
Package: PAFit (via r-universe)
October 25, 2024

Type Package

Title Generative Mechanism Estimation in Temporal Complex Networks

Version 1.2.10

Date 2024-03-28

Author Thong Pham, Paul Sheridan, Hidetoshi Shimodaira

Maintainer Thong Pham <thongphamthe@gmail.com>

Description Statistical methods for estimating preferential attachment
and node fitness generative mechanisms in temporal complex
networks are provided. Thong Pham et al. (2015)
<doi:10.1371/journal.pone.0137796>. Thong Pham et al. (2016)
<doi:10.1038/srep32558>. Thong Pham et al. (2020)
<doi:10.18637/jss.v092.i03>. Thong Pham et al. (2021)
<doi:10.1093/comnet/cnab024>.

URL https://github.com/thongphamthe/PAFit

BugReports https://github.com/thongphamthe/PAFit/issues

License GPL-3

Depends R(>= 2.10.0)

Imports Rcpp (>= 0.11.3) , grDevices, graphics, stats, RColorBrewer,
VGAM, MASS, magicaxis, networkDynamic, network, plyr, igraph,
mapproj, knitr, methods, ggplot2

LinkingTo Rcpp

LazyData True

Encoding UTF-8

NeedsCompilation yes

Suggests R.rsp

VignetteBuilder R.rsp

Repository CRAN

Date/Publication 2024-03-28 10:30:02 UTC

1

https://doi.org/10.1371/journal.pone.0137796
https://doi.org/10.1038/srep32558
https://doi.org/10.18637/jss.v092.i03
https://doi.org/10.1093/comnet/cnab024
https://github.com/thongphamthe/PAFit
https://github.com/thongphamthe/PAFit/issues

2 Contents

Contents

PAFit-package . 3
as.PAFit_net . 5
Coauthorship network of scientists in the field of complex networks 6
from_igraph . 7
from_networkDynamic . 8
generate_BA . 8
generate_BB . 10
generate_ER . 11
generate_fit_only . 13
generate_net . 14
generate_simulated_data_from_estimated_model . 17
get_statistics . 19
graph_from_file . 22
graph_to_file . 23
Jeong . 24
joint_estimate . 26
Newman . 30
only_A_estimate . 31
only_F_estimate . 35
PAFit_oneshot . 37
plot.Full_PAFit_result . 38
plot.PAFit_net . 40
plot.PAFit_result . 41
plot.PA_result . 43
plot_contribution . 45
print.CV_Data . 47
print.CV_Result . 48
print.Full_PAFit_result . 49
print.PAFit_data . 50
print.PAFit_net . 51
print.PAFit_result . 51
print.PA_result . 52
summary.CV_Data . 53
summary.CV_Result . 54
summary.Full_PAFit_result . 55
summary.PAFit_data . 56
summary.PAFit_net . 57
summary.PAFit_result . 58
summary.PA_result . 59
test_linear_PA . 59
to_igraph . 61
to_networkDynamic . 62

Index 63

PAFit-package 3

PAFit-package Generative Mechanism Estimation in Temporal Complex Networks

Description

A package for estimating preferential attachment and node fitness generative mechanisms in tem-
poral complex networks. References: Thong Pham et al. (2015) <10.1371/journal.pone.0137796>,
Thong Pham et al. (2016) <doi:10.1038/srep32558>, Thong Pham et al. (2020) <doi:10.18637/jss.v092.i03>,
Thong Pham et al. (2021) <doi:10.1093/comnet/cnab024>.

Details

Package: PAFit
Type: Package
Version: 1.2.10
Authors: Thong Pham, Paul Sheridan, Hidetoshi Shimodaira
Maintainer: Thong Pham <thongphamthe@gmail.com>
Date: 2024-03-28
License: GPL-3

The PAFit package provides a comprehensive framework to deal with growth mechanisms of tempo-
ral complex networks. In particular, it implements functions to simulate various temporal network
models, gather essential network statistics from raw input data, and use these summarized statistics
in the estimation of the attachment function Ak and node fitnesses ηi. The heavy computational
parts of the package are implemented in C++ through the use of the Rcpp package. Furthermore,
users with a multi-core machine can enjoy a hassle-free speed up through OpenMP parallelization
mechanisms implemented in the code. Apart from the main functions, the package also includes
a real-world collaboration network dataset between scientists in the field of complex networks
(coauthor.net). The main package functionalities are as follows.

Firstly, most well-known temporal network models based on the preferential attachment (PA) and
node fitness mechanisms can be easily simulated using the package. PAFit implements generate_BA
for the Barabási-Albert (BA) model, generate_ER for the growing Erdős–Rényi (ER) model, generate_BB
for the Bianconi-Barabási (BB) model and generate_fit_only for the Caldarelli model. These
functions have many customizable options, for example the number of new edges at each time-step
are tunable stochastic variables. They are actually wrappers of the more powerful generate_net
function, which simulates networks with more flexible attachment function and node fitness set-
tings.

Secondly, the function get_statistics efficiently collects all temporal network summary statis-
tics. We note that get_statistics automatically handles both directed and undirected networks.
It returns a list containing many statistics that can be used to characterize the network growth pro-
cess. Notable fields are m_tk containing the number of new edges that connect to a degree-k node
at time-step t, and node_degree containing the degree sequence, i.e., the degree of each node at
each time-step.

4 PAFit-package

The most important functionality of the package is estimating the attachment function and node
fitnesses of a temporal network. This is implemented through various methods. There are three us-
ages: estimation of the attachment function in isolation, estimation of the node fitnesses in isolation,
and the joint estimation of the attachment function and node fitnesses.

• The functions for estimating the attachment function in isolation are: Jeong for Jeong’s
method (Ref. 1), Newman for Newman’s method (Ref. 2), and only_A_estimate for the
PAFit method (Ref. 3).

• For estimation of node fitnesses in isolation, only_F_estimate implements a variant of the
PAFit method (Ref. 4).

• For the joint estimation of the attachment function and node fitnesses, we implement the full
version of the PAFit method in joint_estimate (Ref. 4).

• For estimating the nonparametric attachment function from a single snapshot, use PAFit_oneshot
(Ref. 6).

Excluding PAFit_oneshot, the input of the remaining functions is the output object of the function
get_statistics. The output object of these functions contains the estimation results as well as
some additional information pertaining to the estimation process. The estimated attachment func-
tion and/or node fitnesses can be plotted by using the plot command directly on this output object.
This will visualize not only the estimated results but also the remaining uncertainties when possible.

Author(s)

Thong Pham <thongphamthe@gmail.com>, Paul Sheridan, and Hidetoshi Shimodaira.

References

1. Jeong, H., Néda, Z. & Barabási, A. (2003). Measuring Preferential Attachment in Evolving
Networks. Europhysics Letters 61(61):567-572. (doi:10.1209/epl/i2003001669).

2. Newman, M. (2001). Clustering and Preferential Attachment in Growing Networks. Physical
Review E 64(2):025102. (doi:10.1103/PhysRevE.64.025102).

3. Pham, T., Sheridan, P. & Shimodaira, H. (2015). PAFit: A Statistical Method for Measuring Pref-
erential Attachment in Temporal Complex Networks. PLOS ONE 10(9):e0137796. (doi:10.1371/
journal.pone.0137796).

4. Pham, T., Sheridan, P. & Shimodaira, H. (2016). Joint Estimation of Preferential Attachment
and Node Fitness in Growing Complex Networks. Scientific Reports 6, Article number: 32558.
(doi:10.1038/srep32558).

5. Pham, T., Sheridan, P. & Shimodaira, H. (2020). PAFit: An R Package for the Non-Parametric
Estimation of Preferential Attachment and Node Fitness in Temporal Complex Networks. Journal
of Statistical Software 92 (3). (doi:10.18637/jss.v092.i03)

6. Pham, T., Sheridan, P. & Shimodaira, H. (2021). Non-parametric estimation of the preferential
attachment function from one network snapshot. Journal of Complex Networks 9(5): cnab024.
(doi:10.1093/comnet/cnab024).

See Also

See the accompanying vignette for a tutorial.

See also the GitHub page.

https://doi.org/10.1209/epl/i2003-00166-9
https://doi.org/10.1103/PhysRevE.64.025102
https://doi.org/10.1371/journal.pone.0137796
https://doi.org/10.1371/journal.pone.0137796
https://doi.org/10.1038/srep32558
https://doi.org/10.18637/jss.v092.i03
https://doi.org/10.1093/comnet/cnab024
https://github.com/thongphamthe/PAFit

as.PAFit_net 5

Examples

Not run:
Jointly estimate the attachment function and node fitnesses
library("PAFit")
set.seed(1)
a Bianconi-Barabasi network
size of initial network = 100
number of new nodes at each time-step = 100
Ak = k; inverse variance of distribution of fitness: s = 10
net <- generate_BB(N = 1000 , m = 10 ,

num_seed = 100 , multiple_node = 100,
s = 10)

net_stats <- get_statistics(net)

#Joint estimation of attachment function Ak and node fitness
result <- joint_estimate(net, net_stats)

summary(result)

plot the estimated attachment function
plot(result, net_stats)

true function
true_A <- pmax(result$estimate_result$center_k,1)
lines(result$estimate_result$center_k, true_A, col = "red") # true line
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")
#plot distribution of estimated node fitnesses
plot(result, net_stats, plot = "f")

#plot the estimated node fitnesses and true node fitnesses
plot(result, net_stats, true = net$fitness, plot = "true_f")

End(Not run)

as.PAFit_net Converting an edgelist matrix to a PAFit_net object

Description

This function converts a graph stored in an edgelist matrix format to a PAFit_net object.

Usage

as.PAFit_net(graph, type = "directed", PA = NULL, fitness = NULL)

Arguments

graph An edgelist matrix. Each row is assumed to be of the form (from_node_id
to_node_id time_stamp). For a directed network ,from_node_id is the id of

6 Coauthorship network of scientists in the field of complex networks

the source node and to_node_id is the id of the destination node. For an undi-
rected network, the order is ignored and from_node_id and to_node_id are the
ids of two ends. time_stamp is the arrival time of the edge. from_node_id and
to_node_id are assumed to be integers that are at least 0. The whole ids need
not to be contiguous.
To register a new node i at time t without any edge, add a row with format (i -1
t). This works for both undirected and directed networks.
time_stamp can be either numeric or string. The value of a time-stamp can be
arbitrary, but we assume that a smaller time_stamp (regarded so by the sort
function in R) represents an earlier arrival time. Examples of time-stamps that
satisfy this assumption are the integer 0:T, the string format ‘yyyy-mm-dd’, and
the POSIX time.

type String. Indicates whether the network is "directed" or "undirected".

PA Numeric vector. Contains the PA function. Default value is NULL.

fitness Numeric vector. Contains node fitnesses. Default value is NULL.

Value

An object of class PAFit_net

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

library("PAFit")
a network from Bianconi-Barabasi model
net <- generate_BB(N = 50 , m = 10 , s = 10)
as.PAFit_net(net$graph)

Coauthorship network of scientists in the field of complex networks

A collaboration network between authors of papers in the field of com-
plex networks with article time-stamps

Description

The dataset is collaboration network of authors of network science articles with article time-stamps.
An edge between two authors represents an article in common. Time stamps denote article publi-
cation dates. The network without time-stamps was compiled by Mark Newman in May 2006 from
the bibliographies of two review articles on networks, M. E. J. Newman, SIAM Review 45, 167-256
(2003) and S. Boccaletti et al., Physics Reports 424, 175-308 (2006), with a few additional refer-
ences added by hand. Paul Sheridan independently supplemented the network with time-stamps
and some basic metadata in June 2015. The network is undirected with monthly resolution, and
contains no duplicated edges. coauthor.net contains the network. coauthor.truetime contains
the real times of processed time-stamps. Finally coauthor.author_id contains author names.

from_igraph 7

Reference: M. E. J. Newman, Finding community structure in networks using the eigenvectors of
matrices, Preprint physics/0605087 (2006).

Usage

data(ComplexNetCoauthor)

Format

coauthor.net is a matrix with 2849 rows and 3 columns. Each row is an edge with the format
(author id 1, author id 2, time_stamp). coauthor.truetime is a two-column matrix whose each
row is (time_stamp, real time). coauthor.author_id is a two-column matrix whose each row is
(author id, author name).

Source

https://www.paulsheridan.net/files/collabnet.zip

from_igraph Convert an igraph object to a PAFit_net object

Description

This function converts an igraph object (of package igraph) to a PAFit_net object.

Usage

from_igraph(net)

Arguments

net An object of class igraph.

