.
getDataForArmEvaluation
getDataForArmEvaluation(object) ## S4 method for signature 'Arm' getDataForArmEvaluation(object)
getDataForArmEvaluation(object) ## S4 method for signature 'Arm' getDataForArmEvaluation(object)
object |
An object |
A list containing the data for arm evaluation.
Get the dataframe of the results.
getDataFrameResults(object) ## S4 method for signature 'FedorovWynnAlgorithm' getDataFrameResults(object) ## S4 method for signature 'MultiplicativeAlgorithm' getDataFrameResults(object) ## S4 method for signature 'Optimization' getDataFrameResults(object)
getDataFrameResults(object) ## S4 method for signature 'FedorovWynnAlgorithm' getDataFrameResults(object) ## S4 method for signature 'MultiplicativeAlgorithm' getDataFrameResults(object) ## S4 method for signature 'Optimization' getDataFrameResults(object)
object |
An object from the class OptimizationAlgorithm. |
Return the dataframe of the results.
Get the D criterion of the fim.
getDcriterion(object) ## S4 method for signature 'Fim' getDcriterion(object) ## S4 method for signature 'Evaluation' getDcriterion(object) ## S4 method for signature 'Optimization' getDcriterion(object)
getDcriterion(object) ## S4 method for signature 'Fim' getDcriterion(object) ## S4 method for signature 'Evaluation' getDcriterion(object) ## S4 method for signature 'Optimization' getDcriterion(object)
object |
An object from the class Fim. |
A numeric giving the D criterion of the fim.
Get the parameter delta
getDelta(object) ## S4 method for signature 'MultiplicativeAlgorithm' getDelta(object)
getDelta(object) ## S4 method for signature 'MultiplicativeAlgorithm' getDelta(object)
object |
An object from the class MultiplicativeAlgorithm. |
A numeric giving the parameter delta.
Get the derivatives of the model error equation.
getDerivatives(object) ## S4 method for signature 'ModelError' getDerivatives(object)
getDerivatives(object) ## S4 method for signature 'ModelError' getDerivatives(object)
object |
An object from the class ModelError. |
The derivatives of the model error equation.
Get the description of a model.
getDescription(object) ## S4 method for signature 'Model' getDescription(object)
getDescription(object) ## S4 method for signature 'Model' getDescription(object)
object |
An object from the class Model. |
A list giving the description of a model.
Get the designs.
getDesigns(object) ## S4 method for signature 'PFIMProject' getDesigns(object)
getDesigns(object) ## S4 method for signature 'PFIMProject' getDesigns(object)
object |
An object from the class PFIMProject. |
A list giving the designs of the object.
Get the determinant of the fim.
getDeterminant(object) ## S4 method for signature 'Fim' getDeterminant(object) ## S4 method for signature 'Evaluation' getDeterminant(object) ## S4 method for signature 'Optimization' getDeterminant(object)
getDeterminant(object) ## S4 method for signature 'Fim' getDeterminant(object) ## S4 method for signature 'Evaluation' getDeterminant(object) ## S4 method for signature 'Optimization' getDeterminant(object)
object |
An object from the class Fim. |
A numeric giving the determinant of the fim.
Get the distribution.
getDistribution(object) ## S4 method for signature 'ModelParameter' getDistribution(object)
getDistribution(object) ## S4 method for signature 'ModelParameter' getDistribution(object)
object |
An object from the class ModelParameter. |
The parameter distribution.
Get the amount of doses.
getDose(object) ## S4 method for signature 'Administration' getDose(object) ## S4 method for signature 'AdministrationConstraints' getDose(object)
getDose(object) ## S4 method for signature 'Administration' getDose(object) ## S4 method for signature 'AdministrationConstraints' getDose(object)
object |
An object |
The numeric amount_dose
giving the amount of doses.
Get the eigenvalues of the fim.
getEigenValues(object) ## S4 method for signature 'Fim' getEigenValues(object)
getEigenValues(object) ## S4 method for signature 'Fim' getEigenValues(object)
object |
An object from the class Fim. |
A vector giving the eigenvalues of the fim.
Get the elementary protocols.
getElementaryProtocols(object, fims) ## S4 method for signature 'Optimization' getElementaryProtocols(object, fims)
getElementaryProtocols(object, fims) ## S4 method for signature 'Optimization' getElementaryProtocols(object, fims)
object |
An object from the class Optimization. |
fims |
A list of object from the class Fim. |
A list containing the results of the evaluation of the elementary protocols giving the numberOfTimes, nbOfDimensions, totalCost, samplingTimes and the fisherMatrices
Get the equation of a model error.
getEquation(object) ## S4 method for signature 'ModelError' getEquation(object)
getEquation(object) ## S4 method for signature 'ModelError' getEquation(object)
object |
An object from the class ModelError. |
An expression giving the equation of a model error.
Get the equations of a model.
getEquations(object) ## S4 method for signature 'Model' getEquations(object)
getEquations(object) ## S4 method for signature 'Model' getEquations(object)
object |
An object from the class Model. |
The list giving the equations of the model.
Get the equations after infusion.
getEquationsAfterInfusion(object) ## S4 method for signature 'Model' getEquationsAfterInfusion(object)
getEquationsAfterInfusion(object) ## S4 method for signature 'Model' getEquationsAfterInfusion(object)
object |
An object from the class Model. |
A list giving the equations after the infusion.
Get the equations during infusion.
getEquationsDuringInfusion(object) ## S4 method for signature 'Model' getEquationsDuringInfusion(object)
getEquationsDuringInfusion(object) ## S4 method for signature 'Model' getEquationsDuringInfusion(object)
object |
An object from the class Model. |
A list giving the equations during the infusion.
Get the results of the evaluation.
getEvaluationFIMResults(object) ## S4 method for signature 'Optimization' getEvaluationFIMResults(object)
getEvaluationFIMResults(object) ## S4 method for signature 'Optimization' getEvaluationFIMResults(object)
object |
An object from the class Optimization. |
An object from the class Evaluation giving the evaluation results for the optimal design.
Get the evaluation results of the initial design.
getEvaluationInitialDesignResults(object) ## S4 method for signature 'Optimization' getEvaluationInitialDesignResults(object)
getEvaluationInitialDesignResults(object) ## S4 method for signature 'Optimization' getEvaluationInitialDesignResults(object)
object |
An object from the class Optimization. |
The object from the class Evaluation giving the results of the evaluation of the initial design.
Get the fim of an of an object.
getFim(object) ## S4 method for signature 'Design' getFim(object) ## S4 method for signature 'PFIMProject' getFim(object) ## S4 method for signature 'OptimizationAlgorithm' getFim(object)
getFim(object) ## S4 method for signature 'Design' getFim(object) ## S4 method for signature 'PFIMProject' getFim(object) ## S4 method for signature 'OptimizationAlgorithm' getFim(object)
object |
An object defined form a class of PFIM. |
The FIM
of the object.
Get the FIM.
getFisherMatrix(object) ## S4 method for signature 'Fim' getFisherMatrix(object) ## S4 method for signature 'Evaluation' getFisherMatrix(object) ## S4 method for signature 'Optimization' getFisherMatrix(object)
getFisherMatrix(object) ## S4 method for signature 'Fim' getFisherMatrix(object) ## S4 method for signature 'Evaluation' getFisherMatrix(object) ## S4 method for signature 'Optimization' getFisherMatrix(object)
object |
An object from the class Fim. |
A matrix giving the FIM.
Get the matrix of fixed effects.
getFixedEffects(object) ## S4 method for signature 'Fim' getFixedEffects(object)
getFixedEffects(object) ## S4 method for signature 'Fim' getFixedEffects(object)
object |
An object from the class Fim. |
The matrix of the fixed effects.
Get the fixed effect.
getFixedMu(object) ## S4 method for signature 'ModelParameter' getFixedMu(object)
getFixedMu(object) ## S4 method for signature 'ModelParameter' getFixedMu(object)
object |
An object from the class ModelParameter. |
A boolean giving the fixed mu.
Get the fixed variance.
getFixedOmega(object) ## S4 method for signature 'ModelParameter' getFixedOmega(object)
getFixedOmega(object) ## S4 method for signature 'ModelParameter' getFixedOmega(object)
object |
An object from the class ModelParameter. |
A boolean giving the fixed omega.
Get the fixed parameters.
getFixedParameters(object) ## S4 method for signature 'Model' getFixedParameters(object)
getFixedParameters(object) ## S4 method for signature 'Model' getFixedParameters(object)
object |
An object from the class Model. |
A list giving the fixed parameters of the model.
Get the fixed sampling times.
getFixedTimes(object) ## S4 method for signature 'SamplingTimeConstraints' getFixedTimes(object)
getFixedTimes(object) ## S4 method for signature 'SamplingTimeConstraints' getFixedTimes(object)
object |
An object from the class SamplingTimeConstraints. |
A vector giving the foxed sampling times.
Get the initial condition for the evaluation of an ode model.
getInitialConditions(object) ## S4 method for signature 'Arm' getInitialConditions(object) ## S4 method for signature 'Model' getInitialConditions(object)
getInitialConditions(object) ## S4 method for signature 'Arm' getInitialConditions(object) ## S4 method for signature 'Model' getInitialConditions(object)
object |
An object |
The list initialConditions
for the object Arm
.
Get the iteration with the convergence criteria.
getIterationAndCriteria(object) ## S4 method for signature 'OptimizationAlgorithm' getIterationAndCriteria(object)
getIterationAndCriteria(object) ## S4 method for signature 'OptimizationAlgorithm' getIterationAndCriteria(object)
object |
An object from the class OptimizationAlgorithm. |
A dataframe giving the iteration with the convergence criteria.
Get the parameter lambda.
getLambda(object) ## S4 method for signature 'MultiplicativeAlgorithm' getLambda(object)
getLambda(object) ## S4 method for signature 'MultiplicativeAlgorithm' getLambda(object)
object |
An object from the class MultiplicativeAlgorithm. |
A numeric giving the parameter lambda.
Get the library of PD models.
getLibraryPDModels(object) ## S4 method for signature 'LibraryOfModels' getLibraryPDModels(object)
getLibraryPDModels(object) ## S4 method for signature 'LibraryOfModels' getLibraryPDModels(object)
object |
An object from the class LibraryOfModels. |
A list giving the PD models.
Get the library of PK models.
getLibraryPKModels(object) ## S4 method for signature 'LibraryOfModels' getLibraryPKModels(object)
getLibraryPKModels(object) ## S4 method for signature 'LibraryOfModels' getLibraryPKModels(object)
object |
An object from the class LibraryOfModels. |
A list giving the PK models.
Get the minimal sampling times.
getMinSampling(object) ## S4 method for signature 'SamplingTimeConstraints' getMinSampling(object)
getMinSampling(object) ## S4 method for signature 'SamplingTimeConstraints' getMinSampling(object)
object |
An object from the class SamplingTimeConstraints. |
A numeric giving the minimal sampling times.
Get the model.
getModel(object) ## S4 method for signature 'PFIMProject' getModel(object)
getModel(object) ## S4 method for signature 'PFIMProject' getModel(object)
object |
An object from the class PFIMProject. |
The model of the object.
Get the model equations.
getModelEquations(object) ## S4 method for signature 'PFIMProject' getModelEquations(object)
getModelEquations(object) ## S4 method for signature 'PFIMProject' getModelEquations(object)
object |
An object from the class PFIMProject. |
A list giving the model equations.
Get the model error.
getModelError(object) ## S4 method for signature 'Model' getModelError(object) ## S4 method for signature 'PFIMProject' getModelError(object)
getModelError(object) ## S4 method for signature 'Model' getModelError(object) ## S4 method for signature 'PFIMProject' getModelError(object)
object |
An object defined form a class of PFIM. |
The model error of the object.
Get the values of the model error parameters.
getModelErrorParametersValues(object) ## S4 method for signature 'Model' getModelErrorParametersValues(object)
getModelErrorParametersValues(object) ## S4 method for signature 'Model' getModelErrorParametersValues(object)
object |
An object from the class Model. |
A list giving the values of the model error parameters.
