Package: PEtests (via r-universe)

September 3, 2024

Type Package

Title Power-Enhanced (PE) Tests for High-Dimensional Data

Version 0.1.0

Description Two-sample power-enhanced mean tests, covariance tests, and simultaneous tests on mean vectors and covariance matrices for high-dimensional data. Methods of these PE tests are presented in Yu, Li, and Xue (2022) <doi:10.1080/01621459.2022.2126781>; Yu, Li, Xue, and Li (2022) <doi:10.1080/01621459.2022.2061354>.

Author Xiufan Yu [aut, cre], Danning Li [aut], Lingzhou Xue [aut], Runze Li [aut]

Maintainer Xiufan Yu <xiufan.yu@nd.edu>

Imports stats

Encoding UTF-8

RoxygenNote 7.2.3.9000

License GPL (>= 3)

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2023-05-22 08:40:02 UTC

Contents

PEtests-package	2
covtest	3
covtest.clx	4
covtest.lc	5
covtest.pe.cauchy	6
covtest.pe.comp	7
covtest.pe.fisher	9

PEtests-package

meantest	10
meantest.clx	11
meantest.cq	12
meantest.pe.cauchy	13
meantest.pe.comp	14
meantest.pe.fisher	15
simultest	16
simultest.cauchy	18
simultest.chisq	19
simultest.fisher	20
simultest.pe.cauchy	21
simultest.pe.chisq	22
simultest.pe.fisher	23
	25

Index

PEtests-package

Power-Enhanced (PE) Tests for High-Dimensional Data

Description

The package implements several two-sample power-enhanced mean tests, covariance tests, and simultaneous tests on mean vectors and covariance matrices for high-dimensional data.

Details

There are three main functions: covtest meantest simultest

References

Chen, S. X. and Qin, Y. L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. *Annals of Statistics*, 38(2):808–835. doi:10.1214/09AOS716

Cai, T. T., Liu, W., and Xia, Y. (2013). Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. *Journal of the American Statistical Association*, 108(501):265–277. doi:10.1080/01621459.2012.758041

Cai, T. T., Liu, W., and Xia, Y. (2014). Two-sample test of high dimensional means under dependence. *Journal of the Royal Statistical Society: Series B: Statistical Methodology*, 76(2):349–372. doi:10.1111/rssb.12034

Li, J. and Chen, S. X. (2012). Two sample tests for high-dimensional covariance matrices. *The Annals of Statistics*, 40(2):908–940. doi:10.1214/12AOS993

Yu, X., Li, D., and Xue, L. (2022). Fisher's combined probability test for high-dimensional covariance matrices. *Journal of the American Statistical Association*, (in press):1–14. doi:10.1080/ 01621459.2022.2126781

covtest

Yu, X., Li, D., Xue, L., and Li, R. (2022). Power-enhanced simultaneous test of high-dimensional mean vectors and covariance matrices with application to gene-set testing. *Journal of the American Statistical Association*, (in press):1–14. doi:10.1080/01621459.2022.2061354