Value

The function returns a PAFit_net object.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

library("PAFit")
a network from Bianconi-Barabasi model
net <- generate_BB(N = 50 , m = 10 , s = 10)
igraph_graph <- to_igraph(net)
back <- from_igraph(igraph_graph)

8 generate_BA

from_networkDynamic Convert a networkDynamic object to a PAFit_net object

Description

This function converts a networkDynamic object (of package networkDynamic) to a PAFit_net
object.

Usage

from_networkDynamic(net)

Arguments

net An object of class networkDynamic.

Value

The function returns a PAFit_net object.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

library("PAFit")
a network from Bianconi-Barabasi model
net <- generate_BB(N = 50 , m = 10 , s = 10)
nD_graph <- to_networkDynamic(net)
back <- from_networkDynamic(nD_graph)

generate_BA Simulating networks from the generalized Barabasi-Albert model

Description

This function generates networks from the generalized Barabási-Albert model. In this model, the
preferential attachment function is power-law, i.e. Ak = kα, and node fitnesses are all equal to 1.
It is a wrapper of the more powerful function generate_net.

Usage

generate_BA(N = 1000,
num_seed = 2 ,
multiple_node = 1 ,
m = 1 ,
alpha = 1)

generate_BA 9

Arguments

N Integer. Total number of nodes in the network (including the nodes in the seed
graph). Default value is 1000.

num_seed Integer. The number of nodes of the seed graph (the initial state of the network).
The seed graph is a cycle. Default value is 2.

multiple_node Positive integer. The number of new nodes at each time-step. Default value is 1.

m Positive integer. The number of edges of each new node. Default value is 1.

alpha Numeric. This is the attachment exponent in the attachment function Ak = kα.

Value

The output is a PAFit_net object, which is a List contains the following four fields:

graph a three-column matrix, where each row contains information of one edge, in
the form of (from_id, to_id, time_stamp). from_id is the id of the source,
to_id is the id of the destination.

type a string indicates whether the network is "directed" or "undirected".

PA a numeric vector contains the true PA function.

fitness fitness values of nodes in the network. The fitnesses are all equal to 1.

Author(s)

Thong Pham <thongphamthe@gmail.com>

References

1. Albert, R. & Barabási, A. (1999). Emergence of scaling in random networks. Science, 286,509–512
(https://www.science.org/doi/10.1126/science.286.5439.509).

See Also

For subsequent estimation procedures, see get_statistics.

For other functions to generate networks, see generate_net, generate_ER, generate_BB and
generate_fit_only.

Examples

library("PAFit")
generate a network from the BA model with alpha = 1, N = 100, m = 1
net <- generate_BA(N = 100)
str(net)
plot(net)

https://www.science.org/doi/10.1126/science.286.5439.509

10 generate_BB

generate_BB Simulating networks from the Bianconi-Barabasi model

Description

This function generates networks from the Bianconi-Barabási model. It is a ‘preferential attachment
with fitness’ model. In this model, the preferential attachment function is linear, i.e. Ak = k, and
node fitnesses are sampled from some probability distribution.

Usage

generate_BB(N = 1000 ,
num_seed = 2 ,
multiple_node = 1 ,
m = 1 ,
mode_f = "gamma",
s = 10)

Arguments

The parameters can be divided into two groups.

The first group specifies basic properties of the network:

N Integer. Total number of nodes in the network (including the nodes in the seed
graph). Default value is 1000.

num_seed Integer. The number of nodes of the seed graph (the initial state of the network).
The seed graph is a cycle. Default value is 2.

multiple_node Positive integer. The number of new nodes at each time-step. Default value is 1.

m Positive integer. The number of edges of each new node. Default value is 1.

The final group of parameters specifies the distribution from which node fitnesses are generated:

mode_f String. Possible values:"gamma", "log_normal" or "power_law". This param-
eter indicates the true distribution for node fitness. "gamma" = gamma distri-
bution, "log_normal" = log-normal distribution. "power_law" = power-law
(pareto) distribution. Default value is "gamma".

s Non-negative numeric. The inverse variance parameter. The mean of the distri-
bution is kept at 1 and the variance is 1/s (since node fitnesses are only mean-
ingful up to scale). This is achieved by setting shape and rate parameters of the
Gamma distribution to s; setting mean and standard deviation in log-scale of
the log-normal distribution to −1/2 ∗ log(1/s + 1) and (log(1/s + 1))0.5; and
setting shape and scale parameters of the pareto distribution to (s + 1)0.5 + 1
and (s+ 1)0.5/((s+ 1)0.5 + 1). If s is 0, all node fitnesses η are fixed at 1 (i.e.,
Barabási-Albert model). The default value is 10.

generate_ER 11

Value

The output is a PAFit_net object, which is a List contains the following four fields:

graph a three-column matrix, where each row contains information of one edge, in
the form of (from_id, to_id, time_stamp). from_id is the id of the source,
to_id is the id of the destination.

type a string indicates whether the network is "directed" or "undirected".

PA a numeric vector contains the true PA function.

fitness fitness values of nodes in the network. The name of each value is the ID of the
node.

Author(s)

Thong Pham <thongphamthe@gmail.com>

References

1. Bianconni, G. & Barabási, A. (2001). Competition and multiscaling in evolving networks.
Europhys. Lett., 54, 436 (doi:10.1209/epl/i2001002606).

See Also

For subsequent estimation procedures, see get_statistics.

For other functions to generate networks, see generate_net, generate_BA, generate_ER and
generate_fit_only.

Examples

library("PAFit")
generate a network from the BB model with alpha = 1, N = 100, m = 1
The inverse variance of the Gamma distribution of node fitnesses is s = 10
net <- generate_BB(N = 100,m = 1,mode = 1, s = 10)
str(net)
plot(net)

generate_ER Simulating networks from the Erdos-Renyi model

Description

This function generates networks from the Erdős–Rényi model. In this model, the preferential
attachment function is a constant function, i.e. Ak = 1, and node fitnesses are all equal to 1. It is a
wrapper of the more powerful function generate_net.

https://doi.org/10.1209/epl/i2001-00260-6

12 generate_ER

Usage

generate_ER(N = 1000,
num_seed = 2 ,
multiple_node = 1 ,
m = 1)

Arguments

N Integer. Total number of nodes in the network (including the nodes in the seed
graph). Default value is 1000.

num_seed Integer. The number of nodes of the seed graph (the initial state of the network).
The seed graph is a cycle. Default value is 2.

multiple_node Positive integer. The number of new nodes at each time-step. Default value is 1.

m Positive integer. The number of edges of each new node. Default value is 1.

Value

The output is a PAFit_net object, which is a List contains the following four fields:

graph a three-column matrix, where each row contains information of one edge, in
the form of (from_id, to_id, time_stamp). from_id is the id of the source,
to_id is the id of the destination.

type a string indicates whether the network is "directed" or "undirected".

PA a numeric vector contains the true PA function.

fitness fitness values of nodes in the network. The fitnesses are all equal to 1.

Author(s)

Thong Pham <thongphamthe@gmail.com>

References

1. Erdös P. & Rényi A.. On random graphs. Publicationes Mathematicae Debrecen. 1959;6:290–297
(https://snap.stanford.edu/class/cs224w-readings/erdos59random.pdf).

See Also

For subsequent estimation procedures, see get_statistics.

For other functions to generate networks, see generate_net, generate_BA, generate_BB and
generate_fit_only.

Examples

library("PAFit")
generate a network from the ER model with N = 1000 nodes
net <- generate_ER(N = 1000)
str(net)
plot(net)

https://snap.stanford.edu/class/cs224w-readings/erdos59random.pdf

generate_fit_only 13

generate_fit_only Simulating networks from the Caldarelli model

Description

This function generates networks from the Caldarelli model. In this model, the preferential attach-
ment function is constant, i.e. Ak = 1, and node fitnesses are sampled from some probability
distribution.

Usage

generate_fit_only(N = 1000 ,
num_seed = 2 ,
multiple_node = 1 ,
m = 1 ,
mode_f = "gamma",
s = 10)

Arguments

The parameters can be divided into two groups.

The first group specifies basic properties of the network:

N Integer. Total number of nodes in the network (including the nodes in the seed
graph). Default value is 1000.

num_seed Integer. The number of nodes of the seed graph (the initial state of the network).
The seed graph is a cycle. Default value is 2.

multiple_node Positive integer. The number of new nodes at each time-step. Default value is 1.

m Positive integer. The number of edges of each new node. Default value is 1.

The final group of parameters specifies the distribution from which node fitnesses are generated:

mode_f String. Possible values:"gamma", "log_normal" or "power_law". This param-
eter indicates the true distribution for node fitness. "gamma" = gamma distri-
bution, "log_normal" = log-normal distribution. "power_law" = power-law
(pareto) distribution. Default value is "gamma".

s Non-negative numeric. The inverse variance parameter. The mean of the distri-
bution is kept at 1 and the variance is 1/s (since node fitnesses are only mean-
ingful up to scale). This is achieved by setting shape and rate parameters of the
Gamma distribution to s; setting mean and standard deviation in log-scale of
the log-normal distribution to −1/2 ∗ log(1/s + 1) and (log(1/s + 1))0.5; and
setting shape and scale parameters of the pareto distribution to (s + 1)0.5 + 1
and (s+ 1)0.5/((s+ 1)0.5 + 1). If s is 0, all node fitnesses η are fixed at 1 (i.e.,
Barabási-Albert model). The default value is 10.

14 generate_net

Value

The output is a PAFit_net object, which is a List contains the following four fields:

graph a three-column matrix, where each row contains information of one edge, in
the form of (from_id, to_id, time_stamp). from_id is the id of the source,
to_id is the id of the destination.

type a string indicates whether the network is "directed" or "undirected".

PA a numeric vector contains the true PA function.

fitness fitness values of nodes in the network. The name of each value is the ID of the
node.

Author(s)

Thong Pham <thongphamthe@gmail.com>

References

1. Caldarelli, G., Capocci, A. , De Los Rios, P. & Muñoz, M.A. (2002). Scale-Free Networks from
Varying Vertex Intrinsic Fitness. Phys. Rev. Lett., 89, 258702 (doi:10.1103/PhysRevLett.89.258702).

See Also

For subsequent estimation procedures, see get_statistics.

For other functions to generate networks, see generate_net, generate_BA, generate_ER and
generate_BB.

Examples

library("PAFit")
generate a network from the Caldarelli model with alpha = 1, N = 100, m = 1
the inverse variance of distribution of node fitnesses is s = 10
net <- generate_fit_only(N = 100,m = 1,mode = 1, s = 10)
str(net)
plot(net)

generate_net Simulating networks from preferential attachment and fitness mecha-
nisms

Description

This function generates networks from the General Temporal model, a generative temporal network
model that includes many well-known models such as the Erdős–Rényi model, the Barabási-Albert
model or the Bianconi-Barabási model as special cases. This function also includes some flexible
mechanisms to vary the number of new nodes and new edges at each time-step in order to generate
realistic networks.

https://doi.org/10.1103/PhysRevLett.89.258702

generate_net 15

Usage

generate_net (N = 1000 ,
num_seed = 2 ,
multiple_node = 1 ,
specific_start = NULL ,
m = 1 ,
prob_m = FALSE ,
increase = FALSE ,
log = FALSE ,
no_new_node_step = 0 ,
m_no_new_node_step = m ,
custom_PA = NULL ,
mode = 1 ,
alpha = 1 ,
beta = 2 ,
sat_at = 100 ,
offset = 1 ,
mode_f = "gamma",
s = 10)

Arguments

The parameters can be divided into four groups.

The first group specifies basic properties of the network:

N Integer. Total number of nodes in the network (including the nodes in the seed
graph). Default value is 1000.

num_seed Integer. The number of nodes of the seed graph (the initial state of the network).
The seed graph is a cycle. Default value is 2.

multiple_node Positive integer. The number of new nodes at each time-step. Default value is 1.

specific_start Positive Integer. If specific_start is specified, then all the time-steps from
time-step 1 to specific_start are grouped to become the initial time-step in
the final output. This option is usefull when we want to create a network with a
large initial network that follows a scale-free degree distribution. Default value
is NULL.

The second group specifies the number of new edges at each time-step:

m Positive integer. The number of edges of each new node. Default value is 1.

prob_m Logical. Indicates whether we fix the number of edges of each new node as a
constant, or let it follows a Poisson distribution. If prob_m == TRUE, the number
of edges of each new node follows a Poisson distribution. The mean of this
distribution depends on the value of increase and log. Default value is FALSE.

increase Logical. Indicates whether we increase the mean of the Poisson distribution over
time. If increase == FALSE, the mean is fixed at m. If increase == TRUE, the
way the mean increases depends on the value of log. Default value is FALSE.