Get a model from the library of models.
getModelFromLibrary(object) ## S4 method for signature 'Model' getModelFromLibrary(object)
getModelFromLibrary(object) ## S4 method for signature 'Model' getModelFromLibrary(object)
object |
An object from the class Model. |
Return a model from the the library of models.
Get the model parameters.
getModelParameters(object) ## S4 method for signature 'PFIMProject' getModelParameters(object)
getModelParameters(object) ## S4 method for signature 'PFIMProject' getModelParameters(object)
object |
An object from the class PFIMProject. |
A list giving the model parameters.
Get the values of the model parameters.
getModelParametersValues(object) ## S4 method for signature 'Model' getModelParametersValues(object)
getModelParametersValues(object) ## S4 method for signature 'Model' getModelParametersValues(object)
object |
An object from the class Model. |
A list giving the values of the model parameters.
Get the fixed effect of an object.
getMu(object) ## S4 method for signature 'Distribution' getMu(object) ## S4 method for signature 'ModelParameter' getMu(object)
getMu(object) ## S4 method for signature 'Distribution' getMu(object) ## S4 method for signature 'ModelParameter' getMu(object)
object |
An object defined form a class of PFIM. |
The object with the updated fixed effect.
Get the name of an object
getName(object) ## S4 method for signature 'Arm' getName(object) ## S4 method for signature 'Design' getName(object) ## S4 method for signature 'ModelParameter' getName(object) ## S4 method for signature 'LibraryOfModels' getName(object) ## S4 method for signature 'Model' getName(object) ## S4 method for signature 'PFIMProject' getName(object)
getName(object) ## S4 method for signature 'Arm' getName(object) ## S4 method for signature 'Design' getName(object) ## S4 method for signature 'ModelParameter' getName(object) ## S4 method for signature 'LibraryOfModels' getName(object) ## S4 method for signature 'Model' getName(object) ## S4 method for signature 'PFIMProject' getName(object)
object |
An object defined form a class of PFIM. |
A character string name
giving the name of the object.
Get the names of an object.
getNames(object) ## S4 method for signature 'list' getNames(object)
getNames(object) ## S4 method for signature 'list' getNames(object)
object |
An object defined form a class of PFIM. |
A vector giving the names of the object.
Get the number of arms in a design.
getNumberOfArms(object) ## S4 method for signature 'Design' getNumberOfArms(object)
getNumberOfArms(object) ## S4 method for signature 'Design' getNumberOfArms(object)
object |
An object |
A numeric numberOfArms
giving the number of arms in the design.
Get the number of iterations.
getNumberOfIterations(object) ## S4 method for signature 'MultiplicativeAlgorithm' getNumberOfIterations(object)
getNumberOfIterations(object) ## S4 method for signature 'MultiplicativeAlgorithm' getNumberOfIterations(object)
object |
An object from the class MultiplicativeAlgorithm. |
A numeric giving the number of iterations.
Get the number of parameters.
getNumberOfParameters(object) ## S4 method for signature 'Model' getNumberOfParameters(object)
getNumberOfParameters(object) ## S4 method for signature 'Model' getNumberOfParameters(object)
object |
An object from the class Model. |
A numeric giving the number of parameters of the model.
Get the number of sampling times that are optimisable.
getNumberOfsamplingsOptimisable(object) ## S4 method for signature 'SamplingTimeConstraints' getNumberOfsamplingsOptimisable(object)
getNumberOfsamplingsOptimisable(object) ## S4 method for signature 'SamplingTimeConstraints' getNumberOfsamplingsOptimisable(object)
object |
An object from the class SamplingTimeConstraints. |
A vector giving the number of sampling times that are optimisable.
Get the number of sampling times by windows.
getNumberOfTimesByWindows(object) ## S4 method for signature 'SamplingTimeConstraints' getNumberOfTimesByWindows(object)
getNumberOfTimesByWindows(object) ## S4 method for signature 'SamplingTimeConstraints' getNumberOfTimesByWindows(object)
object |
An object from the class SamplingTimeConstraints. |
A vector giving the number of sampling times by windows.
Get the parameters for the ode solvers of an object.
getOdeSolverParameters(object) ## S4 method for signature 'Model' getOdeSolverParameters(object) ## S4 method for signature 'PFIMProject' getOdeSolverParameters(object)
getOdeSolverParameters(object) ## S4 method for signature 'Model' getOdeSolverParameters(object) ## S4 method for signature 'PFIMProject' getOdeSolverParameters(object)
object |
An object defined form a class of PFIM. |
The list giving the parameters for the ode solvers.
Get the matrix omega of an object.
getOmega(object) ## S4 method for signature 'Distribution' getOmega(object) ## S4 method for signature 'ModelParameter' getOmega(object)
getOmega(object) ## S4 method for signature 'Distribution' getOmega(object) ## S4 method for signature 'ModelParameter' getOmega(object)
object |
An object defined form a class of PFIM. |
The matrix omega of an object.
Get the optimal design.
getOptimalDesign(object) ## S4 method for signature 'OptimizationAlgorithm' getOptimalDesign(object)
getOptimalDesign(object) ## S4 method for signature 'OptimizationAlgorithm' getOptimalDesign(object)
object |
An object from the class OptimizationAlgorithm. |
The optimal design.
Get the optimal frequencies
getOptimalFrequencies(object) ## S4 method for signature 'FedorovWynnAlgorithm' getOptimalFrequencies(object)
getOptimalFrequencies(object) ## S4 method for signature 'FedorovWynnAlgorithm' getOptimalFrequencies(object)
object |
An object from the class FedorovWynnAlgorithm. |
A vector giving the optimal frequencies
Get the optimal weights.
getOptimalWeights(object) ## S4 method for signature 'MultiplicativeAlgorithm' getOptimalWeights(object)
getOptimalWeights(object) ## S4 method for signature 'MultiplicativeAlgorithm' getOptimalWeights(object)
object |
An object from the class MultiplicativeAlgorithm. |
A vector giving the optimal weights.
Get the optimization results.
getOptimizationResults(object) ## S4 method for signature 'Optimization' getOptimizationResults(object)
getOptimizationResults(object) ## S4 method for signature 'Optimization' getOptimizationResults(object)
object |
An object from the class Optimization. |
An object from the class OptimizationAlgorithm giving the optimization results.
Get the optimization algorithm.
getOptimizer(object) ## S4 method for signature 'PFIMProject' getOptimizer(object)
getOptimizer(object) ## S4 method for signature 'PFIMProject' getOptimizer(object)
object |
An object from the class PFIMProject. |
A string giving the name of the optimization algorithm.
Get the optimization parameters.
getOptimizerParameters(object) ## S4 method for signature 'PFIMProject' getOptimizerParameters(object)
getOptimizerParameters(object) ## S4 method for signature 'PFIMProject' getOptimizerParameters(object)
object |
An object from the class PFIMProject. |
A list giving the optimization parameters.
Get the outcome of an object.
getOutcome(object) ## S4 method for signature 'Administration' getOutcome(object) ## S4 method for signature 'AdministrationConstraints' getOutcome(object) ## S4 method for signature 'ModelError' getOutcome(object) ## S4 method for signature 'SamplingTimeConstraints' getOutcome(object) ## S4 method for signature 'SamplingTimes' getOutcome(object)
getOutcome(object) ## S4 method for signature 'Administration' getOutcome(object) ## S4 method for signature 'AdministrationConstraints' getOutcome(object) ## S4 method for signature 'ModelError' getOutcome(object) ## S4 method for signature 'SamplingTimeConstraints' getOutcome(object) ## S4 method for signature 'SamplingTimes' getOutcome(object)
object |
An object defined from a class of PFIM. |
A string giving the outcome of the object.
Get the outcomes of a model.
getOutcomes(object) ## S4 method for signature 'Model' getOutcomes(object) ## S4 method for signature 'PFIMProject' getOutcomes(object)
getOutcomes(object) ## S4 method for signature 'Model' getOutcomes(object) ## S4 method for signature 'PFIMProject' getOutcomes(object)
object |
An object from the class Model. |
A list giving the outcomes of the model.
Get the results of the evaluation of the outcomes.
getOutcomesEvaluation(object) ## S4 method for signature 'Design' getOutcomesEvaluation(object)
getOutcomesEvaluation(object) ## S4 method for signature 'Design' getOutcomesEvaluation(object)
object |
An object |
The list outcomesEvaluation
containing the results of the design evaluation for the outcomes.
Get the outcomes of a model used for the evaluation (is scales outcomes).
getOutcomesForEvaluation(object) ## S4 method for signature 'Model' getOutcomesForEvaluation(object)
getOutcomesForEvaluation(object) ## S4 method for signature 'Model' getOutcomesForEvaluation(object)
object |
An object from the class Model. |
A list giving the outcomes of a model used for the evaluation (is scales outcomes).
Get the results of the evaluation of the outcome gradients.
getOutcomesGradient(object) ## S4 method for signature 'Design' getOutcomesGradient(object)
getOutcomesGradient(object) ## S4 method for signature 'Design' getOutcomesGradient(object)
object |
An object |
The list outcomesGradient
containing the results of the design evaluation for the outcome gradients.
Get the parameters of an object.
getParameters(object) ## S4 method for signature 'ModelError' getParameters(object) ## S4 method for signature 'Distribution' getParameters(object) ## S4 method for signature 'Model' getParameters(object)
getParameters(object) ## S4 method for signature 'ModelError' getParameters(object) ## S4 method for signature 'Distribution' getParameters(object) ## S4 method for signature 'Model' getParameters(object)
object |
An object defined form a class of PFIM. |
Return the list of the parameters of the object.
Get a PD model.
getPDModel(object, PDModelName) ## S4 method for signature 'LibraryOfPKPDModels' getPDModel(object, PDModelName)
getPDModel(object, PDModelName) ## S4 method for signature 'LibraryOfPKPDModels' getPDModel(object, PDModelName)
object |
An object from the class LibraryOfPKPDModels. |
PDModelName |
A string giving the name of the PD model. |
Return a PD model.
Get a PK model.
getPKModel(object, PKModelName) ## S4 method for signature 'LibraryOfPKPDModels' getPKModel(object, PKModelName)
getPKModel(object, PKModelName) ## S4 method for signature 'LibraryOfPKPDModels' getPKModel(object, PKModelName)
object |
An object from the class LibraryOfPKPDModels. |
PKModelName |
A string giving the name of the PK model. |
Return a PK model.
Get a PKPD model.
getPKPDModel(object, namesModel) ## S4 method for signature 'LibraryOfPKPDModels' getPKPDModel(object, namesModel)
getPKPDModel(object, namesModel) ## S4 method for signature 'LibraryOfPKPDModels' getPKPDModel(object, namesModel)
object |
An object from the class LibraryOfPKPDModels. |
namesModel |
A vector of strings giving the names of the PK and PD models. |
Return a PKPD model.
Get the plot options for graphs responses and SI
getPlotOptions(plotOptions, outcomesNames)
getPlotOptions(plotOptions, outcomesNames)
plotOptions |
A list giving the plots options. |
outcomesNames |
A list giving the output names. |
The list containing the plot options.
Get the proportion of subjects.
getProportionsOfSubjects(object) ## S4 method for signature 'Optimization' getProportionsOfSubjects(object)
getProportionsOfSubjects(object) ## S4 method for signature 'Optimization' getProportionsOfSubjects(object)
object |
An object from the class Optimization. |
A vector giving the proportion of subjects.
Get the RSE
getRSE(object, model) ## S4 method for signature 'BayesianFim' getRSE(object, model) ## S4 method for signature 'Evaluation' getRSE(object, model) ## S4 method for signature 'IndividualFim' getRSE(object, model) ## S4 method for signature 'Optimization' getRSE(object, model) ## S4 method for signature 'PopulationFim' getRSE(object, model)
getRSE(object, model) ## S4 method for signature 'BayesianFim' getRSE(object, model) ## S4 method for signature 'Evaluation' getRSE(object, model) ## S4 method for signature 'IndividualFim' getRSE(object, model) ## S4 method for signature 'Optimization' getRSE(object, model) ## S4 method for signature 'PopulationFim' getRSE(object, model)
object |
An object from the class Fim. |
model |
An object from the class Model. |
A vector giving the RSE.
