Title: | Model Response Styles in Partial Credit Models |
---|---|
Description: | Implementation of PCMRS (Partial Credit Model with Response Styles) as proposed in by Tutz, Schauberger and Berger (2018) <doi:10.1177/0146621617748322> . PCMRS is an extension of the regular partial credit model. PCMRS allows for an additional person parameter that characterizes the response style of the person. By taking the response style into account, the estimates of the item parameters are less biased than in partial credit models. |
Authors: | Gunther Schauberger |
Maintainer: | Gunther Schauberger <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.1-4 |
Built: | 2024-11-20 06:44:39 UTC |
Source: | CRAN |
Performs PCMRS, a method to model response styles in Partial Credit Models
Gunther Schauberger
[email protected]
https://www.sg.tum.de/epidemiologie/team/schauberger/
Tutz, Gerhard, Schauberger, Gunther and Berger, Moritz (2018): Response Styles in the Partial Credit Model, Applied Psychological Measurement, https://journals.sagepub.com/doi/10.1177/0146621617748322
PCMRS
, person.posterior
, tenseness
, emotion
## Not run: ################################################ ## Small example to illustrate model and person estimation ################################################ data(tenseness) set.seed(5) samples <- sample(1:nrow(tenseness), 100) tense_small <- tenseness[samples,1:4] m_small <- PCMRS(tense_small, cores = 2) m_small plot(m_small) persons <- person.posterior(m_small, cores = 2) plot(jitter(persons, 100)) ################################################ ## Example from Tutz et al. 2017: ################################################ data(emotion) m.emotion <- PCMRS(emotion) m.emotion plot(m.emotion) ## End(Not run)
## Not run: ################################################ ## Small example to illustrate model and person estimation ################################################ data(tenseness) set.seed(5) samples <- sample(1:nrow(tenseness), 100) tense_small <- tenseness[samples,1:4] m_small <- PCMRS(tense_small, cores = 2) m_small plot(m_small) persons <- person.posterior(m_small, cores = 2) plot(jitter(persons, 100)) ################################################ ## Example from Tutz et al. 2017: ################################################ data(emotion) m.emotion <- PCMRS(emotion) m.emotion plot(m.emotion) ## End(Not run)
Data from the Freiburg Complaint Checklist. The data contain all 8 items corresponding to the scale Emotional reactivity for 2032 participants of the standardization sample of the Freiburg Complaint Checklist.
A data frame containing data from the Freiburg Complaint Checklist with 2032 observations. All items refer to the scale Emotional reactivity and are measured on a 5-point Likert scale where low numbers correspond to low frequencies or low intensitites of the respective complaint and vice versa.
Do you feel it in the whole body when you get upset about something?
Do your eyes well up with tears in certain situations?
Do you sometimes start stammering in certain situations?
Do you blush?
Do you have to gasp for air in exciting situations, so that you have to take a deep breath?
Do you feel a rapid heartbeat in excitement?
Do you feel the urge to defecate in excitement?
Do you start trembling in excitement or do you get trembling knees?
ZPID (2013). PsychData of the Leibniz Institute for Psychology Information ZPID. Trier: Center for Research Data in Psychology.
Fahrenberg, J. (2010). Freiburg Complaint Checklist [Freiburger Beschwerdenliste (FBL)]. Goettingen, Hogrefe.
Tutz, Gerhard, Schauberger, Gunther and Berger, Moritz (2018): Response Styles in the Partial Credit Model, Applied Psychological Measurement, https://journals.sagepub.com/doi/10.1177/0146621617748322
## Not run: data(emotion) m.emotion <- PCMRS(emotion) m.emotion plot(m.emotion) ## End(Not run)
## Not run: data(emotion) m.emotion <- PCMRS(emotion) m.emotion plot(m.emotion) ## End(Not run)
Performs PCMRS, a method to model response styles in Partial Credit Models
PCMRS( Y, Q = 10, scaled = TRUE, method = c("L-BFGS-B", "nlminb"), cores = 30, lambda = 0 )
PCMRS( Y, Q = 10, scaled = TRUE, method = c("L-BFGS-B", "nlminb"), cores = 30, lambda = 0 )
Y |
Data frame containing the ordinal item response data (as ordered factors), one row per obeservation, one column per item. |
Q |
Number of nodes to be used (per dimension) in two-dimensional Gauss-Hermite-Quadrature. |
scaled |
Should the scaled version of the response style parameterization be used? Default is |
method |
Specifies optimization algorithm used by |
cores |
Number of cores to be used in parallelized computation. |
lambda |
Tuning parameter for optional L2 penalty on coefficient vector (for stabilized estimation) |
delta |
Matrix containing all item parameters for the PCMRS model, one row per item, one column per category. |
Sigma |
2*2 covariance matrix for both random effects, namely the ability parameters theta and the response style parameters gamma. |
delta.PCM |
Matrix containing all item parameters for the simple PCM model, one row per item, one column per category. |
sigma.PCM |
Estimate for variance of ability parameters theta in the simple PCM model. |
Y |
Data frame containing the ordinal item response data, one row per obeservation, one column per item. |
scaled |
Logical, |
neg.loglik |
Negative marginal log-likelihood |
Gunther Schauberger
[email protected]
https://www.sg.tum.de/epidemiologie/team/schauberger/
Tutz, Gerhard, Schauberger, Gunther and Berger, Moritz (2018): Response Styles in the Partial Credit Model, Applied Psychological Measurement, https://journals.sagepub.com/doi/10.1177/0146621617748322
person.posterior
PCMRS-package
## Not run: ################################################ ## Small example to illustrate model and person estimation ################################################ data(tenseness) set.seed(5) samples <- sample(1:nrow(tenseness), 100) tense_small <- tenseness[samples,1:4] m_small <- PCMRS(tense_small, cores = 2) m_small plot(m_small) persons <- person.posterior(m_small, cores = 2) plot(jitter(persons, 100)) ################################################ ## Example from Tutz et al. 2017: ################################################ data(emotion) m.emotion <- PCMRS(emotion) m.emotion plot(m.emotion) ## End(Not run)
## Not run: ################################################ ## Small example to illustrate model and person estimation ################################################ data(tenseness) set.seed(5) samples <- sample(1:nrow(tenseness), 100) tense_small <- tenseness[samples,1:4] m_small <- PCMRS(tense_small, cores = 2) m_small plot(m_small) persons <- person.posterior(m_small, cores = 2) plot(jitter(persons, 100)) ################################################ ## Example from Tutz et al. 2017: ################################################ data(emotion) m.emotion <- PCMRS(emotion) m.emotion plot(m.emotion) ## End(Not run)
Calculates posterior estimates for both person parameters, namely the ability parameters theta and the response style parameters gamma.