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
covtest(X, Y)
meantest(X, Y)
simultest(X, Y)
```

covtest

Two-sample covariance tests for high-dimensional data

Description

This function implements five two-sample covariance tests on high-dimensional covariance matrices. Let $\mathbf{X} \in \mathbb{R}^p$ and $\mathbf{Y} \in \mathbb{R}^p$ be two *p*-dimensional populations with mean vectors $(\boldsymbol{\mu}_1, \boldsymbol{\mu}_2)$ and covariance matrices $(\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2)$, respectively. The problem of interest is to test the equality of the two covariance matrices:

$$H_{0c}: \mathbf{\Sigma}_1 = \mathbf{\Sigma}_2$$

Suppose $\{\mathbf{X}_1, \dots, \mathbf{X}_{n_1}\}$ are i.i.d. copies of \mathbf{X} , and $\{\mathbf{Y}_1, \dots, \mathbf{Y}_{n_2}\}$ are i.i.d. copies of \mathbf{Y} . We denote dataX= $(\mathbf{X}_1, \dots, \mathbf{X}_{n_1})^\top \in \mathbb{R}^{n_1 \times p}$ and dataY= $(\mathbf{Y}_1, \dots, \mathbf{Y}_{n_2})^\top \in \mathbb{R}^{n_2 \times p}$.

Usage

covtest(dataX,dataY,method='pe.comp',delta=NULL)

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix
method	the method type (default = 'pe.comp'); chosen from
	 'clx': the l_∞-norm-based covariance test, proposed in Cai et al. (2013); see covtest.clx for details.
 'lc': the l₂-norm-based covariance test, proposed in Li and Chen see covtest.lc for details. 	
	 'pe.cauchy': the PE covariance test via Cauchy combination; see covtest.pe.cauchy for details.
	• 'pe.comp': the PE covariance test via the construction of PE components; see covtest.pe.comp for details.

	 'pe.fisher': the PE covariance test via Fisher's combination; see covtest.pe.fisher for details.
delta	This is needed only in method='pe.comp'; see covtest.pe.comp for details. The default is NULL.

Value

method the method type

stat the value of test statistic

pval the p-value for the test.

References

Cai, T. T., Liu, W., and Xia, Y. (2013). Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. Journal of the American Statistical Association, 108(501):265-277.

Li, J. and Chen, S. X. (2012). Two sample tests for high-dimensional covariance matrices. The Annals of Statistics, 40(2):908–940.

Yu, X., Li, D., and Xue, L. (2022). Fisher's combined probability test for high-dimensional covariance matrices. Journal of the American Statistical Association, (in press):1-14.

Yu, X., Li, D., Xue, L., and Li, R. (2022). Power-enhanced simultaneous test of high-dimensional mean vectors and covariance matrices with application to gene-set testing. Journal of the American Statistical Association, (in press):1–14.

Examples

n1 = 100; n2 = 100; pp = 500set.seed(1) X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp) Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp) covtest(X,Y)

covtest.clx

Two-sample high-dimensional covariance test (Cai, Liu and Xia, 2013)

Description

This function implements the two-sample l_{∞} -norm-based high-dimensional covariance test proposed in Cai, Liu and Xia (2013). Suppose $\{X_1, \ldots, X_{n_1}\}$ are i.i.d. copies of X, and $\{Y_1, \ldots, Y_{n_2}\}$ are i.i.d. copies of **Y**. The test statistic is defined as

$$T_{CLX} = \max_{1 \le i,j \le p} \frac{(\hat{\sigma}_{ij1} - \hat{\sigma}_{ij2})^2}{\hat{\theta}_{ij1}/n_1 + \hat{\theta}_{ij2}/n_2},$$

where $\hat{\sigma}_{ij1}$ and $\hat{\sigma}_{ij2}$ are the sample covariances, and $\hat{\theta}_{ij1}/n_1 + \hat{\theta}_{ij2}/n_2$ estimates the variance of $\hat{\sigma}_{ij1} - \hat{\sigma}_{ij2}$. The explicit formulas of $\hat{\sigma}_{ij1}$, $\hat{\sigma}_{ij2}$, $\hat{\theta}_{ij1}$ and $\hat{\theta}_{ij2}$ can be found in Section 2 of Cai, Liu

covtest.lc

and Xia (2013). With some regularity conditions, under the null hypothesis H_{0c} : $\Sigma_1 = \Sigma_2$, the test statistic $T_{CLX} - 4 \log p + \log \log p$ converges in distribution to a Gumbel distribution $G_{cov}(x) = \exp(-\frac{1}{\sqrt{8\pi}} \exp(-\frac{x}{2}))$ as $n_1, n_2, p \to \infty$. The asymptotic *p*-value is obtained by

$$p_{CLX} = 1 - G_{cov}(T_{CLX} - 4\log p + \log\log p).$$

Usage

covtest.clx(dataX,dataY)

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix

Value

stat the value of test statistic

pval the p-value for the test.

References

Cai, T. T., Liu, W., and Xia, Y. (2013). Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. *Journal of the American Statistical Association*, 108(501):265–277.

Examples

n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
covtest.clx(X,Y)

covtest.lc

Two-sample high-dimensional covariance test (Li and Chen, 2012)

Description

This function implements the two-sample l_2 -norm-based high-dimensional covariance test proposed by Li and Chen (2012). Suppose $\{X_1, \ldots, X_{n_1}\}$ are i.i.d. copies of X, and $\{Y_1, \ldots, Y_{n_2}\}$ are i.i.d. copies of Y. The test statistic T_{LC} is defined as

$$T_{LC} = A_{n_1} + B_{n_2} - 2C_{n_1, n_2}$$

where A_{n_1} , B_{n_2} , and C_{n_1,n_2} are unbiased estimators for $tr(\Sigma_1^2)$, $tr(\Sigma_2^2)$, and $tr(\Sigma_1\Sigma_2)$, respectively. Under the null hypothesis H_{0c} : $\Sigma_1 = \Sigma_2$, the leading variance of T_{LC} is $\sigma_{T_{LC}}^2 = 4(\frac{1}{n_1} + \frac{1}{n_2})^2 tr^2(\Sigma^2)$, which can be consistently estimated by $\hat{\sigma}_{LC}^2$. The explicit formulas of A_{n_1} ,

 B_{n_2}, C_{n_1,n_2} and $\hat{\sigma}^2_{T_{LC}}$ can be found in Equations (2.1), (2.2) and Theorem 1 of Li and Chen (2012). With some regularity conditions, under the null hypothesis $H_{0c}: \Sigma_1 = \Sigma_2$, the test statistic T_{LC} converges in distribution to a standard normal distribution as $n_1, n_2, p \to \infty$. The asymptotic *p*-value is obtained by

$$p_{LC} = 1 - \Phi(T_{LC}/\hat{\sigma}_{T_{LC}}),$$

where $\Phi(\cdot)$ is the cdf of the standard normal distribution.

Usage

covtest.lc(dataX,dataY)

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix

Value

stat the value of test statistic

pval the p-value for the test.

References

Li, J. and Chen, S. X. (2012). Two sample tests for high-dimensional covariance matrices. *The Annals of Statistics*, 40(2):908–940.

Examples

n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
covtest.lc(X,Y)

covtest.pe.cauchy Two-sample PE covariance test for high-dimensional data via Cauchy combination

Description

This function implements the two-sample PE covariance test via Cauchy combination. Suppose $\{\mathbf{X}_1, \ldots, \mathbf{X}_{n_1}\}\$ are i.i.d. copies of \mathbf{X} , and $\{\mathbf{Y}_1, \ldots, \mathbf{Y}_{n_2}\}\$ are i.i.d. copies of \mathbf{Y} . Let p_{LC} and p_{CLX} denote the *p*-values associated with the l_2 -norm-based covariance test (see covtest.lc for details) and the l_{∞} -norm-based covariance test (see covtest.clx for details), respectively. The PE covariance test via Cauchy combination is defined as

$$T_{Cauchy} = \frac{1}{2} \tan((0.5 - p_{LC})\pi) + \frac{1}{2} \tan((0.5 - p_{CLX})\pi).$$

covtest.pe.comp

It has been proved that with some regularity conditions, under the null hypothesis H_{0c} : $\Sigma_1 = \Sigma_2$, the two tests are asymptotically independent as $n_1, n_2, p \to \infty$, and therefore T_{Cauchy} asymptotically converges in distribution to a standard Cauchy distribution. The asymptotic *p*-value is obtained by

$$p$$
-value = $1 - F_{Cauchy}(T_{Cauchy}),$

where $F_{Cauchy}(\cdot)$ is the cdf of the standard Cauchy distribution.

Usage