Get the sampling of an object.
getSamplings(object) ## S4 method for signature 'SamplingTimeConstraints' getSamplings(object) ## S4 method for signature 'SamplingTimes' getSamplings(object)
getSamplings(object) ## S4 method for signature 'SamplingTimeConstraints' getSamplings(object) ## S4 method for signature 'SamplingTimes' getSamplings(object)
object |
An object defined form a class of PFIM. |
A list of the samplings of the object.
Get the windows for the sampling times.
getSamplingsWindows(object) ## S4 method for signature 'SamplingTimeConstraints' getSamplingsWindows(object)
getSamplingsWindows(object) ## S4 method for signature 'SamplingTimeConstraints' getSamplingsWindows(object)
object |
An object from the class SamplingTimeConstraints. |
A list giving the vector of the windows for the sampling times.
Get the sampling times by outcome.
getSamplingTime(object, outcome) ## S4 method for signature 'Arm' getSamplingTime(object, outcome)
getSamplingTime(object, outcome) ## S4 method for signature 'Arm' getSamplingTime(object, outcome)
object |
An object |
outcome |
A string giving the name of the outcome. |
The element of the list samplingTimes
containing the sampling times of the outcome outcome
Get the sampling times constraints by outcome.
getSamplingTimeConstraint(object, outcome) ## S4 method for signature 'Arm' getSamplingTimeConstraint(object, outcome)
getSamplingTimeConstraint(object, outcome) ## S4 method for signature 'Arm' getSamplingTimeConstraint(object, outcome)
object |
An object |
outcome |
A string giving the name of the outcome. |
The element of the list samplingTimesConstraints
containing the sampling times constraints of the outcome outcome
Get the vectors of sampling times for an arm.
getSamplingTimes(object) ## S4 method for signature 'Arm' getSamplingTimes(object)
getSamplingTimes(object) ## S4 method for signature 'Arm' getSamplingTimes(object)
object |
An object |
The list samplingTimes
for the object Arm
.
Get the sampling times constraints.
getSamplingTimesConstraints(object) ## S4 method for signature 'Arm' getSamplingTimesConstraints(object)
getSamplingTimesConstraints(object) ## S4 method for signature 'Arm' getSamplingTimesConstraints(object)
object |
An object |
The list getSamplingTimesConstraints
.
Get the SE.
getSE(object) ## S4 method for signature 'Fim' getSE(object) ## S4 method for signature 'Evaluation' getSE(object) ## S4 method for signature 'Optimization' getSE(object)
getSE(object) ## S4 method for signature 'Fim' getSE(object) ## S4 method for signature 'Evaluation' getSE(object) ## S4 method for signature 'Optimization' getSE(object)
object |
An object from the class Fim. |
A vector giving the SE.
Get the shrinkage.
getShrinkage(object) ## S4 method for signature 'BayesianFim' getShrinkage(object) ## S4 method for signature 'Evaluation' getShrinkage(object) ## S4 method for signature 'IndividualFim' getShrinkage(object) ## S4 method for signature 'Optimization' getShrinkage(object) ## S4 method for signature 'PopulationFim' getShrinkage(object)
getShrinkage(object) ## S4 method for signature 'BayesianFim' getShrinkage(object) ## S4 method for signature 'Evaluation' getShrinkage(object) ## S4 method for signature 'IndividualFim' getShrinkage(object) ## S4 method for signature 'Optimization' getShrinkage(object) ## S4 method for signature 'PopulationFim' getShrinkage(object)
object |
An object from the class Fim. |
A vector giving the shrinkage of the Bayesian fim.
Get the parameter sigma inter.
getSigmaInter(object) ## S4 method for signature 'ModelError' getSigmaInter(object)
getSigmaInter(object) ## S4 method for signature 'ModelError' getSigmaInter(object)
object |
An object from the class ModelError. |
A numeric giving the parameter sigma inter.
Get the parameter sigma slope.
getSigmaSlope(object) ## S4 method for signature 'ModelError' getSigmaSlope(object)
getSigmaSlope(object) ## S4 method for signature 'ModelError' getSigmaSlope(object)
object |
An object from the class ModelError. |
A numeric giving the parameter sigma slope.
Get the size of an object.
getSize(object) ## S4 method for signature 'Arm' getSize(object) ## S4 method for signature 'Design' getSize(object)
getSize(object) ## S4 method for signature 'Arm' getSize(object) ## S4 method for signature 'Design' getSize(object)
object |
An object defined form a class of PFIM. |
A numeric giving the size of the object.
Get the frequency tau
.
getTau(object) ## S4 method for signature 'Administration' getTau(object)
getTau(object) ## S4 method for signature 'Administration' getTau(object)
object |
An object |
The numeric tau
giving the frequency tau
.
Get the times vector when doses are given.
getTimeDose(object) ## S4 method for signature 'Administration' getTimeDose(object)
getTimeDose(object) ## S4 method for signature 'Administration' getTimeDose(object)
object |
An object |
The vector timeDose
giving the times when the doses are given.
Get the infusion duration.
getTinf(object) ## S4 method for signature 'Administration' getTinf(object)
getTinf(object) ## S4 method for signature 'Administration' getTinf(object)
object |
An object |
The numeric Tinf
giving the infusion duration Tinf.
The class ModelODEBolus
defines information concerning the construction of an ode model bolus.
The class ModelODEBolus
inherits from the class ModelBolus
.
getVariables(object) ## S4 method for signature 'ModelODE' getVariables(object) ## S4 method for signature 'ModelODEBolus' getVariables(object) ## S4 method for signature 'ModelInfusion' getVariables(object)
getVariables(object) ## S4 method for signature 'ModelODE' getVariables(object) ## S4 method for signature 'ModelODEBolus' getVariables(object) ## S4 method for signature 'ModelInfusion' getVariables(object)
object |
An object from the class Model. |
Return the variable of an ode model
Get the matrix of the variance effects.
getVarianceEffects(object) ## S4 method for signature 'Fim' getVarianceEffects(object)
getVarianceEffects(object) ## S4 method for signature 'Fim' getVarianceEffects(object)
object |
An object from the class Fim. |
The matrix of the variance effects.
Get the parameter weightThreshold
getWeightThreshold(object) ## S4 method for signature 'MultiplicativeAlgorithm' getWeightThreshold(object)
getWeightThreshold(object) ## S4 method for signature 'MultiplicativeAlgorithm' getWeightThreshold(object)
object |
An object from the class MultiplicativeAlgorithm. |
A numeric giving the WeightThreshold.
A class storing information regarding the individual Fisher matrix.
The class IndividualFim
inherits from the class Fim
.
initialize
## S4 method for signature 'Administration' initialize(.Object, outcome, timeDose, dose, Tinf, tau)
## S4 method for signature 'Administration' initialize(.Object, outcome, timeDose, dose, Tinf, tau)
.Object |
.Object |
outcome |
outcome |
timeDose |
timeDose |
dose |
dose |
Tinf |
Tinf |
tau |
tau |
Administration
initialize
## S4 method for signature 'AdministrationConstraints' initialize(.Object, outcome, doses)
## S4 method for signature 'AdministrationConstraints' initialize(.Object, outcome, doses)
.Object |
.Object |
outcome |
outcome |
doses |
doses |
initialize
## S4 method for signature 'Arm' initialize( .Object, name, size, administrations, initialConditions, samplingTimes, administrationsConstraints, samplingTimesConstraints, dataForArmEvaluation )
## S4 method for signature 'Arm' initialize( .Object, name, size, administrations, initialConditions, samplingTimes, administrationsConstraints, samplingTimesConstraints, dataForArmEvaluation )
.Object |
.Object |
name |
name |
size |
size |
administrations |
administrations |
initialConditions |
initialConditions |
samplingTimes |
samplingTimes |
administrationsConstraints |
administrationsConstraints |
samplingTimesConstraints |
samplingTimesConstraints |
dataForArmEvaluation |
dataForArmEvaluation |
Arm
initialize
## S4 method for signature 'Combined1' initialize( .Object, outcome, equation, derivatives, sigmaInter, sigmaSlope, cError )
## S4 method for signature 'Combined1' initialize( .Object, outcome, equation, derivatives, sigmaInter, sigmaSlope, cError )
.Object |
.Object |
outcome |
outcome |
equation |
equation |
derivatives |
derivatives |
sigmaInter |
sigmaInter |
sigmaSlope |
sigmaSlope |
cError |
cError |
Combined1
initialize
## S4 method for signature 'Constant' initialize( .Object, outcome, equation, derivatives, sigmaInter, sigmaSlope, cError )
## S4 method for signature 'Constant' initialize( .Object, outcome, equation, derivatives, sigmaInter, sigmaSlope, cError )
.Object |
.Object |
outcome |
outcome |
equation |
equation |
derivatives |
derivatives |
sigmaInter |
sigmaInter |
sigmaSlope |
sigmaSlope |
cError |
cError |
Constant
initialize
## S4 method for signature 'Design' initialize( .Object, name, size, arms, outcomesEvaluation, outcomesGradient, numberOfArms, fim )
## S4 method for signature 'Design' initialize( .Object, name, size, arms, outcomesEvaluation, outcomesGradient, numberOfArms, fim )
.Object |
.Object |
name |
name |
size |
size |
arms |
arms |
outcomesEvaluation |
outcomesEvaluation |
outcomesGradient |
outcomesGradient |
numberOfArms |
numberOfArms |
fim |
fim |
Design
initialize
## S4 method for signature 'Distribution' initialize(.Object, parameters)
## S4 method for signature 'Distribution' initialize(.Object, parameters)
.Object |
.Object |
parameters |
parameters |
Distribution
initialize
## S4 method for signature 'Evaluation' initialize( .Object, name, model, modelEquations, modelParameters, modelError, outcomes, designs, fim, odeSolverParameters )
## S4 method for signature 'Evaluation' initialize( .Object, name, model, modelEquations, modelParameters, modelError, outcomes, designs, fim, odeSolverParameters )
.Object |
.Object |
name |
name |
model |
model |
modelEquations |
modelEquations |
modelParameters |
modelParameters |
modelError |
modelError |
outcomes |
outcomes |
designs |
designs |
fim |
fim |
odeSolverParameters |
odeSolverParameters |
Evaluation
initialize
## S4 method for signature 'FedorovWynnAlgorithm' initialize( .Object, elementaryProtocols, numberOfSubjects, proportionsOfSubjects, showProcess )
## S4 method for signature 'FedorovWynnAlgorithm' initialize( .Object, elementaryProtocols, numberOfSubjects, proportionsOfSubjects, showProcess )