16 generate_net

log Logical. Indicates how to increase the mean of the Poisson distribution. If log
== TRUE, the mean increases logarithmically with the number of current nodes.
If log == FALSE, the mean increases linearly with the number of current nodes.
Default value is FALSE.

no_new_node_step

Non-negative integer. The number of time-steps in which no new node is added,
while new edges are added between existing nodes. Default value is 0, i.e., new
nodes are always added at each time-step.

m_no_new_node_step

Positive integer. The number of new edges in the no-new-node steps. Default
value is equal to m. Note that the number of new edges in the no-new-node steps
is not effected by the parameters increase or prob_m; this number is always
the constant specified by m_no_new_node_step.

The third group of parameters specifies the preferential attachment function:

custom_PA Numeric vector. This is the user-input PA function: A0, A1, ..., AK . If custom_PA
is specified, then mode is ignored, and we grow the network using the PA func-
tion custom_PA. Degrees greater than K will have attachment value Ak. Default
value is NULL.

mode Integer. Indicates the parametric attachment function to be used in generating
the network. If mode == 1, the attachment function is Ak = kα. If mode == 2,
the attachment function is Ak = min(k, sat.at)α. If mode == 3, the attachment
function is Ak = αlog(k)β . Default value is 1.

alpha Numeric. If mode == 1, this is the attachment exponent in the attachment func-
tion Ak = kα. If mode == 2, this is the attachment exponenet in the attachment
function Ak = min(k, sat.at)α. If mode == 3, this is the α in the attachment
function Ak = αlog(k)β + 1.

beta Numeric. This is the beta in the attachment function Ak = αlog(k)β + 1.

sat_at Integer. This is the saturation position sat.at in the attachment function Ak =
min(k, sat.at)α.

offset Numeric. The attachment value of degree 0. Default value is 1.

The final group of parameters specifies the distribution from which node fitnesses are generated:

mode_f String. Possible values:"gamma", "log_normal" or "power_law". This param-
eter indicates the true distribution for node fitness. "gamma" = gamma distri-
bution, "log_normal" = log-normal distribution. "power_law" = power-law
(pareto) distribution. Default value is "gamma".

s Non-negative numeric. The inverse variance parameter. The mean of the distri-
bution is kept at 1 and the variance is 1/s (since node fitnesses are only mean-
ingful up to scale). This is achieved by setting shape and rate parameters of the
Gamma distribution to s; setting mean and standard deviation in log-scale of
the log-normal distribution to −1/2 ∗ log(1/s + 1) and (log(1/s + 1))0.5; and
setting shape and scale parameters of the pareto distribution to (s + 1)0.5 + 1
and (s+ 1)0.5/((s+ 1)0.5 + 1). If s is 0, all node fitnesses η are fixed at 1 (i.e.,
Barabási-Albert model). The default value is 10.

generate_simulated_data_from_estimated_model 17

Value

The output is a PAFit_net object, which is a List contains the following four fields:

graph a three-column matrix, where each row contains information of one edge, in
the form of (from_id, to_id, time_stamp). from_id is the id of the source,
to_id is the id of the destination.

type a string indicates whether the network is "directed" or "undirected".

PA a numeric vector contains the true PA function.

fitness fitness values of nodes in the network. The name of each value is the ID of the
node.

Author(s)

Thong Pham <thongphamthe@gmail.com>

See Also

For subsequent estimation procedures, see get_statistics.

For simpler functions to generate networks from well-known models, see generate_BA, generate_ER,
generate_BB and generate_fit_only.

Examples

library("PAFit")
#Generate a network from the original BA model with alpha = 1, N = 100, m = 1
net <- generate_net(N = 100,m = 1,mode = 1, alpha = 1, s = 0)
str(net)
plot(net)

generate_simulated_data_from_estimated_model

Generating simulated data from a fitted model

Description

This function generates simulated networks from a fitted model and performs estimations on these
simulated networks with the same setting used in the original estimation. Each simulated network
is generated using parameters of the fitted model, while keeping other aspects of the growth process
as faithfully as possible to the original observed network.

Usage

generate_simulated_data_from_estimated_model(net_object, net_stat, result, M = 5)

18 generate_simulated_data_from_estimated_model

Arguments

net_object an object of class PAFit_net that contains the original network.

net_stat An object of class PAFit_data which contains summarized statistics of the orig-
inal network. This object is created by the function get_statistics.

result An object of class Full_PAFit_result which contains the fitted model ob-
tained by applying the function joint_estimate.

M integer. The number of simulated networks. Default value is 5.

Value

Outputs a Simulated_Data_From_Fitted_Model object, which is a list containing the following
fields:

• graph_list: a list containing M simulated graphs.

• stats_list: a list containing M objects of class PAFit_data, which are the results of applying
get_statistics on the simulated graphs.

• result_list: a list containing M objects of class Full_PAFit_result, which are the results
of applying joint_estimate on the simulated graphs.

Author(s)

Thong Pham <thongphamthe@gmail.com>

References

1. Pham, T., Sheridan, P. & Shimodaira, H. (2015). PAFit: A Statistical Method for Measuring Pref-
erential Attachment in Temporal Complex Networks. PLoS ONE 10(9): e0137796. (doi:10.1371/
journal.pone.0137796).

2. Pham, T., Sheridan, P. & Shimodaira, H. (2016). Joint Estimation of Preferential Attachment
and Node Fitness in Growing Complex Networks. Scientific Reports 6, Article number: 32558.
(doi:10.1038/srep32558).

3. Pham, T., Sheridan, P. & Shimodaira, H. (2020). PAFit: An R Package for the Non-Parametric
Estimation of Preferential Attachment and Node Fitness in Temporal Complex Networks. Journal
of Statistical Software 92 (3). (doi:10.18637/jss.v092.i03).

4. Inoue, M., Pham, T. & Shimodaira, H. (2020). Joint Estimation of Non-parametric Transitivity
and Preferential Attachment Functions in Scientific Co-authorship Networks. Journal of Informet-
rics 14(3). (doi:10.1016/j.joi.2020.101042).

See Also

get_statistics, joint_estimate, plot_contribution

https://doi.org/10.1371/journal.pone.0137796
https://doi.org/10.1371/journal.pone.0137796
https://doi.org/10.1038/srep32558
https://doi.org/10.18637/jss.v092.i03
https://doi.org/10.1016/j.joi.2020.101042

get_statistics 19

Examples

Not run:

library("PAFit")
net_object <- generate_net(N = 500, m = 10, s = 10, alpha = 0.5)
net_stat <- get_statistics(net_object)
result <- joint_estimate(net_object, net_stat)
simulated_data <- generate_simulated_data_from_estimated_model(net_object, net_stat, result)
plot_contribution(simulated_data, result, which_plot = "PA")
plot_contribution(simulated_data, result, which_plot = "fit")

End(Not run)

get_statistics Getting summarized statistics from input data

Description

The function summarizes input data into sufficient statistics for estimating the attachment function
and node fitness, together with additional information about the data, such as total number of nodes,
number of time-steps, maximum degree, and the final degree of the network, etc. . It also provides
mechanisms to automatically deal with very large datasets by binning the degree, setting a degree
threshold, or grouping time-steps.

Usage

get_statistics(net_object, only_PA = FALSE ,
only_true_deg_matrix = FALSE ,
binning = TRUE , g = 50 ,
deg_threshold = 0 ,
compress_mode = 0 , compress_ratio = 0.5 ,
custom_time = NULL)

Arguments

The parameters can be divided into four groups. The first group specifies input data and how the
data will be summarized:

net_object An object of class PAFit_net. You can use the function as.PAFit_net to con-
vert from an edgelist matrix, function from_igraph to convert from an igraph
object, function from_networkDynamic to convert from a networkDynamic ob-
ject, and function graph_from_file to read from a file.

only_PA Logical. Indicates whether only the statistics for estimating Ak are summarized.
if TRUE, the statistics for estimating ηi are NOT collected. This will save memory
at the cost of unable to estimate node fitness). Default value is FALSE.

20 get_statistics

only_true_deg_matrix

Logical. Return only the true degree matrix (without binning), and no other
statistics is returned. The result cannot be used in PAFit function to estimate PA
or fitness. The motivation for this option is that sometimes we only want to get
a degree matrix that summarizes the growth process of a very big network for
plotting etc. Default value is FALSE.

Second group of parameters specifies how to bin the degrees:

binning Logical. Indicates whether the degree should be binned together. Default value
is TRUE.

g Positive integer. Number of bins. Should be at least 3. Default value is 50.

Third group contains a single parameter specifying how to reduce the number of node fitnesses:

deg_threshold Integer. We only estimate the fitnesses of nodes whose number of new edges
acquired is at least deg_threshold. The fitnesses of all other nodes are fixed at
1. Default value is 0.

Last group of parameters specifies how to group the time-stamps:

compress_mode Integer. Indicates whether the timeline should be compressed. The value of
CompressMode:
0: No compression
1: Compressed by using a subset of time-steps. The time stamps in this subset
are equally spaced. The size of this subset is CompressRatio times the size of
the set of all time stamps.
2: Compressed by only starting from the first time-step when CompressRatio∗
100 percentages of the total number of edges (in the final state of the network)
had already been added to the network.
3: This mode offers the most flexibility, but requires user to supply the time
stamps in CustomTime. Only time stamps in this CustomTime will be used. This
mode can be used, for example, when investigating the change of the attachment
function or node fitness in different time intervals.
Default value is 0, i.e. no compression.

compress_ratio Numeric. Indicates how much we should compress if CompressMode is 1 or 2.
Default value is 0.5.

custom_time Vector. Custom time stamps. This vector is a subset of the vector that contains
all time-stamps. Only effective if CompressMode == 3. In that case, only these
time stamps are used.

Value

An object of class PAFit_data, which is a list. Some important fields are:

offset_tk A matrix where the (t,k+1) element is the number of nodes with degree k at
time t, counting among all the nodes whose number of new edges acquired is
less than deg_thresh

n_tk A matrix where the (t,k+1) element is the number of nodes with degree k at
time t

get_statistics 21

m_tk A matrix where the (t,k+1) element is the number of new edges connect to a
degree-k node at time t

sum_m_k A vector where the (k+1)-th element is the total number of edges that linked to
a degree k node, counting over all time steps

node_degree A matrix recording the degree of all nodes (that satisfy degree_threshold con-
dition) at each time step

m_t A vector where the t-th element is the number of new edges at time t

z_j A vector where the j-th element is the total number of edges that linked to node
j

N Numeric. The number of nodes in the network
T Numeric. The number of time steps
deg_max Numeric. The maximum degree in the final network
node_id A vector contains the id of all nodes
final_deg A vector contains the final degree of all nodes (including those that do not satisfy

the degree_threshold condition)
deg_thresh Integer. The specified degree threshold.
f_position Numeric vector. The index in the node_id vector of the nodes we want to esti-

mate (i.e. nodes whose number of new edges acquired is at least deg_thresh)
start_deg Integer. The specified degree at which we start binning.
begin_deg Numeric vector contains the beginning degree of each bin
end_deg Numeric vector contains the ending degree of each bin
interval_length

Numeric vector contains the length of each bin.
binning Logical. Indicates whether binning was applied or not.
g Integer. Number of bins
time_compress_mode

Integer. The mode of time compression.
t_compressed Integer. The number of time stamps actually used
compressed_unique_time

The time stamps that are actually used
compress_ratio Numeric.
custom_time Vector. The time stamps specified by user.

Author(s)

Thong Pham <thongphamthe@gmail.com>

See Also

For creating the needed input for this function (a PAFit_net object), see as.PAFit_net, from_igraph,
from_networkDynamic, and graph_from_file.

For the next step, see Newman, Jeong or only_A_estimate for estimating the attachment function
in isolation, only_F_estimate for estimating node fitnesses in isolation, and joint_estimate for
joint estimation of the attachment function and node fitnesses.

22 graph_from_file

Examples

library("PAFit")
net <- generate_BA(N = 100 , m = 1)
net_stats <- get_statistics(net)
summary(net_stats)

graph_from_file Read file to a PAFit_net object

Description

This function reads an input file to a PAFit_net object. Accepted formats are the edgelist format
or the gml format.