```
covtest.pe.cauchy(dataX,dataY)
```

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix

Value

stat the value of test statistic

pval the p-value for the test.

References

Yu, X., Li, D., and Xue, L. (2022). Fisher's combined probability test for high-dimensional covariance matrices. *Journal of the American Statistical Association*, (in press):1–14.

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
covtest.pe.cauchy(X,Y)
```

covtest.pe.comp

Two-sample PE covariance test for high-dimensional data via PE component

Description

This function implements the two-sample PE covariance test via the construction of the PE component. Let $T_{LC}/\hat{\sigma}_{T_{LC}}$ denote the l_2 -norm-based covariance test statistic (see covtest.lc for details). The PE component is constructed by

$$J_{c} = \sqrt{p} \sum_{i=1}^{p} \sum_{j=1}^{p} T_{ij} \widehat{\xi}_{ij}^{-1/2} \mathcal{I}\{\sqrt{2}T_{ij}\widehat{\xi}_{ij}^{-1/2} + 1 > \delta_{cov}\},\$$

where δ_{cov} is a threshold for the screening procedure, recommended to take the value of $\delta_{cov} = 4 \log(\log(n_1 + n_2)) \log p$. The explicit forms of T_{ij} and $\hat{\xi}_{ij}$ can be found in Section 3.2 of Yu et al. (2022). The PE covariance test statistic is defined as

$$T_{PE} = T_{LC} / \hat{\sigma}_{T_{LC}} + J_c.$$

With some regularity conditions, under the null hypothesis H_{0c} : $\Sigma_1 = \Sigma_2$, the test statistic T_{PE} converges in distribution to a standard normal distribution as $n_1, n_2, p \rightarrow \infty$. The asymptotic *p*-value is obtained by

$$p$$
-value = $1 - \Phi(T_{PE})$,

where $\Phi(\cdot)$ is the cdf of the standard normal distribution.

Usage

covtest.pe.comp(dataX,dataY,delta=NULL)

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix
delta	a scalar; the thresholding value used in the construction of the PE component. If not specified, the function uses a default value $\delta_{cov} = 4 \log(\log(n_1 + n_2)) \log p$.

Value

stat the value of test statistic

pval the p-value for the test.

References

Yu, X., Li, D., Xue, L., and Li, R. (2022). Power-enhanced simultaneous test of high-dimensional mean vectors and covariance matrices with application to gene-set testing. *Journal of the American Statistical Association*, (in press):1–14.

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
covtest.pe.comp(X,Y)
```

covtest.pe.fisher

Description

This function implements the two-sample PE covariance test via Fisher's combination. Suppose $\{\mathbf{X}_1, \ldots, \mathbf{X}_{n_1}\}\$ are i.i.d. copies of \mathbf{X} , and $\{\mathbf{Y}_1, \ldots, \mathbf{Y}_{n_2}\}\$ are i.i.d. copies of \mathbf{Y} . Let p_{LC} and p_{CLX} denote the *p*-values associated with the l_2 -norm-based covariance test (see covtest.lc for details) and the l_{∞} -norm-based covariance test (see covtest.clx for details), respectively. The PE covariance test via Fisher's combination is defined as

$$T_{Fisher} = -2\log(p_{LC}) - 2\log(p_{CLX}).$$

It has been proved that with some regularity conditions, under the null hypothesis H_{0c} : $\Sigma_1 = \Sigma_2$, the two tests are asymptotically independent as $n_1, n_2, p \to \infty$, and therefore T_{Fisher} asymptotically converges in distribution to a χ^2_4 distribution. The asymptotic *p*-value is obtained by

$$p$$
-value = $1 - F_{\chi_4^2}(T_{Fisher})$,

where $F_{\chi^2_4}(\cdot)$ is the cdf of the χ^2_4 distribution.

Usage

covtest.pe.fisher(dataX,dataY)

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix

Value

stat the value of test statistic

pval the p-value for the test.

References

Yu, X., Li, D., and Xue, L. (2022). Fisher's combined probability test for high-dimensional covariance matrices. *Journal of the American Statistical Association*, (in press):1–14.

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
covtest.pe.fisher(X,Y)
```

meantest

Description

This function implements five two-sample mean tests on high-dimensional mean vectors. Let $\mathbf{X} \in \mathbb{R}^p$ and $\mathbf{Y} \in \mathbb{R}^p$ be two *p*-dimensional populations with mean vectors $(\boldsymbol{\mu}_1, \boldsymbol{\mu}_2)$ and covariance matrices $(\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2)$, respectively. The problem of interest is to test the equality of the two mean vectors of the two populations:

$$H_{0m}:\boldsymbol{\mu}_1=\boldsymbol{\mu}_2$$

Suppose $\{\mathbf{X}_1, \dots, \mathbf{X}_{n_1}\}$ are i.i.d. copies of \mathbf{X} , and $\{\mathbf{Y}_1, \dots, \mathbf{Y}_{n_2}\}$ are i.i.d. copies of \mathbf{Y} . We denote dataX= $(\mathbf{X}_1, \dots, \mathbf{X}_{n_1})^\top \in \mathbb{R}^{n_1 \times p}$ and dataY= $(\mathbf{Y}_1, \dots, \mathbf{Y}_{n_2})^\top \in \mathbb{R}^{n_2 \times p}$.