.Object |
.Object |
elementaryProtocols |
elementaryProtocols |
numberOfSubjects |
numberOfSubjects |
proportionsOfSubjects |
proportionsOfSubjects |
showProcess |
showProcess |
FedorovWynnAlgorithm
initialize
## S4 method for signature 'Fim' initialize(.Object, fisherMatrix, fixedEffects, varianceEffects, shrinkage)
## S4 method for signature 'Fim' initialize(.Object, fisherMatrix, fixedEffects, varianceEffects, shrinkage)
.Object |
.Object |
fisherMatrix |
fisherMatrix |
fixedEffects |
fixedEffects |
varianceEffects |
varianceEffects |
shrinkage |
shrinkage |
Fim
initialize
## S4 method for signature 'LibraryOfModels' initialize(.Object, name, content)
## S4 method for signature 'LibraryOfModels' initialize(.Object, name, content)
.Object |
.Object |
name |
fisherMatrix |
content |
fixedEffects |
LibraryOfModels
initialize
## S4 method for signature 'LibraryOfPKPDModels' initialize(.Object)
## S4 method for signature 'LibraryOfPKPDModels' initialize(.Object)
.Object |
.Object |
LibraryOfPKPDModels
initialize
## S4 method for signature 'LogNormal' initialize(.Object, ...)
## S4 method for signature 'LogNormal' initialize(.Object, ...)
.Object |
.Object |
... |
args |
LogNormal
initialize
## S4 method for signature 'Model' initialize( .Object, name, description, equations, outcomes, outcomesForEvaluation, parameters, modelError, initialConditions, odeSolverParameters, modelFromLibrary )
## S4 method for signature 'Model' initialize( .Object, name, description, equations, outcomes, outcomesForEvaluation, parameters, modelError, initialConditions, odeSolverParameters, modelFromLibrary )
.Object |
.Object |
name |
name |
description |
description |
equations |
equations |
outcomes |
outcomes |
outcomesForEvaluation |
outcomesForEvaluation |
parameters |
parameters |
modelError |
modelError |
initialConditions |
initialConditions |
odeSolverParameters |
odeSolverParameters |
modelFromLibrary |
modelFromLibrary |
Model
initialize
## S4 method for signature 'ModelAnalytic' initialize( .Object, name, description, equations, outcomes, parameters, modelError )
## S4 method for signature 'ModelAnalytic' initialize( .Object, name, description, equations, outcomes, parameters, modelError )
.Object |
.Object |
name |
name |
description |
description |
equations |
equations |
outcomes |
outcomes |
parameters |
parameters |
modelError |
modelError |
ModelAnalytic
initialize
## S4 method for signature 'ModelAnalyticBolus' initialize( .Object, name, description, equations, outcomes, parameters, modelError )
## S4 method for signature 'ModelAnalyticBolus' initialize( .Object, name, description, equations, outcomes, parameters, modelError )
.Object |
.Object |
name |
name |
description |
description |
equations |
equations |
outcomes |
outcomes |
parameters |
parameters |
modelError |
modelError |
ModelAnalyticBolus
initialize
## S4 method for signature 'ModelAnalyticBolusSteadyState' initialize( .Object, name, description, equations, outcomes, parameters, modelError )
## S4 method for signature 'ModelAnalyticBolusSteadyState' initialize( .Object, name, description, equations, outcomes, parameters, modelError )
.Object |
.Object |
name |
name |
description |
description |
equations |
equations |
outcomes |
outcomes |
parameters |
parameters |
modelError |
modelError |
ModelAnalyticBolusSteadyState
initialize
## S4 method for signature 'ModelAnalyticInfusion' initialize( .Object, name, description, equations, outcomes, parameters, modelError )
## S4 method for signature 'ModelAnalyticInfusion' initialize( .Object, name, description, equations, outcomes, parameters, modelError )
.Object |
.Object |
name |
name |
description |
description |
equations |
equations |
outcomes |
outcomes |
parameters |
parameters |
modelError |
modelError |
ModelAnalyticInfusion
initialize
## S4 method for signature 'ModelAnalyticInfusionSteadyState' initialize( .Object, name, description, equations, outcomes, parameters, modelError )
## S4 method for signature 'ModelAnalyticInfusionSteadyState' initialize( .Object, name, description, equations, outcomes, parameters, modelError )
.Object |
.Object |
name |
name |
description |
description |
equations |
equations |
outcomes |
outcomes |
parameters |
parameters |
modelError |
modelError |
ModelAnalyticInfusionSteadyState
initialize
## S4 method for signature 'ModelAnalyticSteadyState' initialize( .Object, name, description, equations, outcomes, parameters, modelError )
## S4 method for signature 'ModelAnalyticSteadyState' initialize( .Object, name, description, equations, outcomes, parameters, modelError )
.Object |
.Object |
name |
name |
description |
description |
equations |
equations |
outcomes |
outcomes |
parameters |
parameters |
modelError |
modelError |
ModelAnalyticSteadyState
initialize
## S4 method for signature 'ModelBolus' initialize( .Object, name, description, equations, outcomes, parameters, modelError, initialConditions, odeSolverParameters )
## S4 method for signature 'ModelBolus' initialize( .Object, name, description, equations, outcomes, parameters, modelError, initialConditions, odeSolverParameters )
.Object |
.Object |
name |
name |
description |
description |
equations |
equations |
outcomes |
outcomes |
parameters |
parameters |
modelError |
modelError |
initialConditions |
initialConditions |
odeSolverParameters |
odeSolverParameters |
ModelBolus
initialize
## S4 method for signature 'ModelError' initialize( .Object, outcome, equation, derivatives, sigmaInter, sigmaSlope, cError )
## S4 method for signature 'ModelError' initialize( .Object, outcome, equation, derivatives, sigmaInter, sigmaSlope, cError )
.Object |
.Object |
outcome |
outcome |
equation |
equation |
derivatives |
derivatives |
sigmaInter |
sigmaInter |
sigmaSlope |
sigmaSlope |
cError |
cError |
ModelError
initialize
## S4 method for signature 'ModelInfusion' initialize( .Object, name, description, equations, outcomes, parameters, modelError, initialConditions, odeSolverParameters )
## S4 method for signature 'ModelInfusion' initialize( .Object, name, description, equations, outcomes, parameters, modelError, initialConditions, odeSolverParameters )
.Object |
.Object |
name |
name |
description |
description |
equations |
equations |
outcomes |
outcomes |
parameters |
parameters |
modelError |
modelError |
initialConditions |
initialConditions |
odeSolverParameters |
odeSolverParameters |
ModelInfusion
initialize
## S4 method for signature 'ModelParameter' initialize(.Object, name, distribution, fixedMu, fixedOmega)
## S4 method for signature 'ModelParameter' initialize(.Object, name, distribution, fixedMu, fixedOmega)
.Object |
.Object |
name |
name |
distribution |
distribution |
fixedMu |
fixedMu |
fixedOmega |
fixedOmega |
ModelParameter
initialize
## S4 method for signature 'MultiplicativeAlgorithm' initialize( .Object, arms, lambda, delta, numberOfIterations, weightThreshold, optimalWeights, optimalDesign, showProcess )
## S4 method for signature 'MultiplicativeAlgorithm' initialize( .Object, arms, lambda, delta, numberOfIterations, weightThreshold, optimalWeights, optimalDesign, showProcess )
.Object |
.Object |
arms |
arms |
lambda |
lambda |
delta |
delta |
numberOfIterations |
numberOfIterations |
weightThreshold |
weightThreshold |
optimalWeights |
optimalWeights |
optimalDesign |
optimalDesign |
showProcess |
showProcess |
MultiplicativeAlgorithm
initialize
## S4 method for signature 'Normal' initialize(.Object, ...)
## S4 method for signature 'Normal' initialize(.Object, ...)
.Object |
.Object |
... |
args |
Normal
initialize
## S4 method for signature 'Optimization' initialize( .Object, name, model, modelEquations, modelParameters, modelError, optimizer, optimizerParameters, outcomes, designs, fim, odeSolverParameters, optimizationResults, evaluationFIMResults, evaluationInitialDesignResults )
## S4 method for signature 'Optimization' initialize( .Object, name, model, modelEquations, modelParameters, modelError, optimizer, optimizerParameters, outcomes, designs, fim, odeSolverParameters, optimizationResults, evaluationFIMResults, evaluationInitialDesignResults )
.Object |
.Object |
name |
name |
model |
model |
modelEquations |
modelEquations |
modelParameters |
modelParameters |
modelError |
modelError |
optimizer |
optimizer |
optimizerParameters |
optimizerParameters |
outcomes |
outcomes |
designs |
designs |
fim |
fim |
odeSolverParameters |
odeSolverParameters |
optimizationResults |
optimizationResults |
evaluationFIMResults |
evaluationFIMResults |
evaluationInitialDesignResults |
evaluationInitialDesignResults |
Optimization
initialize
## S4 method for signature 'OptimizationAlgorithm' initialize(.Object, name, parameters)
## S4 method for signature 'OptimizationAlgorithm' initialize(.Object, name, parameters)
.Object |
.Object |
name |
name |
parameters |
parameters |
OptimizationAlgorithm
initialize
## S4 method for signature 'PFIMProject' initialize(.Object, name, description)
## S4 method for signature 'PFIMProject' initialize(.Object, name, description)
.Object |
.Object |
name |
name |
description |
description |
PFIMProject
initialize
## S4 method for signature 'PGBOAlgorithm' initialize( .Object, N, muteEffect, maxIteration, purgeIteration, seed, showProcess, optimalDesign, iterationAndCriteria )
## S4 method for signature 'PGBOAlgorithm' initialize( .Object, N, muteEffect, maxIteration, purgeIteration, seed, showProcess, optimalDesign, iterationAndCriteria )
.Object |
.Object |
N |
N |
muteEffect |
muteEffect |
maxIteration |
maxIteration |
purgeIteration |
purgeIteration |
seed |
seed |
showProcess |
showProcess |
optimalDesign |
optimalDesign |
iterationAndCriteria |
iterationAndCriteria |
PGBOAlgorithm
initialize
## S4 method for signature 'Proportional' initialize( .Object, outcome, equation, derivatives, sigmaInter, sigmaSlope, cError )
## S4 method for signature 'Proportional' initialize( .Object, outcome, equation, derivatives, sigmaInter, sigmaSlope, cError )
.Object |
.Object |
outcome |
outcome |
equation |
equation |
derivatives |
derivatives |
sigmaInter |
sigmaInter |
sigmaSlope |
sigmaSlope |
cError |
cError |
Proportional
initialize
## S4 method for signature 'PSOAlgorithm' initialize( .Object, maxIteration, populationSize, personalLearningCoefficient, globalLearningCoefficient, seed, showProcess, optimalDesign, iterationAndCriteria )
## S4 method for signature 'PSOAlgorithm' initialize( .Object, maxIteration, populationSize, personalLearningCoefficient, globalLearningCoefficient, seed, showProcess, optimalDesign, iterationAndCriteria )
.Object |
.Object |
maxIteration |
maxIteration |
populationSize |
populationSize |
personalLearningCoefficient |
personalLearningCoefficient |
globalLearningCoefficient |
globalLearningCoefficient |
seed |
seed |
showProcess |
showProcess |
optimalDesign |
optimalDesign |
iterationAndCriteria |
iterationAndCriteria |
PSOAlgorithm
initialize
## S4 method for signature 'SamplingTimeConstraints' initialize( .Object, outcome, initialSamplings, fixedTimes, numberOfsamplingsOptimisable, samplingsWindows, numberOfTimesByWindows, minSampling )
## S4 method for signature 'SamplingTimeConstraints' initialize( .Object, outcome, initialSamplings, fixedTimes, numberOfsamplingsOptimisable, samplingsWindows, numberOfTimesByWindows, minSampling )
.Object |
.Object |
outcome |
outcome |
initialSamplings |
initialSamplings |
fixedTimes |
fixedTimes |
numberOfsamplingsOptimisable |
numberOfsamplingsOptimisable |
samplingsWindows |
samplingsWindows |
numberOfTimesByWindows |
numberOfTimesByWindows |
minSampling |
minSampling |
SamplingTimeConstraints
initialize
## S4 method for signature 'SamplingTimes' initialize(.Object, outcome, samplings)
## S4 method for signature 'SamplingTimes' initialize(.Object, outcome, samplings)
.Object |
.Object |
outcome |
outcome |
samplings |
samplings |
SamplingTimes
initialize
## S4 method for signature 'SimplexAlgorithm' initialize( .Object, pctInitialSimplexBuilding, maxIteration, tolerance, optimalDesigns, iterationAndCriteria, showProcess )
## S4 method for signature 'SimplexAlgorithm' initialize( .Object, pctInitialSimplexBuilding, maxIteration, tolerance, optimalDesigns, iterationAndCriteria, showProcess )
.Object |
.Object |
pctInitialSimplexBuilding |
pctInitialSimplexBuilding |
maxIteration |
maxIteration |
tolerance |
tolerance |
optimalDesigns |
optimalDesigns |
iterationAndCriteria |
iterationAndCriteria |
showProcess |
showProcess |
SimplexAlgorithm
Test if the dose is in the equations of the model.
isDoseInEquations(object) ## S4 method for signature 'Model' isDoseInEquations(object)
isDoseInEquations(object) ## S4 method for signature 'Model' isDoseInEquations(object)
object |
An object from the class Model. |
Return a Boolean giving if the dose is in the equations of the model.