Usage

graph_from_file(file_name, format = "edgelist", type = "directed")

Arguments

file_name A string indicates the file name.

format String. Possible values are "edgelist" and "gml".
If format is "edgelist", we assume the following edgelist matrix format. Each
row is assumed to be of the form (from_node_id to_node_id time_stamp).
from_node_id is the id of the source node. to_node_id is the id of the des-
tination node. time_stamp is the arrival time of the edge. from_node_id and
to_node_id are assumed to be integers that are at least 0. They need not to be
contiguous.
To register a new node i at time t without any edge, add a row with format (i -1
t). This works for both undirected and directed networks.
time_stamp can be either numeric or string. The value of a time-stamp can be
arbitrary, but we assume that a smaller time_stamp (regarded so by the sort
function in R) represents an earlier arrival time. Examples of time-stamps that
satisfy this assumption are the integer 0:T, the string format ‘yyyy-mm-dd’, and
the POSIX time.
If format is "gml", there must be a binary field directed indicating the type
of the network (0: undirected, 1: directed). The required fields for an edge
are: source, target, and time. source and target are the ID of the source
node and the target node, respectively. time is the time-stamp of the edge. The
required fields for a node are: id, isolated (binary) and time. The binary field
isolated indicates whether this node is an isolated node when it enters the
system or not. If isolated is 1, then time must contain the node’s appearance
time. If isolated is 0, then we can automatically infer the node’s appearance
time from its edges, so the field time in this case can be NULL. The assumptions
on node IDs and the format of time-stamps are the same as in the case when
format = "edgelist". See graph_to_file to see detail on the format of the
gml file this package outputs.

graph_to_file 23

type String. Indicates whether the network is "directed" or "undirected". This
option is ignored if format is "gml", since the information is assumed to be
contained in the gml file.

Value

An object of class PAFit_net containing the network.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

library("PAFit")
a network from Bianconi-Barabasi model
net <- generate_BB(N = 50 , m = 10 , s = 10)

#graph_to_file(net, file_name = "test.gml", format = "gml")
#reread <- graph_from_file(file_name = "test.gml", format = "gml")

graph_to_file Write the graph in a PAFit_net object to file

Description

This function writes a graph in a PAFit_net object to an output file. Accepted file formats are the
edgelist format or the gml format.

Usage

graph_to_file(net_object, file_name, format = "edgelist")

Arguments

net_object An object of class PAFit_net.

file_name A string indicates the file name.

format String. Possible values are "edgelist" and "gml".
If format = "edgelist", we just output the edgelist matrix contained in the
PAFit_net object as it is.
If format = "gml", here is the specification of the gml file. There is a binary
field directed indicating the type of the network (0: undirected, 1: directed).
There are three atrributes for an edge: source, target, and time. There are
three atrributes for a node: id, isolated (binary) and time. The atrribute time
is NULL if the attribute isolated is 0 (since this is not an isolated node, we do
not need to record its first apperance time). On the other hand, time is the node’s
appearance time if attribute isolated is 1.

24 Jeong

Value

The function writes directly to the output file.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

library("PAFit")
a network from Bianconi-Barabasi model
net <- generate_BB(N = 50 , m = 10 , s = 10)
#graph_to_file(net, file_name = "test.gml", format = "gml")

Jeong Jeong’s method for estimating the preferential attachment function

Description

This function estimates the preferential attachment function by Jeong’s method.

Usage

Jeong(net_object ,
net_stat = get_statistics(net_object) ,
T_0_start = 0 ,
T_0_end = round(net_stat$T * 0.75) ,
T_1_start = T_0_end + 1 ,
T_1_end = net_stat$T ,
interpolate = FALSE)

Arguments

net_object an object of class PAFit_net that contains the network.
net_stat An object of class PAFit_data which contains summerized statistics needed in

estimation. This object is created by the function get_statistics. Default
value is get_statistics(net_object).

T_0_start Positive integer. The starting time-step of the T_0_interval. Default value is
0.

T_0_end Positive integer. The ending time-step of T_0_interval. Default value is
round(net_stat$T * 0.75).

T_1_start Positive integer. The starting time-step of the T_1_interval. Default value is
T_0_end + 1.

T_1_end Positive integer. The ending time-step of T_1_interval. Default value is
net_stat$T.

interpolate Logical. If TRUE then all the gaps in the estimated PA function are interpolated
by linear interpolating in logarithm scale. Default value is FALSE.

Jeong 25

Value

Outputs an PA_result object which contains the estimated attachment function. In particular, it
contains the following field:

• k and A: a degree vector and the estimated PA function.

• center_k and theta: when we perform binning, these are the centers of the bins and the
estimated PA values for those bins.

• g: the number of bins used.

• alpha and ci: alpha is the estimated attachment exponenet α (when assume Ak = kα), while
ci is the confidence interval.

• loglinear_fit: this is the fitting result when we estimate α.

Author(s)

Thong Pham <thongphamthe@gmail.com>

References

1. Jeong, H., Néda, Z. & Barabási, A. . Measuring preferential attachment in evolving networks.
Europhysics Letters. 2003;61(61):567–572. (doi:10.1209/epl/i2003001669).

See Also

See get_statistics for how to create summerized statistics needed in this function.

See Newman and only_A_estimate for other methods to estimate the attachment function in isola-
tion.

Examples

library("PAFit")
net <- generate_net(N = 1000 , m = 1 , mode = 1 , alpha = 1 , s = 0)
net_stats <- get_statistics(net)
result <- Jeong(net, net_stats)
true function
true_A <- result$center_k
#plot the estimated attachment function
plot(result , net_stats)
lines(result$center_k, true_A, col = "red") # true line
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")

https://doi.org/10.1209/epl/i2003-00166-9

26 joint_estimate

joint_estimate Joint inference of attachment function and node fitnesses

Description

This function jointly estimates the attachment function Ak and node fitnesses ηi. It first performs
a cross-validation to select the optimal parameters r and s, then estimates Ak and etai using that
optimal pair with the full data (Ref. 2).

Usage

joint_estimate(net_object ,
net_stat = get_statistics(net_object),
p = 0.75 ,
stop_cond = 10^-8 ,
mode_reg_A = 0 ,
...)

Arguments

net_object an object of class PAFit_net that contains the network.

net_stat An object of class PAFit_data which contains summarized statistics needed in
estimation. This object is created by the function get_statistics. The default
value is get_statistics(net_object).

p Numeric. This is the ratio of the number of new edges in the learning data to
that of the full data. The data is then divided into two parts: learning data and
testing data based on p. The learning data is used to learn the node fitnesses and
the testing data is then used in cross-validation. Default value is 0.75.

stop_cond Numeric. The iterative algorithm stops when abs(h(ii)−h(ii+1))/(abs(h(ii))+
1) < stop.cond where h(ii) is the value of the objective function at iteration ii.
We recommend to choose stop.cond at most equal to 10(−numberofdigitsofh−
2), in order to ensure that when the algorithm stops, the increase in posterior
probability is less than 1% of the current posterior probability. Default is 10^-8.
This threshold is good enough for most applications.

mode_reg_A Binary. Indicates which regularization term is used for Ak:

• 0: This is the regularization term used in Ref. 1 and 2. Please refer to Eq.
(4) in the tutorial for the definition of the term. It approximately enforces
the power-law form Ak = kα. This is the default value.

• 1: Unlike the default, this regularization term exactly enforces the func-
tional form Ak = kα. Please refer to Eq. (6) in the tutorial for the defini-
tion of the term. Its main drawback is it is significantly slower to converge,
while its gain over the default one is marginal in most cases.

... Other arguments to pass to the underlying algorithm.

joint_estimate 27

Value

Outputs a Full_PAFit_result object, which is a list containing the following fields:

• cv_data: a CV_Data object which contains the cross-validation data. This is the testing data.

• cv_result: a CV_Result object which contains the cross-validation result. Normally the user
does not need to pay attention to this data.

• estimate_result: this is a PAFit_result object which contains the estimated attachment
function Ak, the estimated fitnesses ηi and their confidence intervals. In particular, the impor-
tant fields are:

– ratio: this is the selected value for the hyper-parameter r.
– shape: this is the selected value for the hyper-parameter s.
– k and A: a degree vector and the estimated PA function.
– var_A: the estimated variance of A.
– var_logA: the estimated variance of logA.
– upper_A: the upper value of the interval of two standard deviations around A.
– lower_A: the lower value of the interval of two standard deviations around A.
– center_k and theta: when we perform binning, these are the centers of the bins and

the estimated PA values for those bins. theta is similar to A but with duplicated values
removed.

– var_bin: the variance of theta. Same as var_A but with duplicated values removed.
– upper_bin: the upper value of the interval of two standard deviations around theta.

Same as upper_A but with duplicated values removed.
– lower_bin: the lower value of the interval of two standard deviations around theta.

Same as lower_A but with duplicated values removed.
– g: the number of bins used.
– alpha and ci: alpha is the estimated attachment exponent α (when assume Ak = kα),

while ci is the confidence interval.
– loglinear_fit: this is the fitting result when we estimate α.
– f: the estimated node fitnesses.
– var_f: the estimated variance of ηi.
– upper_f: the estimated upper value of the interval of two standard deviations around ηi.
– lower_f: the estimated lower value of the interval of two standard deviations around ηi.
– objective_value: values of the objective function over iterations in the final run with

the full data.
– diverge_zero: logical value indicates whether the algorithm diverged in the final run

with the full data.

• contribution: a list containing an estimate of the contributions of preferential attachment
and fitness mechanisms in the growth process of the network. The calculation adapts a quan-
tification method proposed in Section 3 of Ref. 4, which is for preferential attachment and
transitivity, to preferential attachment and fitness.

– PA_contribution: an array containing the contributions of preferential attachment at
each time-step

– fit_contribution: an array containing the contributions of the fitness mechanism at
each time-step

28 joint_estimate

– mean_PA_contrib: the average contribution of preferential attachment through the whole
growth process

– mean_fit_contrib: the average contribution of the fitness mechanism through the whole
growth process

Author(s)

Thong Pham <thongphamthe@gmail.com>

References

1. Pham, T., Sheridan, P. & Shimodaira, H. (2015). PAFit: A Statistical Method for Measuring Pref-
erential Attachment in Temporal Complex Networks. PLoS ONE 10(9): e0137796. (doi:10.1371/
journal.pone.0137796).

2. Pham, T., Sheridan, P. & Shimodaira, H. (2016). Joint Estimation of Preferential Attachment
and Node Fitness in Growing Complex Networks. Scientific Reports 6, Article number: 32558.
(doi:10.1038/srep32558).

3. Pham, T., Sheridan, P. & Shimodaira, H. (2020). PAFit: An R Package for the Non-Parametric
Estimation of Preferential Attachment and Node Fitness in Temporal Complex Networks. Journal
of Statistical Software 92 (3). (doi:10.18637/jss.v092.i03).

4. Inoue, M., Pham, T. & Shimodaira, H. (2020). Joint Estimation of Non-parametric Transitivity
and Preferential Attachment Functions in Scientific Co-authorship Networks. Journal of Informet-
rics 14(3). (doi:10.1016/j.joi.2020.101042).

See Also

See get_statistics for how to create summarized statistics needed in this function.

See Jeong, Newman and only_A_estimate for functions to estimate the attachment function in
isolation.

See only_F_estimate for a function to estimate node fitnesses in isolation.