Usage

meantest(dataX,dataY,method='pe.comp',delta=NULL)

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix
method	the method type (default = 'pe.comp'); chosen from
	 'clx': the l_∞-norm-based mean test, proposed in Cai et al. (2014); see meantest.clx for details.
	 'cq': the l₂-norm-based mean test, proposed in Chen and Qin (2010); see meantest.cq for details.
	• 'pe.cauchy': the PE mean test via Cauchy combination; see meantest.pe.cauchy for details.
	• 'pe.comp': the PE mean test via the construction of PE components; see meantest.pe.comp for details.
	 'pe.fisher': the PE mean test via Fisher's combination; see meantest.pe.fisher for details.
delta	This is needed only in method='pe.comp'; see meantest.pe.comp for details. The default is NULL.

Value

method the method type

stat the value of test statistic

pval the p-value for the test.

meantest.clx

References

Chen, S. X. and Qin, Y. L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. *Annals of Statistics*, 38(2):808–835.

Cai, T. T., Liu, W., and Xia, Y. (2014). Two-sample test of high dimensional means under dependence. *Journal of the Royal Statistical Society: Series B: Statistical Methodology*, 76(2):349–372.

Yu, X., Li, D., Xue, L., and Li, R. (2022). Power-enhanced simultaneous test of high-dimensional mean vectors and covariance matrices with application to gene-set testing. *Journal of the American Statistical Association*, (in press):1–14.

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
meantest(X,Y)
```

meantest.clx

Two-sample high-dimensional mean test (Cai, Liu and Xia, 2014)

Description

This function implements the two-sample l_{∞} -norm-based high-dimensional mean test proposed in Cai, Liu and Xia (2014). Suppose $\{\mathbf{X}_1, \ldots, \mathbf{X}_{n_1}\}$ are i.i.d. copies of \mathbf{X} , and $\{\mathbf{Y}_1, \ldots, \mathbf{Y}_{n_2}\}$ are i.i.d. copies of \mathbf{Y} . The test statistic is defined as

$$M_{CLX} = \frac{n_1 n_2}{n_1 + n_2} \max_{1 \le j \le p} \frac{(\bar{X}_j - \bar{Y}_j)^2}{\frac{1}{n_1 + n_2} \left[\sum_{u=1}^{n_1} (X_{uj} - \bar{X}_j)^2 + \sum_{v=1}^{n_2} (Y_{vj} - \bar{Y}_j)^2\right]}$$

With some regularity conditions, under the null hypothesis H_{0c} : $\Sigma_1 = \Sigma_2$, the test statistic $M_{CLX} - 2\log p + \log \log p$ converges in distribution to a Gumbel distribution $G_{mean}(x) = \exp(-\frac{1}{\sqrt{\pi}}\exp(-\frac{x}{2}))$ as $n_1, n_2, p \to \infty$. The asymptotic *p*-value is obtained by

$$p_{CLX} = 1 - G_{mean}(M_{CLX} - 2\log p + \log\log p).$$

Usage

meantest.clx(dataX,dataY)

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix

Value

stat the value of test statistic pval the p-value for the test.

References

Cai, T. T., Liu, W., and Xia, Y. (2014). Two-sample test of high dimensional means under dependence. *Journal of the Royal Statistical Society: Series B: Statistical Methodology*, 76(2):349–372.

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
meantest.clx(X,Y)
```

meantest.cq

Two-sample high-dimensional mean test (Chen and Qin, 2010)

Description

This function implements the two-sample l_2 -norm-based high-dimensional mean test proposed by Chen and Qin (2010). Suppose $\{X_1, \ldots, X_{n_1}\}$ are i.i.d. copies of X, and $\{Y_1, \ldots, Y_{n_2}\}$ are i.i.d. copies of Y. The test statistic M_{CQ} is defined as

$$M_{CQ} = \frac{1}{n_1(n_1-1)} \sum_{u\neq v}^{n_1} \mathbf{X}'_u \mathbf{X}_v + \frac{1}{n_2(n_2-1)} \sum_{u\neq v}^{n_2} \mathbf{Y}'_u \mathbf{Y}_v - \frac{2}{n_1 n_2} \sum_u^{n_1} \sum_v^{n_2} \mathbf{X}'_u \mathbf{Y}_v.$$

Under the null hypothesis $H_{0m}: \mu_1 = \mu_2$, the leading variance of M_{CQ} is $\sigma_{M_{CQ}}^2 = \frac{2}{n_1(n_1-1)} \operatorname{tr}(\Sigma_1^2) + \frac{2}{n_2(n_2-1)} \operatorname{tr}(\Sigma_2^2) + \frac{4}{n_1 n_2} \operatorname{tr}(\Sigma_1 \Sigma_2)$, which can be consistently estimated by $\widehat{\sigma}_{M_{CQ}}^2 = \frac{2}{n_1(n_1-1)} \operatorname{tr}(\Sigma_1^2) + \frac{2}{n_2(n_2-1)} \operatorname{tr}(\Sigma_2^2) + \frac{4}{n_1 n_2} \operatorname{tr}(\Sigma_1 \Sigma_2)$. The explicit formulas of $\operatorname{tr}(\Sigma_1^2)$, $\operatorname{tr}(\Sigma_2^2)$, and $\operatorname{tr}(\Sigma_1 \Sigma_2)$ can be found in Section 3 of Chen and Qin (2010). With some regularity conditions, under the null hypothesis $H_{0m}: \mu_1 = \mu_2$, the test statistic M_{CQ} converges in distribution to a standard normal distribution as $n_1, n_2, p \to \infty$. The asymptotic *p*-value is obtained by

$$p_{CQ} = 1 - \Phi(M_{CQ}/\hat{\sigma}_{M_{CQ}}),$$

where $\Phi(\cdot)$ is the cdf of the standard normal distribution.

Usage

meantest.cq(dataX,dataY)

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix

Value

stat the value of test statistic pval the p-value for the test.

meantest.pe.cauchy

References

Chen, S. X. and Qin, Y. L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. *Annals of Statistics*, 38(2):808–835.