Test if a mode is analytic.
isModelAnalytic(object) ## S4 method for signature 'Model' isModelAnalytic(object)
isModelAnalytic(object) ## S4 method for signature 'Model' isModelAnalytic(object)
object |
An object from the class Model. |
Return a Boolean giving if the mode is analytic or not.
Test if a mode is bolus.
isModelBolus(object, designs) ## S4 method for signature 'Model' isModelBolus(object, designs)
isModelBolus(object, designs) ## S4 method for signature 'Model' isModelBolus(object, designs)
object |
An object from the class Model. |
designs |
A list of objects from the class Design. |
Return a Boolean giving if the mode is bolus or not.
Test if a mode is infusion
isModelInfusion(object) ## S4 method for signature 'Model' isModelInfusion(object)
isModelInfusion(object) ## S4 method for signature 'Model' isModelInfusion(object)
object |
An object from the class Model. |
Return a Boolean giving if the mode is infusion or not.
Test if a mode is ode.
isModelODE(object) ## S4 method for signature 'Model' isModelODE(object)
isModelODE(object) ## S4 method for signature 'Model' isModelODE(object)
object |
An object from the class Model. |
Return a Boolean giving if the mode is ode or not.
Test if a mode is steady state.
isModelSteadyState(object) ## S4 method for signature 'Model' isModelSteadyState(object)
isModelSteadyState(object) ## S4 method for signature 'Model' isModelSteadyState(object)
object |
An object from the class Model. |
Return a Boolean giving if the mode is steady state or not.
The class LibraryOfModels
represents the library of models.
Objects form the class LibraryOfModels
can be created by calls of the form LibraryOfModels(...)
where
(...) are the parameters for the LibraryOfModels
objects.
LibraryOfModels
objectsname
:A string giving the name of the library of models.
content
:A list giving the content of the library of model.
Library of the PK models
LibraryOfPDModels()
LibraryOfPDModels()
Library of the PK models
LibraryOfPKModels()
LibraryOfPKModels()
The class LibraryOfPKPDModels
represents the library of PKPD models.
The class LibraryOfPKPDModels
inherits from the class LibraryOfModels
.
The class defines all the required methods for a LogNormal distribution object.
The class LogNormal
inherits from the class Distribution
.
The class Model
defines information concerning the construction of a model.
Objects form the class Model
can be created by calls of the form Model(...)
where
(...) are the parameters for the Model
objects.
Administration
objectsname
:A string giving the name of the model.
description
:A list of string giving the description of the model.
equations
:A list giving the equations of the model.
outcomes
:A list giving the outcomes of the model.
outcomesForEvaluation
:A list giving the outcomes used for the evaluation of the model.
parameters
:A list giving the parameters of the model.
modelError
:A list giving the model error of the model.
initialConditions
:A list giving the initial conditions of the model.
odeSolverParameters
:A list giving the parameters for the solver of the model.
modelFromLibrary
:A list giving the model equations when the model is constructed from the library of model.
The class Model
defines information concerning the construction of an analytical model.
The class ModelAnalytic
inherits from the class Model
.
The class Model
defines information concerning the construction of an analytical bolus model.
The class ModelAnalyticBolus
inherits from the class ModelAnalytic
.
The class Model
defines information concerning the construction of an analytical model in steady state.
The class ModelAnalyticBolusSteadyState
inherits from the class ModelAnalyticSteadyState
.
The class Model
defines information concerning the construction of an analytical model in infusion.
The class ModelAnalyticInfusion
inherits from the class ModelInfusion
.
The class Model
defines information concerning the construction of an analytical model in infusion in steady state.
The class ModelAnalyticInfusionSteadyState
inherits from the class ModelAnalyticInfusion
.
The class ModelAnalyticSteadyState
defines information concerning the construction of an analytical model steady state.
The class ModelAnalyticSteadyState
inherits from the class ModelAnalytic
.
The class ModelODE
defines information concerning the construction of an ode model.
The class ModelODE
inherits from the class Model
.
The class ModelODEDoseInEquations
defines information concerning the construction of an ode model
where the dose is in the model equations. The class ModelODEDoseInEquations
inherits from the class ModelODE
.
The class ModelODEInfusion
defines information concerning the construction of an ode model in infusion.
The class ModelODEInfusion
inherits from the class ModelInfusion
.
The class ModelODEInfusionDoseInEquations
defines information concerning the construction of an ode model
in infusion where the dose is in the model equations. The class ModelODEInfusionDoseInEquations
inherits from the class ModelODEInfusion
.
The class ModelParameter
defines information concerning the model parameters.
Objects form the class ModelParameter
can be created by calls of the form ModelParameter(...)
where
(...) are the parameters for the ModelParameter
objects.
ModelParameter
objectsname
:A string giving the name of the parameter.
distribution
:An object from the class Distribution
giving the distribution of the parameter.
fixedMu
:A boolean giving if mu is fixed or not.
fixedOmega
:A boolean giving if omega is fixed or not.
Run the MultiplicativeAlgorithm_Rcpp in Rcpp
MultiplicativeAlgorithm_Rcpp( fisherMatrices_input, numberOfFisherMatrices_input, weights_input, numberOfParameters_input, dim_input, lambda_input, delta_input, iterationInit_input )
MultiplicativeAlgorithm_Rcpp( fisherMatrices_input, numberOfFisherMatrices_input, weights_input, numberOfParameters_input, dim_input, lambda_input, delta_input, iterationInit_input )
fisherMatrices_input |
fisherMatrices_input |
numberOfFisherMatrices_input |
numberOfFisherMatrices_input |
weights_input |
weights_input |
numberOfParameters_input |
numberOfParameters_input |
dim_input |
dim_input |
lambda_input |
lambda_input |
delta_input |
delta_input |
iterationInit_input |
iterationInit_input |
The class MultiplicativeAlgorithm
implements the multiplicative algorithm.
Objects form the class MultiplicativeAlgorithm
can be created by calls of the form MultiplicativeAlgorithm(...)
where
(...) are the parameters for the MultiplicativeAlgorithm
objects.
MultiplicativeAlgorithm
objectsarms
:A list giving the arms.
lambda
:A numeric giving the lambda parameter of the multiplicative algorithm.
delta
:A numeric giving the delta parameter of the multiplicative algorithm.
numberOfIterations
:A numeric giving the maximal number iteration of the optimization process.
weightThreshold
:A numeric giving the threshold of the weights.
optimalWeights
:A vector giving the optimal weights.
optimalDesign
:An object of the class Design
giving the optimal design.
showProcess
:A boolean for showing or not the process of optimization.
The class defines all the required methods for a Normal distribution object.
The class Normal
inherits from the class Distribution
.
A class storing information concerning the design optimization.
Objects form the class Optimization
can be created by calls of the form Optimization(...)
where
(...) are the parameters for the Optimization
objects.
Administration
objectsname
:A character string giving the name of the optimization process.
model
:A object of class Model
giving the model.
modelEquations
:A list giving the model equations.
modelParameters
:A list giving the model parameters.
modelError
:A list giving the model error.
optimizer
:A object of class OptimizationAlgorithm
giving the optimization algorithm.
optimizerParameters
:A list giving the parameters of the optimization algorithm.
outcomes
:A list giving the outcomes of the model.
designs
:A list giving the designs to be optimized.
fim
:A object of class FIM
giving the Fisher information matrix.
odeSolverParameters
:A list giving the parameters for the ode solver.
optimizationResults
:A object of class OptimizationAlgorithm
giving the results of the optimization.
evaluationFIMResults
:A object of class Evaluation
giving the results of the evaluation of the optimal design.
evaluationInitialDesignResults
:A object of class Evaluation
giving the results of the evaluation of the initial design.
A class storing information concerning the optimization algorithm.
Objects form the class OptimizationAlgorithm
can be created by calls of the form OptimizationAlgorithm(...)
where
(...) are the parameters for the OptimizationAlgorithm
objects.
Administration
objectsname
:A character string giving the name of the optimization algorithm.
parameters
:A list giving the parameters of the optimization algorithm.
Optimize a design.
optimize(object, optimizerParameters, optimizationObject) ## S4 method for signature 'FedorovWynnAlgorithm' optimize(object, optimizerParameters, optimizationObject) ## S4 method for signature 'MultiplicativeAlgorithm' optimize(object, optimizerParameters, optimizationObject) ## S4 method for signature 'PGBOAlgorithm' optimize(object, optimizationObject) ## S4 method for signature 'PSOAlgorithm' optimize(object, optimizationObject) ## S4 method for signature 'SimplexAlgorithm' optimize(object, optimizerParameters, optimizationObject)
optimize(object, optimizerParameters, optimizationObject) ## S4 method for signature 'FedorovWynnAlgorithm' optimize(object, optimizerParameters, optimizationObject) ## S4 method for signature 'MultiplicativeAlgorithm' optimize(object, optimizerParameters, optimizationObject) ## S4 method for signature 'PGBOAlgorithm' optimize(object, optimizationObject) ## S4 method for signature 'PSOAlgorithm' optimize(object, optimizationObject) ## S4 method for signature 'SimplexAlgorithm' optimize(object, optimizerParameters, optimizationObject)
object |
An object from the class OptimizationAlgorithm. |
optimizerParameters |
A list giving the optimization parameters. |
optimizationObject |
An object giving the optimization algorithm. |
A list giving the results if the optimization.
Define the parameters for computing the gradients of a model.
parametersForComputingGradient(object, valuePars) ## S4 method for signature 'Model' parametersForComputingGradient(object, valuePars)
parametersForComputingGradient(object, valuePars) ## S4 method for signature 'Model' parametersForComputingGradient(object, valuePars)
object |
An object from the class Model. |
valuePars |
Vector of parameter values |
A list giving the parameters for computing the gradients of a model.
A class storing information concerning a PFIM project.
Objects form the class PFIMProject
can be created by calls of the form PFIMProject(...)
where
(...) are the parameters for the PFIMProject
objects.
PFIMProject
objectsname
:A character string giving the name of the PFIM project.
description
:A list giving the description of the PFIM project.
The class "PGBOAlgorithm" implements the PGBO algorithm: Population Genetics Based Optimizer, developed by Hervé Le Nagard [1].
PGBOAlgorithm
Objects form the Class PGBOAlgorithm
can be created by calls of the form PGBOAlgorithm(...)
where
(...) are the parameters for the PGBOAlgorithm
objects.
PGBOAlgorithm
objectsN
:A numeric giving the population size.
muteEffect
:A numeric giving the mutation effect.
maxIteration
:A numeric giving the maximum number of iterations.
seed
:A numeric giving the seed.
showProcess
:A boolean to show or not the process.
optimalDesign
:A Design
object giving the optimal design.
iterationAndCriteria
:A list giving the optimal criteria at each iteration.
[1] Rebecca Bauer, France Mentré, Halima Kaddouri, Jacques Le Bras, Hervé Le Nagard, Benefits of a new Metropolis-Hasting based algorithm, in non-linear regression for estimation of ex vivo antimalarial sensitivity in patients infected with two strains, Computers in Biology and Medicine, Volume 55, 2014, Pages 16-25, ISSN 0010-4825
Graphs of the results of the evaluation.
plotEvaluation(object, plotOptions) ## S4 method for signature 'Evaluation' plotEvaluation(object, plotOptions)
plotEvaluation(object, plotOptions) ## S4 method for signature 'Evaluation' plotEvaluation(object, plotOptions)
object |
An object from the class Evaluation. |
plotOptions |
A list giving the plot options. |
A list giving the graphs for the evaluation of the responses and sensitivity indices.
A class storing information concerning the design evaluation.
The class PlotEvaluation
inherits from the class Evaluation
.
Graph of the frequencies for the FW algorithm.
plotFrequencies(object) ## S4 method for signature 'FedorovWynnAlgorithm' plotFrequencies(object) ## S4 method for signature 'Optimization' plotFrequencies(object)
plotFrequencies(object) ## S4 method for signature 'FedorovWynnAlgorithm' plotFrequencies(object) ## S4 method for signature 'Optimization' plotFrequencies(object)
object |
An object from the class OptimizationAlgorithm. |
The graphs of the frequencies for the FW algorithm.
