There are two ways to use PCMBaseCpp:
PCMInfoCpp
as a metaI
argument of PCMLik
and/or
PCMCreateLikelihood
## Loading required package: Rcpp
system.time(llR <- PCMLik(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab))
## user system elapsed
## 0.062 0.000 0.062
system.time(llCpp <- PCMLik(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = PCMInfoCpp))
## user system elapsed
## 0.004 0.000 0.004
## [1] -206.4146
## attr(,"X0")
## [1] 5 2 1
## [1] -206.4146
## attr(,"X0")
## [1] 5 2 1
logLikFunR <- PCMCreateLikelihood(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab)
logLikFunCpp <- PCMCreateLikelihood(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = PCMInfoCpp)
metaICpp <- PCMInfoCpp(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab)
logLikFunCpp2 <- PCMCreateLikelihood(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = metaICpp)
set.seed(1, kind = "Mersenne-Twister", normal.kind = "Inversion")
randParam <- PCMParamRandomVecParams(PCMBaseTestObjects$model_MixedGaussian_ab)
system.time(llR <- logLikFunR(randParam))
## user system elapsed
## 0.053 0.000 0.054
## user system elapsed
## 0.002 0.000 0.002
## user system elapsed
## 0.002 0.000 0.002
## [1] -598.092
## attr(,"X0")
## [1] -4.689827 -2.557522 1.457067
## [1] -598.092
## attr(,"X0")
## [1] -4.689827 -2.557522 1.457067
## [1] -598.092
## attr(,"X0")
## [1] -4.689827 -2.557522 1.457067
PCMInfoCpp
as a metaI
argument of
PCMLik
and PCMCreateLikelihood
This is the recommended usage in the case of multiple likelihood evaluations, e.g. during model inference:
metaIR <- PCMInfo(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab)
metaICpp <- PCMInfoCpp(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab)
system.time(llR <- PCMLik(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = metaIR))
## user system elapsed
## 0.054 0.000 0.054
system.time(llCpp <- PCMLik(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = metaICpp))
## user system elapsed
## 0.001 0.000 0.001
## [1] -206.4146
## attr(,"X0")
## [1] 5 2 1
## [1] -206.4146
## attr(,"X0")
## [1] 5 2 1
logLikFunR <- PCMCreateLikelihood(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = metaIR)
logLikFunCpp <- PCMCreateLikelihood(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = metaICpp)
system.time(llR <- PCMLik(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = metaIR))
## user system elapsed
## 0.051 0.000 0.052
system.time(llCpp <- PCMLik(
X = PCMBaseTestObjects$traits.ab.123,
tree = PCMBaseTestObjects$tree.ab,
model = PCMBaseTestObjects$model_MixedGaussian_ab,
metaI = metaICpp))
## user system elapsed
## 0.001 0.000 0.001
## [1] -206.4146
## attr(,"X0")
## [1] 5 2 1
## [1] -206.4146
## attr(,"X0")
## [1] 5 2 1