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
meantest.cq(X,Y)
```

meantest.pe.cauchy Two-sample PE mean test for high-dimensional data via Cauchy combination

Description

This function implements the two-sample PE covariance test via Cauchy combination. Suppose $\{\mathbf{X}_1, \ldots, \mathbf{X}_{n_1}\}\$ are i.i.d. copies of \mathbf{X} , and $\{\mathbf{Y}_1, \ldots, \mathbf{Y}_{n_2}\}\$ are i.i.d. copies of \mathbf{Y} . Let p_{CQ} and p_{CLX} denote the *p*-values associated with the l_2 -norm-based covariance test (see meantest.cq for details) and the l_{∞} -norm-based covariance test (see meantest.clx for details), respectively. The PE covariance test via Cauchy combination is defined as

$$M_{Cauchy} = \frac{1}{2} \tan((0.5 - p_{CQ})\pi) + \frac{1}{2} \tan((0.5 - p_{CLX})\pi).$$

It has been proved that with some regularity conditions, under the null hypothesis $H_{0m}: \mu_1 = \mu_2$, the two tests are asymptotically independent as $n_1, n_2, p \to \infty$, and therefore M_{Cauchy} asymptotically converges in distribution to a standard Cauchy distribution. The asymptotic *p*-value is obtained by

p-value = $1 - F_{Cauchy}(M_{Cauchy}),$

where $F_{Cauchy}(\cdot)$ is the cdf of the standard Cauchy distribution.

Usage

```
meantest.pe.cauchy(dataX,dataY)
```

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix

Value

stat the value of test statistic

pval the p-value for the test.

References

Chen, S. X. and Qin, Y. L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. *Annals of Statistics*, 38(2):808–835.

Cai, T. T., Liu, W., and Xia, Y. (2014). Two-sample test of high dimensional means under dependence. *Journal of the Royal Statistical Society: Series B: Statistical Methodology*, 76(2):349–372.

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
meantest.pe.cauchy(X,Y)
```

Description

This function implements the two-sample PE mean via the construction of the PE component. Let $M_{CQ}/\hat{\sigma}_{M_{CQ}}$ denote the l_2 -norm-based mean test statistic (see meantest.cq for details). The PE component is constructed by

$$J_m = \sqrt{p} \sum_{i=1}^p M_i \widehat{\nu}_i^{-1/2} \mathcal{I}\{\sqrt{2}M_i \widehat{\nu}_i^{-1/2} + 1 > \delta_{mean}\},\$$

where δ_{mean} is a threshold for the screening procedure, recommended to take the value of $\delta_{mean} = 2 \log(\log(n_1 + n_2)) \log p$. The explicit forms of M_i and $\hat{\nu}_j$ can be found in Section 3.1 of Yu et al. (2022). The PE covariance test statistic is defined as

$$M_{PE} = M_{CQ} / \hat{\sigma}_{M_{CQ}} + J_m.$$

With some regularity conditions, under the null hypothesis H_{0m} : $\mu_1 = \mu_2$, the test statistic M_{PE} converges in distribution to a standard normal distribution as $n_1, n_2, p \rightarrow \infty$. The asymptotic *p*-value is obtained by

p-value = $1 - \Phi(M_{PE})$,

where $\Phi(\cdot)$ is the cdf of the standard normal distribution.

Usage

```
meantest.pe.comp(dataX,dataY,delta=NULL)
```

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix
delta	a scalar; the thresholding value used in the construction of the PE component.
	If not specified, the function uses a default value $\delta_{mean} = 2\log(\log(n_1 +$
	$n_2))\log p.$

14

meantest.pe.comp Two-sample PE mean test for high-dimensional data via PE component

Value

stat the value of test statistic

pval the p-value for the test.

References

Yu, X., Li, D., Xue, L., and Li, R. (2022). Power-enhanced simultaneous test of high-dimensional mean vectors and covariance matrices with application to gene-set testing. *Journal of the American Statistical Association*, (in press):1–14.

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
meantest.pe.comp(X,Y)
```

meantest.pe.fisher	Two-sample PE mean test for high-dimensional data via Fisher's com-
	bination

Description

This function implements the two-sample PE covariance test via Fisher's combination. Suppose $\{\mathbf{X}_1, \ldots, \mathbf{X}_{n_1}\}\$ are i.i.d. copies of \mathbf{X} , and $\{\mathbf{Y}_1, \ldots, \mathbf{Y}_{n_2}\}\$ are i.i.d. copies of \mathbf{Y} . Let p_{CQ} and p_{CLX} denote the *p*-values associated with the l_2 -norm-based covariance test (see meantest.cq for details) and the l_{∞} -norm-based covariance test (see meantest.clx for details), respectively. The PE covariance test via Fisher's combination is defined as

$$M_{Fisher} = -2\log(p_{CQ}) - 2\log(p_{CLX}).$$

It has been proved that with some regularity conditions, under the null hypothesis $H_{0m}: \mu_1 = \mu_2$, the two tests are asymptotically independent as $n_1, n_2, p \to \infty$, and therefore M_{Fisher} asymptotically converges in distribution to a χ^2_4 distribution. The asymptotic *p*-value is obtained by

$$p$$
-value = $1 - F_{\chi^2_4}(M_{Fisher}),$

where $F_{\chi_4^2}(\cdot)$ is the cdf of the χ_4^2 distribution.

Usage

meantest.pe.fisher(dataX,dataY)

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix

Value

stat the value of test statistic

pval the p-value for the test.

References

Chen, S. X. and Qin, Y. L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. *Annals of Statistics*, 38(2):808–835.

Cai, T. T., Liu, W., and Xia, Y. (2014). Two-sample test of high dimensional means under dependence. *Journal of the Royal Statistical Society: Series B: Statistical Methodology*, 76(2):349–372.

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
meantest.pe.fisher(X,Y)
```