person.posterior(model, cores = 30, tol = 1e-04, maxEval = 600, which = NULL)
person.posterior(model, cores = 30, tol = 1e-04, maxEval = 600, which = NULL)
model |
Object of class |
cores |
Number of cores to be used in parallelized computation. |
tol |
The maximum tolerance for numerical integration, default 1e-4.
For more details see |
maxEval |
The maximum number of function evaluations needed in numerical integration.
If specified as 0 implies no limit. For more details see |
which |
Optional vector to specify that only for a subset of all persons the posterior estimate is calculated. |
Matrix containing all estimates of person parameters, both theta and gamma.
Gunther Schauberger
[email protected]
https://www.sg.tum.de/epidemiologie/team/schauberger/
Tutz, Gerhard, Schauberger, Gunther and Berger, Moritz (2018): Response Styles in the Partial Credit Model, Applied Psychological Measurement, https://journals.sagepub.com/doi/10.1177/0146621617748322
## Not run: ################################################ ## Small example to illustrate model and person estimation ################################################ data(tenseness) set.seed(5) samples <- sample(1:nrow(tenseness), 100) tense_small <- tenseness[samples,1:4] m_small <- PCMRS(tense_small, cores = 2) m_small plot(m_small) persons <- person.posterior(m_small, cores = 2) plot(jitter(persons, 100)) ################################################ ## Example from Tutz et al. 2017: ################################################ data(emotion) m.emotion <- PCMRS(emotion) m.emotion plot(m.emotion) ## End(Not run)
## Not run: ################################################ ## Small example to illustrate model and person estimation ################################################ data(tenseness) set.seed(5) samples <- sample(1:nrow(tenseness), 100) tense_small <- tenseness[samples,1:4] m_small <- PCMRS(tense_small, cores = 2) m_small plot(m_small) persons <- person.posterior(m_small, cores = 2) plot(jitter(persons, 100)) ################################################ ## Example from Tutz et al. 2017: ################################################ data(emotion) m.emotion <- PCMRS(emotion) m.emotion plot(m.emotion) ## End(Not run)
Data from the Freiburg Complaint Checklist. The data contain all 8 items corresponding to the scale Tenseness for 2042 participants of the standardization sample of the Freiburg Complaint Checklist.
A data frame containing data from the Freiburg Complaint Checklist with 2042 observations. All items refer to the scale Tenseness and are measured on a 5-point Likert scale where low numbers correspond to low frequencies or low intensitites of the respective complaint and vice versa.
Do you have clammy hands?
Do you have sudden attacks of sweating?
Do you notice that you behave clumsy?
Are your hands wavering frequently, e.g. when lightning a cigarette or when holding a cup?
Do you notice that your hands are restless?
Do you notice that your feet are restless?
Do you notice unvoluntary twitching of your eyes?
Do you notice unvoluntary twitching of your mouth?
ZPID (2013). PsychData of the Leibniz Institute for Psychology Information ZPID. Trier: Center for Research Data in Psychology.
Fahrenberg, J. (2010). Freiburg Complaint Checklist [Freiburger Beschwerdenliste (FBL)]. Goettingen, Hogrefe.
Tutz, Gerhard, Schauberger, Gunther and Berger, Moritz (2018): Response Styles in the Partial Credit Model, Applied Psychological Measurement, https://journals.sagepub.com/doi/10.1177/0146621617748322
## Not run: data(tenseness) set.seed(1860) samples <- sample(1:nrow(tenseness), 300) tense_small <- tenseness[samples,] m_small <- PCMRS(tense_small, cores = 25) m_small plot(m_small) persons <- person.posterior(m_small, cores = 25) plot(jitter(persons,100)) ## End(Not run)
## Not run: data(tenseness) set.seed(1860) samples <- sample(1:nrow(tenseness), 300) tense_small <- tenseness[samples,] m_small <- PCMRS(tense_small, cores = 25) m_small plot(m_small) persons <- person.posterior(m_small, cores = 25) plot(jitter(persons,100)) ## End(Not run)