Plot the evaluation of the outcomes.
plotOutcomesEvaluation( object, outcomesEvaluationInitialDesign, model, plotOptions ) ## S4 method for signature 'Design' plotOutcomesEvaluation( object, outcomesEvaluationInitialDesign, model, plotOptions )
plotOutcomesEvaluation( object, outcomesEvaluationInitialDesign, model, plotOptions ) ## S4 method for signature 'Design' plotOutcomesEvaluation( object, outcomesEvaluationInitialDesign, model, plotOptions )
object |
An object |
outcomesEvaluationInitialDesign |
A list containing the evaluation of the initial design. |
model |
An object |
plotOptions |
A list containing the plot options. |
A list containing the plots the evaluation of the outcomes.
Plot the evaluation of the outcome gradients.
plotOutcomesGradient(object, outcomesGradientInitialDesign, model, plotOptions) ## S4 method for signature 'Design' plotOutcomesGradient(object, outcomesGradientInitialDesign, model, plotOptions)
plotOutcomesGradient(object, outcomesGradientInitialDesign, model, plotOptions) ## S4 method for signature 'Design' plotOutcomesGradient(object, outcomesGradientInitialDesign, model, plotOptions)
object |
An object |
outcomesGradientInitialDesign |
A list with the evaluation of the gradient for the initial design. |
model |
An object |
plotOptions |
A list containing the plot options. |
A list containing the plots the evaluation of the outcome gradients..
Graph of the RSE.
plotRSE(object, plotOptions) ## S4 method for signature 'PFIMProject' plotRSE(object, plotOptions)
plotRSE(object, plotOptions) ## S4 method for signature 'PFIMProject' plotRSE(object, plotOptions)
object |
An object from the class Evaluation. |
plotOptions |
A list giving the plot options. |
A graph of the RSE.
Graph the SE.
plotSE(object, plotOptions) ## S4 method for signature 'PFIMProject' plotSE(object, plotOptions)
plotSE(object, plotOptions) ## S4 method for signature 'PFIMProject' plotSE(object, plotOptions)
object |
An object from the class Evaluation. |
plotOptions |
A list giving the plot options. |
A graph of the SE.
Graphs of the results of the evaluation.
plotSensitivityIndice(object, plotOptions) ## S4 method for signature 'Evaluation' plotSensitivityIndice(object, plotOptions)
plotSensitivityIndice(object, plotOptions) ## S4 method for signature 'Evaluation' plotSensitivityIndice(object, plotOptions)
object |
An object from the class Evaluation. |
plotOptions |
A list giving the plot options. |
A list giving the graphs for the evaluation of the responses and sensitivity indices.
Graph of the shrinkage.
plotShrinkage(object, plotOptions) ## S4 method for signature 'PFIMProject' plotShrinkage(object, plotOptions)
plotShrinkage(object, plotOptions) ## S4 method for signature 'PFIMProject' plotShrinkage(object, plotOptions)
object |
An object from the class Evaluation. |
plotOptions |
A list giving the plot options. |
A graph of the shrinkage.
Graph of the weights for the multiplicative algorithm.
plotWeights(object) ## S4 method for signature 'MultiplicativeAlgorithm' plotWeights(object) ## S4 method for signature 'Optimization' plotWeights(object)
plotWeights(object) ## S4 method for signature 'MultiplicativeAlgorithm' plotWeights(object) ## S4 method for signature 'Optimization' plotWeights(object)
object |
An object from the class OptimizationAlgorithm. |
The graphs of the weights for the multiplicative algorithm.
A class storing information regarding the population Fisher matrix.
The class PopulationFim
inherits from the class Fim
.
The Class "Proportional" defines the the residual error variance according to the formula g(sigma_inter, sigma_slope, c_error, f(x, theta)) = sigma_slope*f(x,theta).
Objects are typically created by calls to Proportional
and contain the following slots
that are inherited from the class Combined1:
Proportional
objects.Object
:An object of the Class Proportional
sigma_inter
:A numeric value giving the sigma inter of the error model
sigma_slope
:A numeric value giving the sigma slope of the error model
The class "PSOAlgorithm" implements the PSO algorithm.
PSOAlgorithm
Objects form the class PSOAlgorithm
can be created by calls of the form PSOAlgorithm(...)
where
(...) are the parameters for the PSOAlgorithm
objects.
PSOAlgorithm
objectsmaxIteration
:A numeric giving the maximum of iterations.
populationSize
:A numeric giving the population size.
seed
:A numeric giving the seed.
personalLearningCoefficient
:A numeric giving the personal learning coefficient.
globalLearningCoefficient
:A numeric giving the global learning coefficient.
showProcess
:A boolean to show or not the process.
optimalDesign
:A Design
object giving the optimal design.
iterationAndCriteria
:A list giving the optimal criteria at each iteration.
Report
Report(object, outputPath, outputFile, plotOptions) ## S4 method for signature 'Evaluation' Report(object, outputPath, outputFile, plotOptions) ## S4 method for signature 'Optimization' Report(object, outputPath, outputFile, plotOptions)
Report(object, outputPath, outputFile, plotOptions) ## S4 method for signature 'Evaluation' Report(object, outputPath, outputFile, plotOptions) ## S4 method for signature 'Optimization' Report(object, outputPath, outputFile, plotOptions)
object |
An object from the class PFIMProject. |
outputPath |
A string giving the output path. |
outputFile |
A string giving the name of the output file. |
plotOptions |
A list giving the plot options. |
The report in html.
Generate table for the report.
reportTablesAdministration(object) ## S4 method for signature 'Design' reportTablesAdministration(object)
reportTablesAdministration(object) ## S4 method for signature 'Design' reportTablesAdministration(object)
object |
An object |
A table of the administration parameters for the report.
Generate table for the report.
reportTablesDesign(object) ## S4 method for signature 'Design' reportTablesDesign(object)
reportTablesDesign(object) ## S4 method for signature 'Design' reportTablesDesign(object)
object |
An object |
A table of the design parameters for the report.
Generate the tables for the report.
reportTablesFIM(object, evaluationObject) ## S4 method for signature 'BayesianFim' reportTablesFIM(object, evaluationObject) ## S4 method for signature 'IndividualFim' reportTablesFIM(object, evaluationObject) ## S4 method for signature 'PopulationFim' reportTablesFIM(object, evaluationObject)
reportTablesFIM(object, evaluationObject) ## S4 method for signature 'BayesianFim' reportTablesFIM(object, evaluationObject) ## S4 method for signature 'IndividualFim' reportTablesFIM(object, evaluationObject) ## S4 method for signature 'PopulationFim' reportTablesFIM(object, evaluationObject)
object |
An object from the class Fim. |
evaluationObject |
A list giving the results of the evaluation of the model. |
A list giving the table in kable format for the report.
Generate the tables for model errors for the evaluation report.
reportTablesModelError(object) ## S4 method for signature 'Model' reportTablesModelError(object)
reportTablesModelError(object) ## S4 method for signature 'Model' reportTablesModelError(object)
object |
An object from the class Model. |
A kable table for the evaluation report.
Generate the tables for model parameters for the evaluation report.
reportTablesModelParameters(object) ## S4 method for signature 'Model' reportTablesModelParameters(object)
reportTablesModelParameters(object) ## S4 method for signature 'Model' reportTablesModelParameters(object)
object |
An object from the class Model. |
A kable table for the evaluation report.
Generate all the table for the evaluation report
reportTablesPlot(object, plotOptions) ## S4 method for signature 'Evaluation' reportTablesPlot(object, plotOptions)
reportTablesPlot(object, plotOptions) ## S4 method for signature 'Evaluation' reportTablesPlot(object, plotOptions)
object |
An object |
plotOptions |
A list containing the options for the plots. |
The list tables
containing the tables for the evaluation report.
Generate table for the report.
reportTablesSamplingConstraints(object) ## S4 method for signature 'Design' reportTablesSamplingConstraints(object)
reportTablesSamplingConstraints(object) ## S4 method for signature 'Design' reportTablesSamplingConstraints(object)
object |
An object |
A table of the sampling constraints parameters for the report.
Resize the fisher Matrix from a vector to a matrix.
resizeFisherMatrix(nbOfDimensions, fisherMatrix) ## S4 method for signature 'ANY' resizeFisherMatrix(nbOfDimensions, fisherMatrix)
resizeFisherMatrix(nbOfDimensions, fisherMatrix) ## S4 method for signature 'ANY' resizeFisherMatrix(nbOfDimensions, fisherMatrix)
nbOfDimensions |
: a numeric for the dimensions of the fisher matrix. |
fisherMatrix |
: a vector that contain the low triangular Fisher matrix + its main diagonal. |
The Fisher matrix of size nbOfDimensions*nbOfDimensions
run
run(object) ## S4 method for signature 'Evaluation' run(object) ## S4 method for signature 'Optimization' run(object)
run(object) ## S4 method for signature 'Evaluation' run(object) ## S4 method for signature 'Optimization' run(object)
object |
An object from the class PFIMProject. |
A list giving the results of evaluation or optimization.
The class "SamplingTimeConstraints" implements the constraints for the sampling times.
SamplingTimeConstraints
Objects form the class SamplingTimeConstraints
can be created by calls of the form SamplingTimeConstraints(...)
where
(...) are the parameters for the SamplingTimeConstraints
objects.
SamplingTimeConstraints
objectsoutcome
:A string giving the outcome.
initialSamplings
:A vector giving the sampling times.
fixedTimes
:A vector giving the fixed sampling times.
numberOfsamplingsOptimisable
:A vector giving the sampling times to be optimized.
samplingsWindows
:A list giving the windows for the sampling times.
numberOfTimesByWindows
:A vector giving the number of sampling times by windows.
minSampling
:A numeric giving the minimal sampling times.
The class "SamplingTimes" implements the sampling times.
SamplingTimes
Objects form the class SamplingTimes
can be created by calls of the form SamplingTimes(...)
where
(...) are the parameters for the SamplingTimes
objects.
SamplingTimes
objectsoutcome
:A string giving the outcome.
samplings
:A vector giving the sampling times.
Set all the administration for an arm.
setAdministrations(object, administrations) ## S4 method for signature 'Arm' setAdministrations(object, administrations)
setAdministrations(object, administrations) ## S4 method for signature 'Arm' setAdministrations(object, administrations)
object |
An object |
administrations |
A list |
The object Arm
with the list administrations
of objects from the class Administration
class giving
the parameters of the administration for the object Arm
.
Set the arms in a design.
setArm(object, arm) ## S4 method for signature 'Design' setArm(object, arm)
setArm(object, arm) ## S4 method for signature 'Design' setArm(object, arm)
object |
An object |
arm |
A list of object |
An object Design
with the list Arm
updated.
Set the arms of an object.
setArms(object, arms) ## S4 method for signature 'Design' setArms(object, arms) ## S4 method for signature 'OptimizationAlgorithm' setArms(object, arms)
setArms(object, arms) ## S4 method for signature 'Design' setArms(object, arms) ## S4 method for signature 'OptimizationAlgorithm' setArms(object, arms)
object |
An object defined form a class of PFIM. |
arms |
A list of arms. |
The object with the updated arms.
Set the parameter c.
setcError(object, cError) ## S4 method for signature 'ModelError' setcError(object, cError)
setcError(object, cError) ## S4 method for signature 'ModelError' setcError(object, cError)
object |
An object from the class ModelError. |
cError |
A numeric giving the parameter c. |
The model error with the parameter c.
Set content of a library of models.
setContent(object, content) ## S4 method for signature 'LibraryOfModels' setContent(object, content)
setContent(object, content) ## S4 method for signature 'LibraryOfModels' setContent(object, content)
object |
An object from the class LibraryOfModels. |
content |
A list giving the content of the library of models. |
The library of models with the updated content.
setDataForArmEvaluation
setDataForArmEvaluation(object, data) ## S4 method for signature 'Arm' setDataForArmEvaluation(object, data)
setDataForArmEvaluation(object, data) ## S4 method for signature 'Arm' setDataForArmEvaluation(object, data)
object |
An object |
data |
A list containing the data for arm evaluation |
Set the list containing the data for arm evaluation.