Two-sample simultaneous tests on high-dimensional mean vectors and covariance matrices

Description

This function implements six two-sample simultaneous tests on high-dimensional mean vectors and covariance matrices. Let $\mathbf{X} \in \mathbb{R}^p$ and $\mathbf{Y} \in \mathbb{R}^p$ be two *p*-dimensional populations with mean vectors $(\boldsymbol{\mu}_1, \boldsymbol{\mu}_2)$ and covariance matrices $(\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2)$, respectively. The problem of interest is the simultaneous inference on the equality of mean vectors and covariance matrices of the two populations:

$$H_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 \text{ and } \boldsymbol{\Sigma}_1 = \boldsymbol{\Sigma}_2.$$

Suppose $\{\mathbf{X}_1, \dots, \mathbf{X}_{n_1}\}$ are i.i.d. copies of \mathbf{X} , and $\{\mathbf{Y}_1, \dots, \mathbf{Y}_{n_2}\}$ are i.i.d. copies of \mathbf{Y} . We denote dataX= $(\mathbf{X}_1, \dots, \mathbf{X}_{n_1})^\top \in \mathbb{R}^{n_1 \times p}$ and dataY= $(\mathbf{Y}_1, \dots, \mathbf{Y}_{n_2})^\top \in \mathbb{R}^{n_2 \times p}$.

Usage

simultest(dataX, dataY, method='pe.fisher', delta_mean=NULL, delta_cov=NULL)

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix
method	the method type (default = 'pe.fisher'); chosen from
	• 'cauchy': the simultaneous test via Cauchy combination;

 cauchy : the simultaneous test via Cauchy combination see simultest.cauchy for details.

16

simultest

	 'chisq': the simultaneous test via chi-squared approximation; see simultest.chisq for details.
	 'fisher': the simultaneous test via Fisher's combination; see simultest.fisher for details.
	 'pe.cauchy': the PE simultaneous test via Cauchy combination; see simultest.pe.cauchy for details.
	 'pe.chisq': the PE simultaneous test via chi-squared approximation; see simultest.pe.chisq for details.
	 'pe.fisher': the PE simultaneous test via Fisher's combination; see simultest.pe.fisher for details.
delta_mean	the thresholding value used in the construction of the PE component for the mean test statistic. It is needed only in PE methods such as method='pe.cauchy', method='pe.chisq', and method='pe.fisher'; see simultest.pe.cauchy, simultest.pe.chisq, and simultest.pe.fisher for details. The default is NULL.
delta_cov	the thresholding value used in the construction of the PE component for the co- variance test statistic. It is needed only in PE methods such as method='pe.cauchy', method='pe.chisq', and method='pe.fisher'; see simultest.pe.cauchy, simultest.pe.chisq, and simultest.pe.fisher for details. The default is NULL.

Value

method the method type

stat the value of test statistic

pval the p-value for the test.

References

Chen, S. X. and Qin, Y. L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. *Annals of Statistics*, 38(2):808–835.

Li, J. and Chen, S. X. (2012). Two sample tests for high-dimensional covariance matrices. *The Annals of Statistics*, 40(2):908–940.

Yu, X., Li, D., and Xue, L. (2022). Fisher's combined probability test for high-dimensional covariance matrices. *Journal of the American Statistical Association*, (in press):1–14.

Yu, X., Li, D., Xue, L., and Li, R. (2022). Power-enhanced simultaneous test of high-dimensional mean vectors and covariance matrices with application to gene-set testing. *Journal of the American Statistical Association*, (in press):1–14.

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
simultest(X,Y)
```

simultest.cauchy

Description

This function implements the two-sample simultaneous test on high-dimensional mean vectors and covariance matrices using Cauchy combination. Suppose $\{\mathbf{X}_1, \ldots, \mathbf{X}_{n_1}\}$ are i.i.d. copies of \mathbf{X} , and $\{\mathbf{Y}_1, \ldots, \mathbf{Y}_{n_2}\}$ are i.i.d. copies of \mathbf{Y} . Let p_{CQ} and p_{LC} denote the *p*-values associated with the l_2 -norm-based mean test proposed in Chen and Qin (2010) (see meantest.cq for details) and the l_2 -norm-based covariance test proposed in Li and Chen (2012) (see covtest.lc for details), respectively. The simultaneous test statistic via Cauchy combination is defined as

$$C_{n_1,n_2} = \frac{1}{2} \tan((0.5 - p_{CQ})\pi) + \frac{1}{2} \tan((0.5 - p_{LC})\pi).$$

It has been proved that with some regularity conditions, under the null hypothesis $H_0: \mu_1 = \mu_2$ and $\Sigma_1 = \Sigma_2$, the two tests are asymptotically independent as $n_1, n_2, p \to \infty$, and therefore C_{n_1,n_2} asymptotically converges in distribution to a standard Cauchy distribution. The asymptotic *p*-value is obtained by

$$p$$
-value = $1 - F_{Cauchy}(C_{n_1,n_2}),$

where $F_{Cauchy}(\cdot)$ is the cdf of the standard Cauchy distribution.

Usage

simultest.cauchy(dataX,dataY)

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix

Value

stat the value of test statistic

pval the p-value for the test.

References

Chen, S. X. and Qin, Y. L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. *Annals of Statistics*, 38(2):808–835.

Li, J. and Chen, S. X. (2012). Two sample tests for high-dimensional covariance matrices. *The Annals of Statistics*, 40(2):908–940.

Yu, X., Li, D., Xue, L., and Li, R. (2022). Power-enhanced simultaneous test of high-dimensional mean vectors and covariance matrices with application to gene-set testing. *Journal of the American Statistical Association*, (in press):1–14.

simultest.chisq

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
simultest.cauchy(X,Y)
```