Examples

Not run:

library("PAFit")
Example 1: a linear preferential attachment kernel, i.e., A_k = k
set.seed(1)
size of initial network = 100
number of new nodes at each time-step = 100
Ak = k; inverse variance of the distribution of node fitnesse = 5
net <- generate_BB(N = 1000 , m = 50 ,

num_seed = 100 , multiple_node = 100,
s = 5)

net_stats <- get_statistics(net)

Joint estimation of attachment function Ak and node fitness
result <- joint_estimate(net, net_stats)

https://doi.org/10.1371/journal.pone.0137796
https://doi.org/10.1371/journal.pone.0137796
https://doi.org/10.1038/srep32558
https://doi.org/10.18637/jss.v092.i03
https://doi.org/10.1016/j.joi.2020.101042

joint_estimate 29

summary(result)

plot the estimated attachment function
true_A <- pmax(result$estimate_result$center_k,1) # true function
plot(result , net_stats, max_A = max(true_A,result$estimate_result$theta))
lines(result$estimate_result$center_k, true_A, col = "red") # true line
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")

plot the estimated node fitnesses and true node fitnesses
plot(result, net_stats, true = net$fitness, plot = "true_f")

###
Example 2: a non-log-linear preferential attachment kernel
set.seed(1)
size of initial network = 100
number of new nodes at each time-step = 100
A_k = alpha* log (max(k,1))^beta + 1, with alpha = 2, and beta = 2
inverse variance of the distribution of node fitnesse = 10
net <- generate_net(N = 1000 , m = 50 ,

num_seed = 100 , multiple_node = 100,
s = 10 , mode = 3, alpha = 2, beta = 2)

net_stats <- get_statistics(net)

Joint estimation of attachment function Ak and node fitness
result <- joint_estimate(net, net_stats)

summary(result)

plot the estimated attachment function
true_A <- 2 * log(pmax(result$estimate_result$center_k,1))^2 + 1 # true function
plot(result , net_stats, max_A = max(true_A,result$estimate_result$theta))
lines(result$estimate_result$center_k, true_A, col = "red") # true line
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")

plot the estimated node fitnesses and true node fitnesses
plot(result, net_stats, true = net$fitness, plot = "true_f")
###
Example 3: another non-log-linear preferential attachment kernel
set.seed(1)
size of initial network = 100
number of new nodes at each time-step = 100
A_k = min(max(k,1),sat_at)^alpha, with alpha = 1, and sat_at = 100
inverse variance of the distribution of node fitnesse = 10
net <- generate_net(N = 1000 , m = 50 ,

num_seed = 100 , multiple_node = 100,
s = 10 , mode = 2, alpha = 1, sat_at = 100)

net_stats <- get_statistics(net)

Joint estimation of attachment function Ak and node fitness
result <- joint_estimate(net, net_stats)

summary(result)

30 Newman

plot the estimated attachment function
true_A <- pmin(pmax(result$estimate_result$center_k,1),100)^1 # true function
plot(result , net_stats, max_A = max(true_A,result$estimate_result$theta))
lines(result$estimate_result$center_k, true_A, col = "red") # true line
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")

plot the estimated node fitnesses and true node fitnesses
plot(result, net_stats, true = net$fitness, plot = "true_f")

End(Not run)

Newman Corrected Newman’s method for estimating the preferential attach-
ment function

Description

This function implements a correction proposed in [1] of the original Newman’s method in [2] to
estimate the preferential attachment function.

Usage

Newman(net_object ,
net_stat = get_statistics(net_object),
start = 1 ,
interpolate = FALSE)

Arguments

net_object an object of class PAFit_net that contains the network.

net_stat An object of class PAFit_data which contains summerized statistics needed in
estimation. This object is created by the function get_statistics. Default
value is get_statistics(net_object).

start Positive integer. The starting time from which the method is applied. Default
value is 1.

interpolate Logical. If TRUE then all the gaps in the estimated PA function are interpolated
by linear interpolating in logarithm scale. Default value is FALSE.

Value

Outputs an PA_result object which contains the estimated attachment function. In particular, it
contains the following field:

• k and A: a degree vector and the estimated PA function.

• center_k and theta: when we perform binning, these are the centers of the bins and the
estimated PA values for those bins.

• g: the number of bins used.

only_A_estimate 31

• alpha and ci: alpha is the estimated attachment exponenet α (when assume Ak = kα), while
ci is the mean plus/minus two-standard-deviation interval.

• loglinear_fit: this is the fitting result when we estimate α.

Author(s)

Thong Pham <thongphamthe@gmail.com>

References

1. Pham, T., Sheridan, P. & Shimodaira, H. (2015). PAFit: A Statistical Method for Measuring Pref-
erential Attachment in Temporal Complex Networks. PLoS ONE 10(9): e0137796. (doi:10.1371/
journal.pone.0137796).

2. Newman, M.. Clustering and preferential attachment in growing networks. Physical Review E.
2001;64(2):025102 (doi:10.1103/PhysRevE.64.025102).

See Also

See get_statistics for how to create summerized statistics needed in this function.

See Jeong, only_A_estimate for other methods to estimate the attachment function in isolation.

Examples

library("PAFit")
net <- generate_net(N = 1000 , m = 1 , mode = 1 , alpha = 1 , s = 0)
net_stats <- get_statistics(net)
result <- Newman(net, net_stats)
summary(result)
true function
true_A <- result$center_k
#plot the estimated attachment function
plot(result , net_stats)
lines(result$center_k, true_A, col = "red") # true line
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")

only_A_estimate Estimating the attachment function in isolation by PAFit method

Description

This function estimates the attachment function Ak by PAFit method. The method has a hyper-
parameter r. It first performs a cross-validation step to select the optimal parameter r for the regu-
larization of Ak, then uses that r to estimate the attachment function with the full data.

https://doi.org/10.1371/journal.pone.0137796
https://doi.org/10.1371/journal.pone.0137796
https://doi.org/10.1103/PhysRevE.64.025102

32 only_A_estimate

Usage

only_A_estimate(net_object ,
net_stat = get_statistics(net_object),
p = 0.75 ,
stop_cond = 10^-8 ,
mode_reg_A = 0 ,
MLE = FALSE ,

...)

Arguments

net_object an object of class PAFit_net that contains the network.

net_stat An object of class PAFit_data which contains summerized statistics needed in
estimation. This object is created by the function get_statistics. The default
value is get_statistics(net_object).

p Numeric. This is the ratio of the number of new edges in the learning data to
that of the full data. The data is then divided into two parts: learning data and
testing data based on p. The learning data is used to learn the node fitnesses and
the testing data is then used in cross-validation. Default value is 0.75.

stop_cond Numeric. The iterative algorithm stops when abs(h(ii)−h(ii+1))/(abs(h(ii))+
1) < stop.cond where h(ii) is the value of the objective function at iteration ii.
We recommend to choose stop.cond at most equal to 10(−numberofdigitsofh−
2), in order to ensure that when the algorithm stops, the increase in posterior
probability is less than 1% of the current posterior probability. Default is 10^-8.
This threshold is good enough for most applications.

mode_reg_A Binary. Indicates which regularization term is used for Ak:

• 0: This is the regularization term used in Ref. 1 and 2. Please refer to Eq.
(4) in the tutorial for the definition of the term. It approximately enforces
the power-law form Ak = kα. This is the default value.

• 1: Unlike the default, this regularization term exactly enforces the func-
tional form Ak = kα. Please refer to Eq. (6) in the tutorial for the defini-
tion of the term. Its main drawback is it is significantly slower to converge,
while its gain over the default one is marginal in most cases.

MLE Logical. If TRUE, then not perform cross-validation and estimate the PA func-
tion with r = 0, i.e., maximum likelihood estimation. Default is FALSE. One
might want to set this option to TRUE when one believes that there are sufficient
data to get a reasonable MLE result, or when one wants to compare the default,
regularized result with the MLE result.

... Other arguments to pass to the underlying algorithm.

Value

Outputs a Full_PAFit_result object, which is a list containing the following fields:

• cv_data: a CV_Data object which contains the cross-validation data. This is the final Nor-
mally the user does not need to pay attention to this data. NULL if MLE = TRUE.

only_A_estimate 33

• cv_result: a CV_Result object which contains the cross-validation result. Normally the user
does not need to pay attention to this data. NULL if MLE = TRUE.

• estimate_result: this is a PAFit_result object which contains the estimated PA function
and its confidence interval. It also includes the estimated attachment exponenent α (assuming
the model Ak = kα) in the field alpha, and the confidence interval of α (in the field ci) when
possible. In particular, the important fields are:

– ratio: this is the selected value for the hyper-parameter r.
– k and A: a degree vector and the estimated PA function.
– var_A: the estimated variance of A.
– var_logA: the estimated variance of logA.
– upper_A: the upper value of the interval of two standard deviations around A.
– lower_A: the lower value of the interval of two standard deviations around A.
– center_k and theta: when we perform binning, these are the centers of the bins and

the estimated PA values for those bins. theta is similar to A but with duplicated values
removed.

– var_bin: the variance of theta. Same as var_A but with duplicated values removed.
– upper_bin: the upper value of the interval of two standard deviations around theta.

Same as upper_A but with duplicated values removed.
– lower_lower: the lower value of the interval of two standard deviations around theta.

Same as lower_A but with duplicated values removed.
– g: the number of bins used.
– alpha and ci: alpha is the estimated attachment exponenet α (when assume Ak = kα),

while ci is the confidence interval.
– loglinear_fit: this is the fitting result when we estimate α.
– objective_value: values of the objective function over iterations in the final run with

the full data.
– diverge_zero: logical value indicates whether the algorithm diverged in the final run

with the full data.

Author(s)

Thong Pham <thongphamthe@gmail.com>

References

1. Pham, T., Sheridan, P. & Shimodaira, H. (2015). PAFit: A Statistical Method for Measuring Pref-
erential Attachment in Temporal Complex Networks. PLoS ONE 10(9): e0137796. (doi:10.1371/
journal.pone.0137796).

2. Pham, T., Sheridan, P. & Shimodaira, H. (2016). Joint Estimation of Preferential Attachment
and Node Fitness in Growing Complex Networks. Scientific Reports 6, Article number: 32558.
(doi:10.1038/srep32558).

See Also

See get_statistics for how to create summerized statistics needed in this function.

See Newman and Jeong for other methods to estimate the attachment function Ak in isolation.

https://doi.org/10.1371/journal.pone.0137796
https://doi.org/10.1371/journal.pone.0137796
https://doi.org/10.1038/srep32558

34 only_A_estimate

Examples

Not run:
library("PAFit")
set.seed(1)
Example 1: Linear preferential attachment
a network from BA model
net <- generate_net(N = 1000 , m = 50 , mode = 1, alpha = 1, s = 0)

net_stats <- get_statistics(net, only_PA = TRUE)
result <- only_A_estimate(net, net_stats)

plot the estimated attachment function
plot(result, net_stats)

true function
true_A <- result$estimate_result$center_k
lines(result$estimate_result$center_k, true_A, col = "red") # true line
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")

Example 2: a non-log-linear preferential attachment
A_k = alpha* log (max(k,1))^beta + 1, with alpha = 2, and beta = 2
set.seed(1)
net <- generate_net(N = 1000 , m = 50 , mode = 3, alpha = 2, beta = 2, s = 0)

net_stats <- get_statistics(net,only_PA = TRUE)
result <- only_A_estimate(net, net_stats)

plot the estimated attachment function
plot(result, net_stats)

true function
true_A <- 2 * log(pmax(result$estimate_result$center_k,1))^2 + 1 # true function
lines(result$estimate_result$center_k, true_A, col = "red") # true line
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")

###
Example 3: another non-log-linear preferential attachment kernel
set.seed(1)
A_k = min(max(k,1),sat_at)^alpha, with alpha = 1, and sat_at = 200
inverse variance of the distribution of node fitnesse = 10
net <- generate_net(N = 1000 , m = 50 , mode = 2, alpha = 1, sat_at = 200, s = 0)
net_stats <- get_statistics(net, only_PA = TRUE)

result <- only_A_estimate(net, net_stats)

plot the estimated attachment function
true_A <- pmin(pmax(result$estimate_result$center_k,1),200)^1 # true function
plot(result , net_stats, max_A = max(true_A,result$estimate_result$theta))
lines(result$estimate_result$center_k, true_A, col = "red") # true line
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")

only_F_estimate 35

End(Not run)

only_F_estimate Estimating node fitnesses in isolation

Description

This function estimates node fitnesses ηi assusming either Ak = k (i.e. linear preferential attach-
ment) or Ak = 1 (i.e. no preferential attachment). The method has a hyper-parameter s. It first
performs a cross-validation to select the optimal parameter s for the prior of ηi, then estimates etai
with the full data (Ref. 1).

Usage

only_F_estimate(net_object ,
net_stat = get_statistics(net_object),
p = 0.75 ,
stop_cond = 10^-8 ,
model_A = "Linear" ,
...)

Arguments

net_object an object of class PAFit_net that contains the network.

net_stat An object of class PAFit_data which contains summerized statistics needed in
estimation. This object is created by the function get_statistics. The default
value is get_statistics(net_object).

p Numeric. This is the ratio of the number of new edges in the learning data to
that of the full data. The data is then divided into two parts: learning data and
testing data based on p. The learning data is used to learn the node fitnesses and
the testing data is then used in cross-validation. Default value is 0.75.

stop_cond Numeric. The iterative algorithm stops when abs(h(ii)−h(ii+1))/(abs(h(ii))+
1) < stop.cond where h(ii) is the value of the objective function at iteration ii.
We recommend to choose stop.cond at most equal to 10(−numberofdigitsofh−
2), in order to ensure that when the algorithm stops, the increase in posterior
probability is less than 1% of the current posterior probability. Default is 10^-8.
This threshold is good enough for most applications.

model_A String. Indicates which attachment function Ak we assume:

• "Linear": We assume Ak = k, i.e. the Bianconi-Barabási model (Ref. 2).
• "Constant": We assume Ak = 1, i.e. the Caldarelli model (Ref. 3).