Generate the table of dose, time dose etc. for model evaluation
setDataForModelEvaluation(object, arm) ## S4 method for signature 'ModelAnalytic' setDataForModelEvaluation(object, arm) ## S4 method for signature 'ModelAnalyticSteadyState' setDataForModelEvaluation(object, arm) ## S4 method for signature 'ModelAnalyticInfusion' setDataForModelEvaluation(object, arm) ## S4 method for signature 'ModelAnalyticInfusionSteadyState' setDataForModelEvaluation(object, arm) ## S4 method for signature 'ModelODEBolus' setDataForModelEvaluation(object, arm) ## S4 method for signature 'ModelODEDoseInEquations' setDataForModelEvaluation(object, arm) ## S4 method for signature 'ModelODEDoseNotInEquations' setDataForModelEvaluation(object, arm) ## S4 method for signature 'ModelODEInfusionDoseInEquations' setDataForModelEvaluation(object, arm)
setDataForModelEvaluation(object, arm) ## S4 method for signature 'ModelAnalytic' setDataForModelEvaluation(object, arm) ## S4 method for signature 'ModelAnalyticSteadyState' setDataForModelEvaluation(object, arm) ## S4 method for signature 'ModelAnalyticInfusion' setDataForModelEvaluation(object, arm) ## S4 method for signature 'ModelAnalyticInfusionSteadyState' setDataForModelEvaluation(object, arm) ## S4 method for signature 'ModelODEBolus' setDataForModelEvaluation(object, arm) ## S4 method for signature 'ModelODEDoseInEquations' setDataForModelEvaluation(object, arm) ## S4 method for signature 'ModelODEDoseNotInEquations' setDataForModelEvaluation(object, arm) ## S4 method for signature 'ModelODEInfusionDoseInEquations' setDataForModelEvaluation(object, arm)
object |
An object from the class Model. |
arm |
An object from the class Arm. |
Return a dataframe with all the data for model evaluation
Set the derivatives of the model error equation.
setDerivatives(object, derivatives) ## S4 method for signature 'ModelError' setDerivatives(object, derivatives)
setDerivatives(object, derivatives) ## S4 method for signature 'ModelError' setDerivatives(object, derivatives)
object |
An object from the class ModelError. |
derivatives |
The derivatives of the model error equation. |
The model error with the updated model error equation.
Set the description of a model.
setDescription(object, description) ## S4 method for signature 'Model' setDescription(object, description)
setDescription(object, description) ## S4 method for signature 'Model' setDescription(object, description)
object |
An object from the class Model. |
description |
A list giving the description of a model. |
The model with the updated description.
Set the designs.
setDesigns(object, designs) ## S4 method for signature 'Optimization' setDesigns(object, designs)
setDesigns(object, designs) ## S4 method for signature 'Optimization' setDesigns(object, designs)
object |
An object from the class Optimization. |
designs |
A list of objects from the class Design. |
The object with the new designs.
Set the distribution.
setDistribution(object, distribution) ## S4 method for signature 'ModelParameter' setDistribution(object, distribution)
setDistribution(object, distribution) ## S4 method for signature 'ModelParameter' setDistribution(object, distribution)
object |
An object from the class ModelParameter. |
distribution |
An object from the class Distribution. |
The model parameter with the updated distribution.
Set the amount of dose
setDose(object, dose) ## S4 method for signature 'Administration' setDose(object, dose)
setDose(object, dose) ## S4 method for signature 'Administration' setDose(object, dose)
object |
An object |
dose |
A numeric value of the amount of dose. |
The numeric amount_dose
giving the new value of the amount of dose.
Set the equation of a model error.
setEquation(object, equation) ## S4 method for signature 'ModelError' setEquation(object, equation)
setEquation(object, equation) ## S4 method for signature 'ModelError' setEquation(object, equation)
object |
An object from the class ModelError. |
equation |
An expression giving the equation of a model error. |
The model error with the updated equation.
Set the equations of a model.
setEquations(object, equations) ## S4 method for signature 'Model' setEquations(object, equations)
setEquations(object, equations) ## S4 method for signature 'Model' setEquations(object, equations)
object |
An object from the class Model. |
equations |
A list giving the equations of the model. |
The model with the updated equations.
Set the equations after infusion.
setEquationsAfterInfusion(object, equations) ## S4 method for signature 'Model' setEquationsAfterInfusion(object, equations)
setEquationsAfterInfusion(object, equations) ## S4 method for signature 'Model' setEquationsAfterInfusion(object, equations)
object |
An object from the class Model. |
equations |
A list giving the equations after the infusion. |
The model with the updated equations after the infusion.
Set the equations during infusion.
setEquationsDuringInfusion(object, equations) ## S4 method for signature 'Model' setEquationsDuringInfusion(object, equations)
setEquationsDuringInfusion(object, equations) ## S4 method for signature 'Model' setEquationsDuringInfusion(object, equations)
object |
An object from the class Model. |
equations |
A list giving the equations during the infusion. |
The model with the updated equations during the infusion.
Set the evaluation results.
setEvaluationFIMResults(object, value) ## S4 method for signature 'Optimization' setEvaluationFIMResults(object, value)
setEvaluationFIMResults(object, value) ## S4 method for signature 'Optimization' setEvaluationFIMResults(object, value)
object |
An object from the class Optimization. |
value |
An object from the class Evaluation giving the evaluation results. |
The object with the updated object from the class Evaluation.
Set the evaluation results of the initial design.
setEvaluationInitialDesignResults(object, value) ## S4 method for signature 'Optimization' setEvaluationInitialDesignResults(object, value)
setEvaluationInitialDesignResults(object, value) ## S4 method for signature 'Optimization' setEvaluationInitialDesignResults(object, value)
object |
An object from the class Optimization. |
value |
An object from the class Evaluation giving the evaluation results of the initial design. |
The object with the updated object from the class Evaluation.
Set the fim of the design.
setFim(object, fim) ## S4 method for signature 'Design' setFim(object, fim)
setFim(object, fim) ## S4 method for signature 'Design' setFim(object, fim)
object |
An object |
fim |
An object |
An object Design
with the fim
updated.
Convert the type of the object fim to a string.
setFimTypeToString(object) ## S4 method for signature 'Fim' setFimTypeToString(object)
setFimTypeToString(object) ## S4 method for signature 'Fim' setFimTypeToString(object)
object |
An object from the class Fim. |
The type of the object fim convert as a string.
Set the FIM.
setFisherMatrix(object, value) ## S4 method for signature 'Fim' setFisherMatrix(object, value)
setFisherMatrix(object, value) ## S4 method for signature 'Fim' setFisherMatrix(object, value)
object |
An object from the class Fim. |
value |
A matrix giving the FIM. |
The object from the class Fim with the FIM updated.
Set the fixed effects.
setFixedEffects(object) ## S4 method for signature 'Fim' setFixedEffects(object)
setFixedEffects(object) ## S4 method for signature 'Fim' setFixedEffects(object)
object |
An object from the class Fim. |
Update the matrix of the fixed effects.
Set the mu as fixed or not.
setFixedMu(object, value) ## S4 method for signature 'ModelParameter' setFixedMu(object, value)
setFixedMu(object, value) ## S4 method for signature 'ModelParameter' setFixedMu(object, value)
object |
An object from the class ModelParameter. |
value |
A Boolean if fixed or not. |
The mode parameter with the the mu updated as fixed or not.
Set the omega as fixed of not.
setFixedOmega(object, value) ## S4 method for signature 'ModelParameter' setFixedOmega(object, value)
setFixedOmega(object, value) ## S4 method for signature 'ModelParameter' setFixedOmega(object, value)
object |
An object from the class ModelParameter. |
value |
A Boolean fixed or not. |
The model parameter with the omega updated as fixed or not.
Set the initial conditions of a ode model.
setInitialConditions(object, initialConditions) ## S4 method for signature 'Arm' setInitialConditions(object, initialConditions) ## S4 method for signature 'Model' setInitialConditions(object, initialConditions)
setInitialConditions(object, initialConditions) ## S4 method for signature 'Arm' setInitialConditions(object, initialConditions) ## S4 method for signature 'Model' setInitialConditions(object, initialConditions)
object |
An object from the class Model. |
initialConditions |
A list giving the initial conditions. |
The model with the updated initial conditions.
Set the iteration with the convergence criteria.
setIterationAndCriteria(object, value) ## S4 method for signature 'OptimizationAlgorithm' setIterationAndCriteria(object, value)
setIterationAndCriteria(object, value) ## S4 method for signature 'OptimizationAlgorithm' setIterationAndCriteria(object, value)
object |
An object from the class OptimizationAlgorithm. |
value |
A dataframe giving the iteration with the convergence criteria. |
A dataframe giving the iteration with the convergence criteria.
Set the model.
setModel(object, model) ## S4 method for signature 'PFIMProject' setModel(object, model)
setModel(object, model) ## S4 method for signature 'PFIMProject' setModel(object, model)
object |
An object from the class PFIMProject. |
model |
An object from the class Model. |
The object with the updated model.
Set the model error.
setModelError(object, modelError) ## S4 method for signature 'Model' setModelError(object, modelError)
setModelError(object, modelError) ## S4 method for signature 'Model' setModelError(object, modelError)
object |
An object from the class Model. |
modelError |
An object from the class ModelError. |
The model with the updated model error.
Set a model from the library of model
setModelFromLibrary(object, modelFromLibrary) ## S4 method for signature 'Model' setModelFromLibrary(object, modelFromLibrary)
setModelFromLibrary(object, modelFromLibrary) ## S4 method for signature 'Model' setModelFromLibrary(object, modelFromLibrary)
object |
An object from the class Model. |
modelFromLibrary |
An object from the class Model. |
The model with the updated model from library of models.
Set the value of the fixed effect mu of an object.
setMu(object, value) ## S4 method for signature 'Distribution' setMu(object, value) ## S4 method for signature 'ModelParameter' setMu(object, value)
setMu(object, value) ## S4 method for signature 'Distribution' setMu(object, value) ## S4 method for signature 'ModelParameter' setMu(object, value)
object |
An object defined form a class of PFIM. |
value |
The value of the fixed effect mu. |
The object with the updated fixed effect mu.
Set the name of an object.
setName(object, name) ## S4 method for signature 'Arm' setName(object, name) ## S4 method for signature 'Design' setName(object, name) ## S4 method for signature 'Model' setName(object, name)
setName(object, name) ## S4 method for signature 'Arm' setName(object, name) ## S4 method for signature 'Design' setName(object, name) ## S4 method for signature 'Model' setName(object, name)
object |
An object defined form a class of PFIM. |
name |
A string giving the name of the object. |
The object with the updated name.
Set the number of arms in a design.
setNumberOfArms(object, numberOfArms) ## S4 method for signature 'Design' setNumberOfArms(object, numberOfArms)
setNumberOfArms(object, numberOfArms) ## S4 method for signature 'Design' setNumberOfArms(object, numberOfArms)
object |
An object |
numberOfArms |
A numeric |
An object Design
with the numberOfArms
updated.
Set the parameters of the ode solver.
setOdeSolverParameters(object, odeSolverParameters) ## S4 method for signature 'Model' setOdeSolverParameters(object, odeSolverParameters)
setOdeSolverParameters(object, odeSolverParameters) ## S4 method for signature 'Model' setOdeSolverParameters(object, odeSolverParameters)
object |
An object from the class Model. |
odeSolverParameters |
A list giving the parameters of the ode solver. |
The model with the updated parameters of the ode solver.
Set the matrix omega of an object.
setOmega(object, value) ## S4 method for signature 'Distribution' setOmega(object, value) ## S4 method for signature 'ModelParameter' setOmega(object, value)
setOmega(object, value) ## S4 method for signature 'Distribution' setOmega(object, value) ## S4 method for signature 'ModelParameter' setOmega(object, value)
object |
An object defined form a class of PFIM. |
value |
The matrix omega. |
The object with the updated matrix omega.