simultest.chisq *Two-sample simultaneous test using chi-squared approximation*

Description

This function implements the two-sample simultaneous test on high-dimensional mean vectors and covariance matrices using chi-squared approximation. Suppose $\{\mathbf{X}_1, \ldots, \mathbf{X}_{n_1}\}$ are i.i.d. copies of \mathbf{X} , and $\{\mathbf{Y}_1, \ldots, \mathbf{Y}_{n_2}\}$ are i.i.d. copies of \mathbf{Y} . Let $M_{CQ}/\hat{\sigma}_{M_{CQ}}$ denote the l_2 -norm-based mean test statistic proposed in Chen and Qin (2010) (see meantest.cq for details), and let $T_{LC}/\hat{\sigma}_{T_{LC}}$ denote the l_2 -norm-based covariance test statistic proposed in Li and Chen (2012) (see covtest.lc for details). The simultaneous test statistic via chi-squared approximation is defined as

$$S_{n_1,n_2} = M_{CQ}^2 / \hat{\sigma}_{M_{CQ}}^2 + T_{LC}^2 / \hat{\sigma}_{T_{LC}}^2.$$

It has been proved that with some regularity conditions, under the null hypothesis $H_0: \mu_1 = \mu_2$ and $\Sigma_1 = \Sigma_2$, the two tests are asymptotically independent as $n_1, n_2, p \to \infty$, and therefore S_{n_1,n_2} asymptotically converges in distribution to a χ^2_2 distribution. The asymptotic *p*-value is obtained by

$$p$$
-value = $1 - F_{\chi_2^2}(S_{n_1,n_2}),$

where $F_{\chi^2_2}(\cdot)$ is the cdf of the χ^2_2 distribution.

Usage

simultest.chisq(dataX,dataY)

Arguments

dataX	n1 by p data matrix
dataY	n2 by p data matrix

Value

stat the value of test statistic

pval the p-value for the test.

References

Yu, X., Li, D., Xue, L., and Li, R. (2022). Power-enhanced simultaneous test of high-dimensional mean vectors and covariance matrices with application to gene-set testing. *Journal of the American Statistical Association*, (in press):1–14.

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
simultest.chisq(X,Y)
```

simultest.fisher Two-sample simultaneous test using Fisher's combination

Description

This function implements the two-sample simultaneous test on high-dimensional mean vectors and covariance matrices using Fisher's combination. Suppose $\{\mathbf{X}_1, \ldots, \mathbf{X}_{n_1}\}$ are i.i.d. copies of \mathbf{X} , and $\{\mathbf{Y}_1, \ldots, \mathbf{Y}_{n_2}\}$ are i.i.d. copies of \mathbf{Y} . Let p_{CQ} and p_{LC} denote the *p*-values associated with the l_2 -norm-based mean test proposed in Chen and Qin (2010) (see meantest.cq for details) and the l_2 -norm-based covariance test proposed in Li and Chen (2012) (see covtest.lc for details), respectively. The simultaneous test statistic via Fisher's combination is defined as

$$J_{n_1,n_2} = -2\log(p_{CQ}) - 2\log(p_{LC}).$$

It has been proved that with some regularity conditions, under the null hypothesis $H_0: \mu_1 = \mu_2$ and $\Sigma_1 = \Sigma_2$, the two tests are asymptotically independent as $n_1, n_2, p \to \infty$, and therefore J_{n_1,n_2} asymptotically converges in distribution to a χ_4^2 distribution. The asymptotic *p*-value is obtained by

$$p$$
-value = $1 - F_{\chi_4^2}(J_{n_1,n_2})$

where $F_{\chi_4^2}(\cdot)$ is the cdf of the χ_4^2 distribution.

Usage

simultest.fisher(dataX,dataY)

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix

Value

stat the value of test statistic

pval the p-value for the test.

20

References

Chen, S. X. and Qin, Y. L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. *Annals of Statistics*, 38(2):808–835.

Li, J. and Chen, S. X. (2012). Two sample tests for high-dimensional covariance matrices. *The Annals of Statistics*, 40(2):908–940.

Yu, X., Li, D., Xue, L., and Li, R. (2022). Power-enhanced simultaneous test of high-dimensional mean vectors and covariance matrices with application to gene-set testing. *Journal of the American Statistical Association*, (in press):1–14.

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
simultest.fisher(X,Y)
```

simultest.pe.cauchy Two-sample PE simultaneous test using Cauchy combination

Description

This function implements the two-sample PE simultaneous test on high-dimensional mean vectors and covariance matrices using Cauchy combination. Suppose $\{\mathbf{X}_1, \ldots, \mathbf{X}_{n_1}\}$ are i.i.d. copies of \mathbf{X} , and $\{\mathbf{Y}_1, \ldots, \mathbf{Y}_{n_2}\}$ are i.i.d. copies of \mathbf{Y} . Let M_{PE} and T_{PE} denote the PE mean test statistic and PE covariance test statistic, respectively. (see meantest.pe.comp and covtest.pe.comp for details). Let p_m and p_c denote their respective *p*-values. The PE simultaneous test statistic via Cauchy combination is defined as

$$C_{PE} = \frac{1}{2} \tan((0.5 - p_m)\pi) + \frac{1}{2} \tan((0.5 - p_c)\pi).$$

It has been proved that with some regularity conditions, under the null hypothesis $H_0: \mu_1 = \mu_2$ and $\Sigma_1 = \Sigma_2$, the two tests are asymptotically independent as $n_1, n_2, p \to \infty$, and therefore C_{PE} asymptotically converges in distribution to a standard Cauchy distribution. The asymptotic *p*-value is obtained by

$$p$$
-value = $1 - F_{Cauchy}(C_{PE})$,

where $F_{Cauchy}(\cdot)$ is the cdf of the standard Cauchy distribution.