... Other arguments to pass to the underlying algorithm.

36 only_F_estimate

Value

Outputs a Full_PAFit_result object, which is a list containing the following fields:

• cv_data: a CV_Data object which contains the cross-validation data. Normally the user does
not need to pay attention to this data.

• cv_result: a CV_Result object which contains the cross-validation result. Normally the user
does not need to pay attention to this data.

• estimate_result: this is a PAFit_result object which contains the estimated node fitnesses
and their confidence intervals. In particular, the important fields are:

– shape: this is the selected value for the hyper-parameter s.
– g: the number of bins used.
– f: the estimated node fitnesses.
– var_f: the estimated variance of ηi.
– upper_f: the estimated upper value of the interval of two standard deviations around ηi.
– lower_f: the estimated lower value of the interval of two standard deviations around ηi.
– objective_value: values of the objective function over iterations in the final run with

the full data.
– diverge_zero: logical value indicates whether the algorithm diverged in the final run

with the full data.

Author(s)

Thong Pham <thongphamthe@gmail.com>

References

1. Pham, T., Sheridan, P. & Shimodaira, H. (2016). Joint Estimation of Preferential Attachment
and Node Fitness in Growing Complex Networks. Scientific Reports 6, Article number: 32558.
(doi:10.1038/srep32558).

2. Bianconni, G. & Barabási, A. (2001). Competition and multiscaling in evolving networks.
Europhys. Lett., 54, 436 (doi:10.1209/epl/i2001002606).

3. Caldarelli, G., Capocci, A. , De Los Rios, P. & Muñoz, M.A. (2002). Scale-Free Networks from
Varying Vertex Intrinsic Fitness. Phys. Rev. Lett., 89, 258702 (doi:10.1103/PhysRevLett.89.258702).

See Also

See get_statistics for how to create summerized statistics needed in this function.

See joint_estimate for the method to jointly estimate the attachment function Ak and node fit-
nesses ηi.

Examples

Not run:
library("PAFit")
set.seed(1)
size of initial network = 100
number of new nodes at each time-step = 100

https://doi.org/10.1038/srep32558
https://doi.org/10.1209/epl/i2001-00260-6
https://doi.org/10.1103/PhysRevLett.89.258702

PAFit_oneshot 37

Ak = k; inverse variance of the distribution of node fitnesse = 10
net <- generate_BB(N = 1000 , m = 50 ,

num_seed = 100 , multiple_node = 100,
s = 10)

net_stats <- get_statistics(net)

estimate node fitnesses in isolation, assuming Ak = k
result <- only_F_estimate(net, net_stats)

plot the estimated node fitnesses and true node fitnesses
plot(result, net_stats, true = net$fitness, plot = "true_f")

End(Not run)

PAFit_oneshot Estimating the nonparametric preferential attachment function from
one single snapshot.

Description

This function estimates the attachment function Ak from one snapshot.

Usage

PAFit_oneshot(net_object,
M = 10,
S = 5,
loop = 5,
G = 1000)

Arguments

net_object an object of class PAFit_net that contains the network. Any time-step informa-
tion, if available, will be ignored.

M Integer. Number of simulated networks in each iteration. Default is 10.

S Integer. Number of iterations inside each loop. Default is 5.

loop Integer. Number of loops of the whole process. Default is 5.

G Integer. Number of bins for the PA function. Default is 1000.

Value

Outputs a PAFit_result object.

Author(s)

Thong Pham <thongphamthe@gmail.com>

38 plot.Full_PAFit_result

References

1. Pham, T., Sheridan, P. & Shimodaira, H. (2021). Non-parametric estimation of the preferential
attachment function from one network snapshot. Journal of Complex Networks 9(5): cnab024.
(doi:10.1093/comnet/cnab024).

Examples

Not run:
library("PAFit")
net_1 <- generate_BA(N = 10000, alpha = 1) # true attachment exponent = 1.0
result_1 <- PAFit_oneshot(net_1)
print(result_1)

net_2 <- generate_BA(N = 10000, alpha = 0.5) # true attachment exponent = 0.5
result_2 <- PAFit_oneshot(net_2)
print(result_2)

End(Not run)

plot.Full_PAFit_result

Plotting the estimated attachment function and node fitness

Description

This function plots the estimated attachment function Ak and node fitness etai, together with addi-
tional information such as their confidence intervals or the estimated attachment exponent (α when
assuming Ak = kα).

Usage

S3 method for class 'Full_PAFit_result'
plot(x,

net_stat ,
true_f = NULL , plot = "A" , plot_bin = TRUE ,
line = FALSE , confidence = TRUE , high_deg_A = 1 ,
high_deg_f = 5 ,

shade_point = 0.5 , col_point = "grey25" , pch = 16 ,
shade_interval = 0.5 , col_interval = "lightsteelblue" , label_x = NULL ,
label_y = NULL ,
max_A = NULL , min_A = NULL , f_min = NULL ,
f_max = NULL , plot_true_degree = FALSE ,
...)

https://doi.org/10.1093/comnet/cnab024

plot.Full_PAFit_result 39

Arguments

x An object of class Full_PAFit_result, containing the estimated results from
only_A_estimate, only_F_estimate or joint_estimate.

net_stat An object of class PAFit_data, containing the summerized statistics.

true_f Vector. Optional parameter for the true value of node fitnesses (only available
in simulated datasets). If this parameter is specified and plot == "true_f", a
plot of estimated η versus true η is produced (after a suitable rescaling of the
estimated f).

plot String. Indicates which plot is produced.

• If "A" then PA function is plotted.
• If "f" then the histogram of estimated fitness is plotted.
• If "true_f" then estimated fitness and true fitness are plotted together (re-

quire supplement of true fitness).

Default value is "A".

plot_bin Logical. If TRUE then only the center of each bin is plotted. Default is TRUE.

line Logical. Indicates whether to plot the line fitted from the log-linear model or
not. Default value is TRUE.

confidence Logical. Indicates whether to plot the confidence intervals of Ak and etai or
not. If confidence == TRUE, a 2-sigma confidence interval will be plotted at
each Ak and etai.

high_deg_A Integer. The estimated PA function is plotted starting from high_deg_A. Default
value is 1.

high_deg_f Integer. If plot == "true_f", only nodes whose number of edges acquired is
not less than high_deg_f are plotted. Default value is 5.

col_point String. The name of the color of the points. Default value is "black".

shade_point Numeric. Value between 0 and 1. This is the transparency level of the points.
Default value is 0.5.

pch Numeric. The plot symbol. Default value is 16.

shade_interval Numeric. Value between 0 and 1. This is the transparency level of the confidence
intervals. Default value is 0.5.

max_A Numeric. Specify the maximum of the axis of PA.

min_A Numeric. Specify the minimum of the axis of PA.

f_min Numeric. Specify the minimum of the axis of fitness.

f_max Numeric. Specify the maximum of the axis of fitness.
plot_true_degree

Logical. The degree of each node is plotted or not.

label_x String. The label of x-axis.

label_y String. The label of y-axis.

col_interval String. The name of the color of the confidence intervals. Default value is
"lightsteelblue".

... Other arguments to pass to the underlying plotting function.

40 plot.PAFit_net

Value

Outputs the desired plot.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

Since the runtime is long, we do not let this example run on CRAN
Not run:
library("PAFit")
set.seed(1)
a network from Bianconi-Barabasi model
net <- generate_BB(N = 1000 , m = 50 ,

num_seed = 100 , multiple_node = 100,
s = 10)

net_stats <- get_statistics(net)
result <- joint_estimate(net, net_stats)
#plot A
plot(result , net_stats , plot = "A")
true_A <- c(1,result$estimate_result$center_k[-1])
lines(result$estimate_result$center_k + 1 , true_A , col = "red") # true line
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")
#plot true_f
plot(result, net_stats , net$fitness, plot = "true_f")

End(Not run)

plot.PAFit_net Plot a PAFit_net object

Description

This function plots a PAFit_net object. There are four options of plot to specify the type of plot.

The first two concern plotting the graph in $graph of the PAFit_net object. Option plot = "graph"
plots the graph, while plot = "degree" plots the degree distribution. Option slice allows selection
of the time-step at which the temporal graph is plotted.

The last two options concern plotting the PA function and node fitnesses (if they are not NULL).

Usage

S3 method for class 'PAFit_net'
plot(x,

plot = "graph" ,
slice = length(unique(x$graph[,3])) - 1,
...)

plot.PAFit_result 41

Arguments

x An object of class PAFit_net.

plot String. Possible values are "graph", "degree", "PA", and "fit". Default value
is "graph".

slice Integer. Ignored when plot is not "graph" or "degree". Specifies the time-step
at which the graph is plotted. Default value is the final time-step.

... Other arguments to pass to the underlying plotting function.

Value

Outputs the desired plot.

Author(s)

Thong Pham <thongphamthe@gmail.com>. When plot = "graph", the function uses plot.network.default
in the network package.

Examples

library("PAFit")
a network from Bianconi-Barabasi model
net <- generate_BB(N = 50 , m = 10 , s = 10)
plot(net, plot = "graph")
plot(net, plot = "degree")
plot(net, plot = "PA")
plot(net, plot = "fit")

plot.PAFit_result Plotting the estimated attachment function and node fitness of a
PAFit_result object

Description

This function plots the estimated attachment function Ak and node fitness etai, together with addi-
tional information such as their confidence intervals or the estimated attachment exponent (α when
assuming Ak = kα) of a PAFit_result object. This object is stored in the field $estimate_result
of a Full_PAFit_result object, which in turn is the returning value of only_A_estimate, only_F_estimate
or joint_estimate.

Usage

S3 method for class 'PAFit_result'
plot(x,

net_stat = NULL ,
true_f = NULL , plot = "A" , plot_bin = TRUE ,
line = FALSE , confidence = TRUE , high_deg_A = 1 ,
high_deg_f = 5 ,

42 plot.PAFit_result

shade_point = 0.5 , col_point = "grey25" , pch = 16 ,
shade_interval = 0.5 , col_interval = "lightsteelblue" , label_x = NULL ,
label_y = NULL ,
max_A = NULL , min_A = NULL , f_min = NULL ,
f_max = NULL , plot_true_degree = FALSE ,
...)

Arguments

x An object of class PAFit_result.

net_stat An object of class PAFit_data, containing the summerized statistics.

true_f Vector. Optional parameter for the true value of node fitnesses (only available
in simulated datasets). If this parameter is specified and plot == "true_f", a
plot of estimated η versus true η is produced (after a suitable rescaling of the
estimated f).

plot String. Indicates which plot is produced.

• If "A" then PA function is plotted.
• If "f" then the histogram of estimated fitness is plotted.
• If "true_f" then estimated fitness and true fitness are plotted together (re-

quire supplement of true fitness).

Default value is "A".

plot_bin Logical. If TRUE then only the center of each bin is plotted. Default is TRUE.

line Logical. Indicates whether to plot the line fitted from the log-linear model or
not. Default value is TRUE.

confidence Logical. Indicates whether to plot the confidence intervals of Ak and etai or
not. If confidence == TRUE, a 2-sigma confidence interval will be plotted at
each Ak and etai.

high_deg_A Integer. The estimated PA function is plotted starting from high_deg_A. Default
value is 1.

high_deg_f Integer. If plot == "true_f", only nodes whose number of edges acquired is
not less than high_deg_f are plotted. Default value is 5.

col_point String. The name of the color of the points. Default value is "black".

shade_point Numeric. Value between 0 and 1. This is the transparency level of the points.
Default value is 0.5.

pch Numeric. The plot symbol. Default value is 16.

shade_interval Numeric. Value between 0 and 1. This is the transparency level of the confidence
intervals. Default value is 0.5.

max_A Numeric. Specify the maximum of the axis of PA.

min_A Numeric. Specify the minimum of the axis of PA.

f_min Numeric. Specify the minimum of the axis of fitness.

f_max Numeric. Specify the maximum of the axis of fitness.
plot_true_degree

Logical. The degree of each node is plotted or not.

plot.PA_result 43

label_x String. The label of x-axis.

label_y String. The label of y-axis.

col_interval String. The name of the color of the confidence intervals. Default value is
"lightsteelblue".

... Other arguments to pass to the underlying plotting function.