Set the optimal design.
setOptimalDesign(object, optimalDesign) ## S4 method for signature 'OptimizationAlgorithm' setOptimalDesign(object, optimalDesign)
setOptimalDesign(object, optimalDesign) ## S4 method for signature 'OptimizationAlgorithm' setOptimalDesign(object, optimalDesign)
object |
An object from the class OptimizationAlgorithm. |
optimalDesign |
An object from the class Design. |
The object with the updated optimal design.
Set the optimal weights.
setOptimalWeights(object, optimalWeights) ## S4 method for signature 'MultiplicativeAlgorithm' setOptimalWeights(object, optimalWeights)
setOptimalWeights(object, optimalWeights) ## S4 method for signature 'MultiplicativeAlgorithm' setOptimalWeights(object, optimalWeights)
object |
An object from the class MultiplicativeAlgorithm. |
optimalWeights |
A vector giving the optimal weights. |
The object with the updated optimal weights.
Set the optimization results.
setOptimizationResults(object, value) ## S4 method for signature 'Optimization' setOptimizationResults(object, value)
setOptimizationResults(object, value) ## S4 method for signature 'Optimization' setOptimizationResults(object, value)
object |
An object from the class Optimization. |
value |
An object from the class OptimizationAlgorithm giving the optimization results. |
The object with the updated object from the class OptimizationAlgorithm.
Set the outcome of an object.
setOutcome(object, outcome) ## S4 method for signature 'Administration' setOutcome(object, outcome) ## S4 method for signature 'SamplingTimes' setOutcome(object, outcome)
setOutcome(object, outcome) ## S4 method for signature 'Administration' setOutcome(object, outcome) ## S4 method for signature 'SamplingTimes' setOutcome(object, outcome)
object |
An object defined form a class of PFIM. |
outcome |
A string defined the outcome. |
A string giving the updated outcome of the object.
Set the outcomes of a model.
setOutcomes(object, outcomes) ## S4 method for signature 'Model' setOutcomes(object, outcomes)
setOutcomes(object, outcomes) ## S4 method for signature 'Model' setOutcomes(object, outcomes)
object |
An object from the class Model. |
outcomes |
A list giving the outcomes of the model. |
The model with the updated outcomes.
Set the results of the evaluation of the outcomes.
setOutcomesEvaluation(object, outcomesEvaluation) ## S4 method for signature 'Design' setOutcomesEvaluation(object, outcomesEvaluation)
setOutcomesEvaluation(object, outcomesEvaluation) ## S4 method for signature 'Design' setOutcomesEvaluation(object, outcomesEvaluation)
object |
An object |
outcomesEvaluation |
A list containing the evaluation of the outcomes. |
An object Design
with the list outcomesEvaluation
updated.
Set the outcomes of a model used for the evaluation (is scales outcomes).
setOutcomesForEvaluation(object, outcomes) ## S4 method for signature 'Model' setOutcomesForEvaluation(object, outcomes)
setOutcomesForEvaluation(object, outcomes) ## S4 method for signature 'Model' setOutcomesForEvaluation(object, outcomes)
object |
An object from the class Model. |
outcomes |
A list giving the outcomes of a model used for the evaluation (is scales outcomes). |
The model with the updated outcomes for the evaluation.
Set the results of the evaluation of the outcomes.
setOutcomesGradient(object, outcomesGradient) ## S4 method for signature 'Design' setOutcomesGradient(object, outcomesGradient)
setOutcomesGradient(object, outcomesGradient) ## S4 method for signature 'Design' setOutcomesGradient(object, outcomesGradient)
object |
An object |
outcomesGradient |
A list containing the evaluation of the outcome gradients. |
An object Design
with the list outcomesGradient
updated.
Set the parameters of an object.
setParameters(object, parameters) ## S4 method for signature 'Distribution' setParameters(object, parameters) ## S4 method for signature 'Model' setParameters(object, parameters) ## S4 method for signature 'FedorovWynnAlgorithm' setParameters(object, parameters) ## S4 method for signature 'MultiplicativeAlgorithm' setParameters(object, parameters) ## S4 method for signature 'PGBOAlgorithm' setParameters(object, parameters) ## S4 method for signature 'PSOAlgorithm' setParameters(object, parameters) ## S4 method for signature 'SimplexAlgorithm' setParameters(object, parameters)
setParameters(object, parameters) ## S4 method for signature 'Distribution' setParameters(object, parameters) ## S4 method for signature 'Model' setParameters(object, parameters) ## S4 method for signature 'FedorovWynnAlgorithm' setParameters(object, parameters) ## S4 method for signature 'MultiplicativeAlgorithm' setParameters(object, parameters) ## S4 method for signature 'PGBOAlgorithm' setParameters(object, parameters) ## S4 method for signature 'PSOAlgorithm' setParameters(object, parameters) ## S4 method for signature 'SimplexAlgorithm' setParameters(object, parameters)
object |
An object defined form a class of PFIM. |
parameters |
A list of parameters. |
The object with the updated list of parameters.
Set the sampling times constraint for optimization with PSO, PGBO and Simplex
setSamplingConstraintForOptimization(object) ## S4 method for signature 'Design' setSamplingConstraintForOptimization(object)
setSamplingConstraintForOptimization(object) ## S4 method for signature 'Design' setSamplingConstraintForOptimization(object)
object |
An object from the class Design. |
The arms with the sampling times constraints.
Set the sampling times.
setSamplings(object, samplings) ## S4 method for signature 'SamplingTimes' setSamplings(object, samplings)
setSamplings(object, samplings) ## S4 method for signature 'SamplingTimes' setSamplings(object, samplings)
object |
An object from the class SamplingTimes. |
samplings |
A vector giving the sampling times. |
The updated sampling times.
Set the sampling time of an arm.
setSamplingTime(object, samplingTime) ## S4 method for signature 'Arm' setSamplingTime(object, samplingTime)
setSamplingTime(object, samplingTime) ## S4 method for signature 'Arm' setSamplingTime(object, samplingTime)
object |
An object |
samplingTime |
An object |
An object Arm
from the class Arm with the new sampling time samplingTime
.
Set the vectors of sampling times for an arm.
setSamplingTimes(object, samplingTimes) ## S4 method for signature 'Arm' setSamplingTimes(object, samplingTimes)
setSamplingTimes(object, samplingTimes) ## S4 method for signature 'Arm' setSamplingTimes(object, samplingTimes)
object |
An object |
samplingTimes |
The list containing the new sampling times. |
An object Arm
from the class Arm with the new sampling times samplingTimes
.
Set the sampling times constraints.
setSamplingTimesConstraints(object, samplingTimesConstraints) ## S4 method for signature 'Arm' setSamplingTimesConstraints(object, samplingTimesConstraints)
setSamplingTimesConstraints(object, samplingTimesConstraints) ## S4 method for signature 'Arm' setSamplingTimesConstraints(object, samplingTimesConstraints)
object |
An object |
samplingTimesConstraints |
An object |
The arm with the new sampling time constraints.
Set the shrinkage.
setShrinkage(object, value) ## S4 method for signature 'BayesianFim' setShrinkage(object, value) ## S4 method for signature 'IndividualFim' setShrinkage(object, value) ## S4 method for signature 'PopulationFim' setShrinkage(object, value)
setShrinkage(object, value) ## S4 method for signature 'BayesianFim' setShrinkage(object, value) ## S4 method for signature 'IndividualFim' setShrinkage(object, value) ## S4 method for signature 'PopulationFim' setShrinkage(object, value)
object |
An object from the class Fim. |
value |
A vector giving the shrinkage of the Bayesian fim. |
The object with the updated shrinkage.
Set the parameter sigma inter.
setSigmaInter(object, sigmaInter) ## S4 method for signature 'ModelError' setSigmaInter(object, sigmaInter)
setSigmaInter(object, sigmaInter) ## S4 method for signature 'ModelError' setSigmaInter(object, sigmaInter)
object |
An object from the class ModelError. |
sigmaInter |
A numeric giving the parameter sigma inter. |
The model error with the updated sigma inter.
Set the parameter sigma slope.
setSigmaSlope(object, sigmaSlope) ## S4 method for signature 'ModelError' setSigmaSlope(object, sigmaSlope)
setSigmaSlope(object, sigmaSlope) ## S4 method for signature 'ModelError' setSigmaSlope(object, sigmaSlope)
object |
An object from the class ModelError. |
sigmaSlope |
A numeric giving the parameter sigma slope. |
The model error with the updated sigma slope.
Set the size of an object.
Set the size of an arm.
setSize(object, size) setSize(object, size) ## S4 method for signature 'Arm' setSize(object, size) ## S4 method for signature 'Design' setSize(object, size)
setSize(object, size) setSize(object, size) ## S4 method for signature 'Arm' setSize(object, size) ## S4 method for signature 'Design' setSize(object, size)
object |
An object |
size |
A numeric giving the new size of the object |
The object with its size updated.
The object Arm
object with its new size.
Set the frequency tau
.
setTau(object, tau) ## S4 method for signature 'Administration' setTau(object, tau)
setTau(object, tau) ## S4 method for signature 'Administration' setTau(object, tau)
object |
An object |
tau |
A numeric value for the infusion lag tau. |
The object Administration
object with its new value of the infusion lag tau.
Set the times vector when doses are given.
setTimeDose(object, timeDose) ## S4 method for signature 'Administration' setTimeDose(object, timeDose)
setTimeDose(object, timeDose) ## S4 method for signature 'Administration' setTimeDose(object, timeDose)
object |
An object |
timeDose |
A numeric value of the time dose. |
The object Administration
with its new times vector for doses.
Set the infusion duration.
setTinf(object, Tinf) ## S4 method for signature 'Administration' setTinf(object, Tinf)
setTinf(object, Tinf) ## S4 method for signature 'Administration' setTinf(object, Tinf)
object |
An object |
Tinf |
A numeric value for the infusion duration Tinf. |
The object Administration
with its new value of the infusion duration Tinf.
Set the matrix of the variance effects.
setVarianceEffects(object) ## S4 method for signature 'Fim' setVarianceEffects(object)
setVarianceEffects(object) ## S4 method for signature 'Fim' setVarianceEffects(object)
object |
An object from the class Fim. |
Update the matrix of the variance effects.
show
show
show
show
show
show
show
show
## S4 method for signature 'Design' show(object) ## S4 method for signature 'Evaluation' show(object) ## S4 method for signature 'FedorovWynnAlgorithm' show(object) ## S4 method for signature 'MultiplicativeAlgorithm' show(object) ## S4 method for signature 'Optimization' show(object) ## S4 method for signature 'PGBOAlgorithm' show(object) ## S4 method for signature 'PSOAlgorithm' show(object) ## S4 method for signature 'SimplexAlgorithm' show(object)
## S4 method for signature 'Design' show(object) ## S4 method for signature 'Evaluation' show(object) ## S4 method for signature 'FedorovWynnAlgorithm' show(object) ## S4 method for signature 'MultiplicativeAlgorithm' show(object) ## S4 method for signature 'Optimization' show(object) ## S4 method for signature 'PGBOAlgorithm' show(object) ## S4 method for signature 'PSOAlgorithm' show(object) ## S4 method for signature 'SimplexAlgorithm' show(object)
object |
object |
Class "SimplexAlgorithm" implements the Multiplicative algorithm.
SimplexAlgorithm
Objects form the class SimplexAlgorithm
can be created by calls of the form SimplexAlgorithm(...)
where
(...) are the parameters for the SimplexAlgorithm
objects.
SamplingTimes
objectspctInitialSimplexBuilding
:A numeric giving the percentage of the initial simplex.
maxIteration
:A numeric giving the number of maximum iteration.
tolerance
:A numeric giving the tolerance threshold.
showProcess
:A boolean to show or not the process.
optimalDesign
:A Design
object giving the optimal design.
iterationAndCriteria
:A list giving the optimal criteria at each iteration.