Usage

simultest.pe.cauchy(dataX,dataY,delta_mean=NULL,delta_cov=NULL)

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix
delta_mean	a scalar; the thresholding value used in the construction of the PE component for mean test; see meantest.pe.comp for details.
delta_cov	a scalar; the thresholding value used in the construction of the PE component for covariance test; see covtest.pe.comp for details.

Value

stat the value of test statistic

pval the p-value for the test.

References

Yu, X., Li, D., Xue, L., and Li, R. (2022). Power-enhanced simultaneous test of high-dimensional mean vectors and covariance matrices with application to gene-set testing. *Journal of the American Statistical Association*, (in press):1–14.

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
simultest.pe.cauchy(X,Y)
```

simultest.pe.chisq Two-sample PE simultaneous test using chi-squared approximation

Description

This function implements the two-sample PE simultaneous test on high-dimensional mean vectors and covariance matrices using chi-squared approximation. Suppose $\{\mathbf{X}_1, \ldots, \mathbf{X}_{n_1}\}$ are i.i.d. copies of \mathbf{X} , and $\{\mathbf{Y}_1, \ldots, \mathbf{Y}_{n_2}\}$ are i.i.d. copies of \mathbf{Y} . Let M_{PE} and T_{PE} denote the PE mean test statistic and PE covariance test statistic, respectively. (see meantest.pe.comp and covtest.pe.comp for details). The PE simultaneous test statistic via chi-squared approximation is defined as

$$S_{PE} = M_{PE}^2 + T_{PE}^2$$

It has been proved that with some regularity conditions, under the null hypothesis $H_0: \mu_1 = \mu_2$ and $\Sigma_1 = \Sigma_2$, the two tests are asymptotically independent as $n_1, n_2, p \to \infty$, and therefore S_{PE} asymptotically converges in distribution to a χ_2^2 distribution. The asymptotic *p*-value is obtained by

$$p$$
-value = $1 - F_{\chi_2^2}(S_{PE})$,

where $F_{\chi^2_2}(\cdot)$ is the cdf of the χ^2_2 distribution.

simultest.pe.fisher

Usage

simultest.pe.chisq(dataX,dataY,delta_mean=NULL,delta_cov=NULL)

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix
delta_mean	a scalar; the thresholding value used in the construction of the PE component for mean test; see meantest.pe.comp for details.
delta_cov	a scalar; the thresholding value used in the construction of the PE component for covariance test; see covtest.pe.comp for details.

Value

stat the value of test statistic

pval the p-value for the test.

References

Yu, X., Li, D., Xue, L., and Li, R. (2022). Power-enhanced simultaneous test of high-dimensional mean vectors and covariance matrices with application to gene-set testing. *Journal of the American Statistical Association*, (in press):1–14.

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
simultest.pe.chisq(X,Y)
```

simultest.pe.fisher Two-sample PE simultaneous test using Fisher's combination

Description

This function implements the two-sample PE simultaneous test on high-dimensional mean vectors and covariance matrices using Fisher's combination. Suppose $\{X_1, \ldots, X_{n_1}\}$ are i.i.d. copies of X, and $\{Y_1, \ldots, Y_{n_2}\}$ are i.i.d. copies of Y. Let M_{PE} and T_{PE} denote the PE mean test statistic and PE covariance test statistic, respectively. (see meantest.pe.comp and covtest.pe.comp for details). Let p_m and p_c denote their respective p-values. The PE simultaneous test statistic via Fisher's combination is defined as

$$J_{PE} = -2\log(p_m) - 2\log(p_c).$$

It has been proved that with some regularity conditions, under the null hypothesis $H_0: \mu_1 = \mu_2$ and $\Sigma_1 = \Sigma_2$, the two tests are asymptotically independent as $n_1, n_2, p \to \infty$, and therefore J_{PE} asymptotically converges in distribution to a χ_4^2 distribution. The asymptotic *p*-value is obtained by

$$p$$
-value = $1 - F_{\chi_4^2}(J_{PE}),$

where $F_{\chi^2_4}(\cdot)$ is the cdf of the χ^2_4 distribution.

Usage

simultest.pe.fisher(dataX,dataY,delta_mean=NULL,delta_cov=NULL)

Arguments

dataX	an n_1 by p data matrix
dataY	an n_2 by p data matrix
delta_mean	a scalar; the thresholding value used in the construction of the PE component for mean test; see meantest.pe.comp for details.
delta_cov	a scalar; the thresholding value used in the construction of the PE component for covariance test; see covtest.pe.comp for details.

Value

stat the value of test statistic

pval the p-value for the test.

References

Yu, X., Li, D., Xue, L., and Li, R. (2022). Power-enhanced simultaneous test of high-dimensional mean vectors and covariance matrices with application to gene-set testing. *Journal of the American Statistical Association*, (in press):1–14.

Examples

```
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
simultest.pe.fisher(X,Y)
```

Index

covtest, 2, 3 covtest.clx, 3, 4, 6, 9 covtest.lc, 3, 5, 6, 7, 9, 18–20 covtest.pe.cauchy, 3, 6 covtest.pe.comp, 3, 4, 7, 21–24 covtest.pe.fisher, 4, 9

meantest, 2, 10
meantest.clx, 10, 11, 13, 15
meantest.cq, 10, 12, 13-15, 18-20
meantest.pe.cauchy, 10, 13
meantest.pe.comp, 10, 14, 21-24
meantest.pe.fisher, 10, 15

PEtests-package, 2

simultest, 2, 16 simultest.cauchy, 16, 18 simultest.chisq, 17, 19 simultest.fisher, 17, 20 simultest.pe.cauchy, 17, 21 simultest.pe.chisq, 17, 22 simultest.pe.fisher, 17, 23