Value

Outputs the desired plot.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

Since the runtime is long, we do not let this example run on CRAN
Not run:

library("PAFit")
set.seed(1)
a network from Bianconi-Barabasi model
net <- generate_BB(N = 1000 , m = 50 ,

num_seed = 100 , multiple_node = 100,
s = 10)

net_stats <- get_statistics(net)
result <- joint_estimate(net, net_stats)
#plot A
plot(result$estimate_result , net_stats , plot = "A")
true_A <- c(1,result$estimate_result$center_k[-1])
lines(result$estimate_result$center_k + 1 , true_A , col = "red") # true line
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")
#plot true_f
plot(result, net_stats , net$fitness, plot = "true_f")

End(Not run)

plot.PA_result Plotting the estimated attachment function

Description

This function plots the estimated attachment function from the corrected Newman’s method or the
Jeong’s method. Its also plots additional information such as the estimated attachment exponenent
(α when assuming Ak = kα).

44 plot.PA_result

Usage

S3 method for class 'PA_result'
plot(x,

net_stat = NULL,
plot_bin = TRUE ,
high_deg = 1 ,
line = FALSE ,
col_point = "black",
shade_point = 0.5 ,
pch = 16 ,
max_A = NULL ,
min_A = NULL ,
label_x = NULL ,
label_y = NULL ,
...)

Arguments

x An object of class PA_result, containing the estimated attachment function and
the estimated attachment exponenet from either Newman or Jeong functions.

net_stat An object of class PA_data, containing the summerized statistics. This object is
created from the function get_statistics.

plot_bin Logical. If TRUE then only the center of each bin is plotted. Default is TRUE.

high_deg Integer. Specifies the starting degree from which Ak is plotted. If this parameter
is specified, the estimated attachment function is plotted from k = high_deg

line Logical. Indicates whether to plot the line fitted from the log-linear model or
not. Default value is FALSE.

col_point String. The name of the color of the points. Default value is ”black”.

shade_point Numeric. Value between 0 and 1. This is the transparency level of the points.
Default value is 0.5.

pch Numeric. The plot symbol. Default value is 16.

max_A Numeric. Specify the maximum of the horizontal axis.

min_A Numeric. Specify the minimum of the horizontal axis.

label_x String. The label of x-axis. If NULL, then "Degree k" is used.

label_y String. The label of y-axis. If NULL, then "Attachment function" is used.

... Other arguments to pass to the underlying plotting function.

Value

Outputs the desired plot.

Author(s)

Thong Pham <thongphamthe@gmail.com>

plot_contribution 45

Examples

library("PAFit")
net <- generate_net(N = 1000 , m = 1 , mode = 1 , alpha = 1 , s = 0)
net_stats <- get_statistics(net)
result <- Newman(net, net_stats)
true function
true_A <- result$center_k
plot the estimated attachment function
plot(result , net_stats)
lines(result$center_k, true_A, col = "red") # true attachment function
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")

plot_contribution Plotting contributions calculated from the observed data and contri-
butions calculated from simulated data

Description

This function extracts from a Simulated_Data_From_Fitted_Model object contributions of rich-
get-richer and fit-get-richer effects calculated using simulated networks and plots these contribu-
tions versus the contributions calculated from the original observed network. See joint_estimate
for a description of how the contributions are calculated.

Usage

plot_contribution(simulated_object,
original_result,
which_plot = "PA",
y_label = ifelse("PA" == which_plot,
"Contribution of the rich-get-richer effect",
"Contribution of the fit-get-richer effect"),
legend_pos_x = 0.75,
legend_pos_y = 0.9)

Arguments

simulated_object

an object of class Simulated_Data_From_Fitted_Model that contains simu-
lated data.

original_result

an object of class Full_PAFit_result that contains the estimation results from
the original observed data.

which_plot String. “PA": plots contributions of rich-get-richer effect, “fit": plots contribu-
tion of fit-get-richer effect. Default is “PA".

y_label String. The label for y-axis. Default is "Contribution of rich-get-richer effect".

legend_pos_x Numeric. The horizontal position, between (0,1), of the legend. Default value is
0.75.

46 plot_contribution

legend_pos_y Numeric. The vertical position, between (0,1), of the legend. Default value is
0.9.

Value

Output a plot.

Author(s)

Thong Pham <thongphamthe@gmail.com>

References

1. Pham, T., Sheridan, P. & Shimodaira, H. (2015). PAFit: A Statistical Method for Measuring Pref-
erential Attachment in Temporal Complex Networks. PLoS ONE 10(9): e0137796. (doi:10.1371/
journal.pone.0137796).

2. Pham, T., Sheridan, P. & Shimodaira, H. (2016). Joint Estimation of Preferential Attachment
and Node Fitness in Growing Complex Networks. Scientific Reports 6, Article number: 32558.
(doi:10.1038/srep32558).

3. Pham, T., Sheridan, P. & Shimodaira, H. (2020). PAFit: An R Package for the Non-Parametric
Estimation of Preferential Attachment and Node Fitness in Temporal Complex Networks. Journal
of Statistical Software 92 (3). (doi:10.18637/jss.v092.i03).

4. Inoue, M., Pham, T. & Shimodaira, H. (2020). Joint Estimation of Non-parametric Transitivity
and Preferential Attachment Functions in Scientific Co-authorship Networks. Journal of Informet-
rics 14(3). (doi:10.1016/j.joi.2020.101042).

See Also

joint_estimate, plot_contribution

Examples

Not run:

library("PAFit")
net_object <- generate_net(N = 500, m = 10, s = 10, alpha = 0.5)
net_stat <- get_statistics(net_object)
result <- joint_estimate(net_object, net_stat)
simulated_data <- generate_simulated_data_from_estimated_model(net_object, net_stat, result)
plot_contribution(simulated_data, result, which_plot = "PA")
plot_contribution(simulated_data, result, which_plot = "fit")

End(Not run)

https://doi.org/10.1371/journal.pone.0137796
https://doi.org/10.1371/journal.pone.0137796
https://doi.org/10.1038/srep32558
https://doi.org/10.18637/jss.v092.i03
https://doi.org/10.1016/j.joi.2020.101042

print.CV_Data 47

print.CV_Data Printing simple information of the cross-validation data

Description

This function prints simple information of the cross-validation data stored in a CV_Data object. This
object is the field $cv_data of a Full_PAFit_result object, which in turn is the returning value
of only_A_estimate, only_F_estimate or joint_estimate.

Usage

S3 method for class 'CV_Data'
print(x,...)

Arguments

x An object of class CV_Data.

... Other arguments to pass.

Value

Prints simple information of the cross-validation data.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

Since the runtime is long, we do not let this example run on CRAN
Not run:

library("PAFit")
set.seed(1)
a network from Bianconi-Barabasi model
net <- generate_BB(N = 1000 , m = 50 ,

num_seed = 100 , multiple_node = 100,
s = 10)

net_stats <- get_statistics(net)
result <- joint_estimate(net, net_stats)
print(result$cv_data)

End(Not run)

48 print.CV_Result

print.CV_Result Printing simple information of the cross-validation result

Description

This function prints simple information of the cross-validation result stored in a CV_Result object.
This object is the field $cv_result of a Full_PAFit_result object, which in turn is the returning
value of only_A_estimate, only_F_estimate or joint_estimate.

Usage

S3 method for class 'CV_Result'
print(x,...)

Arguments

x An object of class CV_Result.

... Other arguments to pass.

Value

Prints simple information of the cross-validation result.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

Since the runtime is long, we do not let this example run on CRAN
Not run:

library("PAFit")
set.seed(1)
a network from Bianconi-Barabasi model
net <- generate_BB(N = 1000 , m = 50 ,

num_seed = 100 , multiple_node = 100,
s = 10)

net_stats <- get_statistics(net)
result <- joint_estimate(net, net_stats)
print(result$cv_result)

End(Not run)

print.Full_PAFit_result 49

print.Full_PAFit_result

printing information on the estimation result

Description

This function outputs simple information of the estimation result.

Usage

S3 method for class 'Full_PAFit_result'
print(x,...)

Arguments

x An object of class Full_PAFit_result, containing the estimated results from
only_A_estimate, only_F_estimate or joint_estimate.

... Other arguments to pass.

Value

Outputs summary information on the estimation result.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

Since the runtime is long, we do not let this example run on CRAN
Not run:

library("PAFit")
set.seed(1)
a network from Bianconi-Barabasi model
net <- generate_BB(N = 1000 , m = 50 ,

num_seed = 100 , multiple_node = 100,
s = 10)

net_stats <- get_statistics(net)
result <- joint_estimate(net, net_stats)
print(result)

End(Not run)

50 print.PAFit_data

print.PAFit_data Printing simple information on the statistics of the network stored in a
PAFit_data object

Description

This function prints simple information of the statistics stored in a PAFit_data object. This object
is the returning value of get_statistics.

Usage

S3 method for class 'PAFit_data'
print(x,...)

Arguments

x An object of class PAFit_data.

... Other arguments to pass.

Value

Prints simple information of the network statistics.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

Since the runtime is long, we do not let this example run on CRAN
Not run:

library("PAFit")
set.seed(1)
a network from Bianconi-Barabasi model
net <- generate_BB(N = 1000 , m = 50 ,

num_seed = 100 , multiple_node = 100,
s = 10)

net_stats <- get_statistics(net)
print(net_stats)

End(Not run)

print.PAFit_net 51

print.PAFit_net Printing simple information of a PAFit_net object

Description

This function outputs simple information of a PAFit_net object.

Usage

S3 method for class 'PAFit_net'
print(x,

...)

Arguments

x An object of class PAFit_net.

... Other arguments to pass.

Value

Outputs simple information of the network.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

library("PAFit")
a network from Bianconi-Barabasi model
net <- generate_BB(N = 50 , m = 10 , s = 10)
print(net)

print.PAFit_result printing information on the estimation result stored in a
PAFit_result object

Description

This function outputs simple information of the estimation result stored in a PAFit_result object.
This object is stored in the field $estimate_result of a Full_PAFit_result object, which in turn
is the returning value of only_A_estimate, only_F_estimate or joint_estimate.

Usage

S3 method for class 'PAFit_result'
print(x,...)

52 print.PA_result

Arguments

x An object of class PAFit_result.

... Other arguments to pass.

Value

Outputs summary information on the estimation result.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

Since the runtime is long, we do not let this example run on CRAN
Not run:

library("PAFit")
set.seed(1)
a network from Bianconi-Barabasi model
net <- generate_BB(N = 1000 , m = 50 ,

num_seed = 100 , multiple_node = 100,
s = 10)

net_stats <- get_statistics(net)
result <- joint_estimate(net, net_stats)
print(result$estimate_result)

End(Not run)

print.PA_result Printing information of the estimated attachment function

Description

This function outputs simple information of the estimated attachment function from the corrected
Newman’s method or the Jeong’s method.

Usage

S3 method for class 'PA_result'
print(x,

...)

Arguments

x An object of class PA_result, containing the estimated attachment function and
the estimated attachment exponenet from either Newman or Jeong functions.

... Additional parameters to pass.

summary.CV_Data 53

Value

Simple information of the estimated attachment function.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

library("PAFit")
net <- generate_net(N = 1000 , m = 1 , mode = 1 , alpha = 1 , s = 0)
net_stats <- get_statistics(net)
result <- Newman(net, net_stats)
print(result)

summary.CV_Data Printing summary information of the cross-validation data

Description

This function outputs summary information of the cross-validation data stored in a CV_Data object.
This object is the field $cv_data of a Full_PAFit_result object, which in turn is the returning
value of only_A_estimate, only_F_estimate or joint_estimate.

Usage

S3 method for class 'CV_Data'
summary(object,...)

Arguments

object An object of class CV_Data.

... Other arguments to pass.

Value

Outputs summary information of the cross-validation data.

Author(s)

Thong Pham <thongphamthe@gmail.com>

54 summary.CV_Result

Examples

Since the runtime is long, we do not let this example run on CRAN
Not run:

library("PAFit")
set.seed(1)
a network from Bianconi-Barabasi model
net <- generate_BB(N = 1000 , m = 50 ,

num_seed = 100 , multiple_node = 100,
s = 10)

net_stats <- get_statistics(net)
result <- joint_estimate(net, net_stats)
summary(result$cv_data)

End(Not run)

summary.CV_Result Output summary information of the cross-validation result

Description

This function outputs summary information of the cross-validation result stored in a CV_Result
object. This object is the field $cv_result of a Full_PAFit_result object, which in turn is the
returning value of only_A_estimate, only_F_estimate or joint_estimate.

Usage

S3 method for class 'CV_Result'
summary(object,...)

Arguments

object An object of class CV_Result.

... Other arguments to pass.

Value

Outputs summary information of the cross-validation result.

Author(s)

Thong Pham <thongphamthe@gmail.com>

summary.Full_PAFit_result 55

Examples

Since the runtime is long, we do not let this example run on CRAN
Not run:

library("PAFit")
set.seed(1)
a network from Bianconi-Barabasi model
net <- generate_BB(N = 1000 , m = 50 ,

num_seed = 100 , multiple_node = 100,
s = 10)

net_stats <- get_statistics(net)
result <- joint_estimate(net, net_stats)
summary(result$cv_result)

End(Not run)

summary.Full_PAFit_result

Summary information on the estimation result

Description

This function outputs a summary on the estimation result.

Usage

S3 method for class 'Full_PAFit_result'
summary(object,...)

Arguments

object An object of class Full_PAFit_result, containing the estimated results from
only_A_estimate, only_F_estimate or joint_estimate.

... Other arguments to pass.

Value

Outputs summary information on the estimation result.

Author(s)

Thong Pham <thongphamthe@gmail.com>

56 summary.PAFit_data

Examples

Since the runtime is long, we do not let this example run on CRAN
Not run:

library("PAFit")
set.seed(1)
a network from Bianconi-Barabasi model
net <- generate_BB(N = 1000 , m = 50 ,

num_seed = 100 , multiple_node = 100,
s = 10)

net_stats <- get_statistics(net)
result <- joint_estimate(net, net_stats)
summary(result)

End(Not run)

summary.PAFit_data Output summary information on the statistics of the network stored in
a PAFit_data object

Description

This function outputs summary information of the statistics stored in a PAFit_data object. This
object is the returning value of get_statistics.

Usage

S3 method for class 'PAFit_data'
summary(object,...)

Arguments

object An object of class PAFit_data.

... Other arguments to pass.

Value

Outputs summary information of the network statistics.

Author(s)

Thong Pham <thongphamthe@gmail.com>

summary.PAFit_net 57

Examples

Since the runtime is long, we do not let this example run on CRAN
Not run:

library("PAFit")
set.seed(1)
a network from Bianconi-Barabasi model
net <- generate_BB(N = 1000 , m = 50 ,

num_seed = 100 , multiple_node = 100,
s = 10)

net_stats <- get_statistics(net)
summary(net_stats)

End(Not run)

summary.PAFit_net Summary information of a PAFit_net object

Description

This function outputs summary information of a PAFit_net object.

Usage

S3 method for class 'PAFit_net'
summary(object,

...)

Arguments

object An object of class PAFit_net.

... Other arguments to pass.

Value

Outputs summary information of the network.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

library("PAFit")
a network from Bianconi-Barabasi model
net <- generate_BB(N = 50 , m = 10 , s = 10)
summary(net)

58 summary.PAFit_result

summary.PAFit_result Output summary information on the estimation result stored in a
PAFit_result object

Description

This function outputs summary information of the estimation result stored in a PAFit_result ob-
ject. This object is stored in the field $estimate_result of a Full_PAFit_result object, which
in turn is the returning value of only_A_estimate, only_F_estimate or joint_estimate.

Usage

S3 method for class 'PAFit_result'
summary(object,...)

Arguments

object An object of class PAFit_result.

... Other arguments to pass.

Value

Outputs summary information on the estimation result.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

Since the runtime is long, we do not let this example run on CRAN
Not run:

library("PAFit")
set.seed(1)
a network from Bianconi-Barabasi model
net <- generate_BB(N = 1000 , m = 50 ,

num_seed = 100 , multiple_node = 100,
s = 10)

net_stats <- get_statistics(net)
result <- joint_estimate(net, net_stats)
summary(result$estimate_result)

End(Not run)

summary.PA_result 59

summary.PA_result Summary of the estimated attachment function

Description

This function outputs summary information of the estimated attachment function from the corrected
Newman’s method or the Jeong’s method.

Usage

S3 method for class 'PA_result'
summary(object,

...)

Arguments

object An object of class PA_result, containing the estimated attachment function and
the estimated attachment exponenet from either Newman or Jeong functions.

... Additional parameters to pass.

Value

Summary information of the estimated attachment function.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

library("PAFit")
net <- generate_net(N = 1000 , m = 1 , mode = 1 , alpha = 1 , s = 0)
net_stats <- get_statistics(net)
result <- Newman(net, net_stats)
summary(result)

test_linear_PA Fitting various distributions to a degree vector

60 test_linear_PA

Description

This function implements the method in Handcock and Jones (2004) to fit various distributions to
a degree vector. The implemented distributions are Yule, Waring, Poisson, geometric and negative
binomial. The Yule and Waring distributions correspond to a preferential attachment situation. In
particular, the two distributions correspond to the case of Ak = k for k ≥ 1 and ηi = 1 for all i
(note that, the number of new edges and new nodes at each time-step are implicitly assumed to be
1).

Thus, if the best fitted distribution, which is chosen by either the Akaike Information Criterion (AIC)
or the Bayesian Information Criterion (BIC), is NOT Yule or Waring, then the case of Ak = k for
k ≥ 1 and ηi = 1 for all i is NOT consistent with the observed degree vector.

The method allows the low-tail probabilities to NOT follow the parametric distribution, i.e., P (K =
k) = πk for all k ≤ kmin and P (K = k) = f(k, θ) for all k > kmin. Here kmin is the degree
threshold above which the parametric distribution holds, πk are probabilities of the low-tail, f(., θ)
is the parametric distribution with parameter vector θ.

For fixed kmin and f , πk and θ can be estimated by Maximum Likelihood Estimation. We can
choose the best kmin for each f by comparing the AIC (or BIC). More details can be founded in
Handcock and Jones (2004).

Usage

test_linear_PA(degree_vector)

Arguments

degree_vector a degree vector

Value

Outputs a Linear_PA_test_result object which contains the fitting of five distributions to the
degree vector: Yule (yule), Waring (waring), Poisson (pois), geometric (geom) and negative bino-
mial (nb). In particular, for each distribution, the AIC and BIC are calcualted for each kmin.

Author(s)

Thong Pham <thongphamthe@gmail.com>

References

1. Handcock MS, Jones JH (2004). “Likelihood-based inference for stochastic models of sex-
ual network formation.” Theoretical Population Biology, 65(4), 413 – 422. ISSN 0040-5809.
doi:10.1016/j.tpb.2003.09.006. Demography in the 21st Century, https://www.sciencedirect.
com/science/article/pii/S0040580904000310.

Examples

Not run:
library("PAFit")
set.seed(1)
net <- generate_BA(n = 1000)

https://doi.org/10.1016/j.tpb.2003.09.006
https://www.sciencedirect.com/science/article/pii/S0040580904000310
https://www.sciencedirect.com/science/article/pii/S0040580904000310

to_igraph 61

stats <- get_statistics(net, only_PA = TRUE)
u <- test_linear_PA(stats$final_deg)
print(u)

End(Not run)

to_igraph Convert a PAFit_net object to an igraph object

Description

This function converts a PAFit_net object to an igraph object (of package igraph).

Usage

to_igraph(net_object)

Arguments

net_object An object of class PAFit_net.

Value

The function returns an igraph object.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

library("PAFit")
a network from Bianconi-Barabasi model
net <- generate_BB(N = 50 , m = 10 , s = 10)
igraph_graph <- to_igraph(net)

62 to_networkDynamic

to_networkDynamic Convert a PAFit_net object to a networkDynamic object

Description

This function converts a PAFit_net object to a networkDynamic object (of package networkDy-
namic).

Usage

to_networkDynamic(net_object)

Arguments

net_object An object of class PAFit_net.

Value

The function returns a networkDynamic object.

Author(s)

Thong Pham <thongphamthe@gmail.com>

Examples

library("PAFit")
a network from Bianconi-Barabasi model
net <- generate_BB(N = 50 , m = 10 , s = 10)
nD_graph <- to_networkDynamic(net)

Index

∗ Barabasi-Albert model
generate_BA, 8
generate_net, 14
PAFit-package, 3

∗ Bianconi-Barabasi model
generate_BB, 10
generate_net, 14
PAFit-package, 3

∗ Corrected Newman’s method
PAFit-package, 3

∗ ER model
generate_ER, 11

∗ Jeong’s method
PAFit-package, 3

∗ attachment function
generate_simulated_data_from_estimated_model,

17
Jeong, 24
joint_estimate, 26
Newman, 30
only_A_estimate, 31
PAFit-package, 3
PAFit_oneshot, 37
plot_contribution, 45

∗ fitness model
generate_fit_only, 13
generate_net, 14
only_F_estimate, 35
PAFit-package, 3

∗ fitness
generate_simulated_data_from_estimated_model,

17
joint_estimate, 26
plot_contribution, 45

∗ fitting degree distributions
test_linear_PA, 59

∗ linear preferential attachment
test_linear_PA, 59

∗ preferential attachment

generate_simulated_data_from_estimated_model,
17

Jeong, 24
joint_estimate, 26
Newman, 30
only_A_estimate, 31
PAFit-package, 3
PAFit_oneshot, 37
plot_contribution, 45

∗ temporal complex networks
get_statistics, 19
PAFit-package, 3

as.PAFit_net, 5, 19, 21

coauthor.author_id (Coauthorship
network of scientists in the
field of complex networks), 6

coauthor.net, 3
coauthor.net (Coauthorship network of

scientists in the field of
complex networks), 6

coauthor.truetime (Coauthorship
network of scientists in the
field of complex networks), 6

Coauthorship network of scientists in
the field of complex networks,
6

ComplexNetCoauthor (Coauthorship
network of scientists in the
field of complex networks), 6

from_igraph, 7, 19, 21
from_networkDynamic, 8, 19, 21

generate_BA, 3, 8, 11, 12, 14, 17
generate_BB, 3, 9, 10, 12, 14, 17
generate_ER, 3, 9, 11, 11, 14, 17
generate_fit_only, 3, 9, 11, 12, 13, 17
generate_net, 3, 8, 9, 11, 12, 14, 14

63

64 INDEX

generate_simulated_data_from_estimated_model,
17

get_statistics, 3, 4, 9, 11, 12, 14, 17, 18,
19, 24–26, 28, 30–33, 35, 36, 44, 50,
56

graph_from_file, 19, 21, 22
graph_to_file, 22, 23

Jeong, 4, 21, 24, 28, 31, 33, 44, 52, 59
joint_estimate, 4, 18, 21, 26, 36, 39, 41,

45–49, 51, 53–55, 58

Newman, 4, 21, 25, 28, 30, 33, 44, 52, 59

only_A_estimate, 4, 21, 25, 28, 31, 31, 39,
41, 47–49, 51, 53–55, 58

only_F_estimate, 4, 21, 28, 35, 39, 41,
47–49, 51, 53–55, 58

PAFit (PAFit-package), 3
PAFit-package, 3
PAFit_data (get_statistics), 19
PAFit_oneshot, 4, 37
plot.Full_PAFit_result, 38
plot.network.default, 41
plot.PA_result, 43
plot.PAFit_net, 40
plot.PAFit_result, 41
plot_contribution, 18, 45, 46
print.CV_Data, 47
print.CV_Result, 48
print.Full_PAFit_result, 49
print.PA_result, 52
print.PAFit_data, 50
print.PAFit_net, 51
print.PAFit_result, 51

summary.CV_Data, 53
summary.CV_Result, 54
summary.Full_PAFit_result, 55
summary.PA_result, 59
summary.PAFit_data, 56
summary.PAFit_net, 57
summary.PAFit_result, 58

test_linear_PA, 59
to_igraph, 61
to_networkDynamic, 62

	PAFit-package
	as.PAFit_net
	Coauthorship network of scientists in the field of complex networks
	from_igraph
	from_networkDynamic
	generate_BA
	generate_BB
	generate_ER
	generate_fit_only
	generate_net
	generate_simulated_data_from_estimated_model
	get_statistics
	graph_from_file
	graph_to_file
	Jeong
	joint_estimate
	Newman
	only_A_estimate
	only_F_estimate
	PAFit_oneshot
	plot.Full_PAFit_result
	plot.PAFit_net
	plot.PAFit_result
	plot.PA_result
	plot_contribution
	print.CV_Data
	print.CV_Result
	print.Full_PAFit_result
	print.PAFit_data
	print.PAFit_net
	print.PAFit_result
	print.PA_result
	summary.CV_Data
	summary.CV_Result
	summary.Full_PAFit_result
	summary.PAFit_data
	summary.PAFit_net
	summary.PAFit_result
	summary.PA_result
	test_linear_PA
	to_igraph
	to_networkDynamic
	Index

