
Package: OptimalDesign (via r-universe)
August 21, 2024

Type Package

Title A Toolbox for Computing Efficient Designs of Experiments

Version 1.0.1

Author Radoslav Harman, Lenka Filova

Maintainer Lenka Filova <OptimalDesignR@gmail.com>

Description Algorithms for D-, A-, I-, and c-optimal designs. Some of
the functions in this package require the 'gurobi' software and
its accompanying R package. For their installation, please
follow the instructions at <https://www.gurobi.com> and the
file gurobi_inst.txt, respectively.

License GPL-3

URL < http://www.iam.fmph.uniba.sk/design/ >

Depends R (>= 3.1.1)

Encoding UTF-8

LazyData true

Imports grDevices, graphics, Matrix, lpSolve, matrixStats, matrixcalc,
plyr, quadprog, rgl, stats, utils

Enhances gurobi, slam

NeedsCompilation no

Repository CRAN

Date/Publication 2019-12-02 08:50:07 UTC

Contents
OptimalDesign-package . 2
dirder . 2
effbound . 4
Fx_blocks . 6
Fx_CtoA . 7
Fx_cube . 8
Fx_dose . 10

1

https://www.gurobi.com
http://www.iam.fmph.uniba.sk/design/

2 dirder

Fx_glm . 11
Fx_ItoA . 13
Fx_simplex . 14
Fx_survival . 15
infmat . 17
mvee_REX . 18
od_AQUA . 20
od_DEL . 22
od_KL . 24
od_MISOCP . 26
od_PIN . 29
od_plot . 30
od_pool . 33
od_print . 34
od_PUK . 35
od_RC . 36
od_REX . 39
od_SYM . 41
optcrit . 43
varfun . 44

Index 47

OptimalDesign-package OptimalDesign

Description

Procedures for computing D-, A-, I-, and c-optimal approximate and exact designs of experiments
on finite domains, for regression models with uncorrelated observations.

Author(s)

Radoslav Harman, Lenka Filova

dirder Vector of directional derivatives

Description

Computes the vector of derivatives at a normalized approximate design w of length n in the directions
of singular designs e_i, where i ranges from 1 to n.

Usage

dirder(Fx, w, crit="D", h=NULL, echo=TRUE)

dirder 3

Arguments

Fx the n times m matrix of candidate regressors (as rows), where n is the number of
candidate design points and m (where m>=2, m<=n) is the number of parameters.

w a non-negative vector of length n representing the design. It is normalized prior
to the computation of the directional derivatives.

crit the criterion; possible values are "D", "A", "I", "C" and "c".

h a non-zero vector of length m corresponding to the coefficients of the linear pa-
rameter combination of interest. If crit is not "C" nor "c" then h is ignored. If
crit is "C" or "c" and h=NULL then h is assumed to be c(0,...,0,1).

echo Print the call of the function?

Details

The i-th directional derivative measures the increase of the criterion value provided that we in-
finitesimally increase the i-th design weight (and decrease other weights by the same proportion).
For a concave optimality criterion, an approximate design is optimal in the class of all normal-
ized approximate designs if and only if all its directional derivatives are non-positive. This state-
ment can be rewritten to the form of the so-called equivalence theorem. See the reference paper at
http://www.iam.fmph.uniba.sk/design/ for mathematical details.

Value

The vector of directional derivatives of the chosen criterion at w/sum(w) in the direction of the
singular designs e_i, where i ranges from 1 to n.

Note

The design w should have a non-singular information matrix.

Author(s)

Radoslav Harman, Lenka Filova

See Also

effbound, varfun

Examples

Not run:
The directional derivatives of the D-optimal approximate design
for a cubic regression on a square grid.

form.cube <- ~x1 + x2 + I(x1^2) + I(x2^2) + I(x1*x2) +
I(x1^3) + I(x1^2*x2) + I(x1*x2^2) + I(x2^3)

Fx <- Fx_cube(form.cube, n.levels = c(101, 101))
w <- od_REX(Fx)$w.best

Because w is optimal approximate, no directional derivative is positive:

http://www.iam.fmph.uniba.sk/design/

4 effbound

boxplot(dirder(Fx, w))

The yellow values indicate the directional derivative at each design point:
od_plot(Fx, w, Fx[, 2:3])

An alternative view is a "projection" of the above plot:
od_plot(Fx, w, Fx[, 2], dd.pool = c("max", "min"))

End(Not run)

effbound Lower bound on efficiency

Description

Computes a lower bound on the efficiency of a design w in the class of all approximate designs of
the same size as w.

Usage

effbound(Fx, w, crit="D", h=NULL, echo=TRUE)

Arguments

Fx the n times m matrix of candidate regressors (as rows), where n is the number of
candidate design points and m (where m>=2, m<=n) is the number of parameters.

w a non-negative vector of length n representing the design.

crit the criterion; possible values are "D", "A", "I", "C" and "c".

h a non-zero vector of length m corresponding to the coefficients of the linear pa-
rameter combination of interest. If crit is not "C" nor "c" then h is ignored. If
crit is "C" or "c" and h=NULL then h is assumed to be c(0,...,0,1).

echo Print the call of the function?

Details

The lower bounds are based on the standard methods of convex analysis. See the reference paper at
http://www.iam.fmph.uniba.sk/design/ for mathematical details.

Value

A lower bound on the D-, A-, I-, c-, or C-efficiency of w in the class of all approximate designs of
the same size as w at the set of candidate regressors given by Fx.

Note

The design w should have a non-singular information matrix. Occasionally, the lower bound is very
conservative. The exact value of the efficiency of w is the ratio of the criterion value of w and the
criterion value of the optimal design.

http://www.iam.fmph.uniba.sk/design/

effbound 5

Author(s)

Radoslav Harman, Lenka Filova

See Also

varfun, dirder

Examples

A lower bound on the D-efficiencies of the uniform designs
for the quadratic regression on a line grid

Fx <- Fx_cube(~x1 + I(x1^2), n.levels = 101)
effbound(Fx, rep(1/101, 101))

The precise value of the D-efficiency
requires computing the D-optimal design:

w.opt <- od_REX(Fx)$w.best
optcrit(Fx, rep(1/101, 101)) / optcrit(Fx, w.opt)

Not run:
Let us do this for polynomial regressions of various degrees:

n <- 101; d.max <- 10; x <- seq(-1, 1, length = n)
effs <- matrix(0, ncol = 2, nrow = d.max)
Fx <- matrix(1, ncol = 1, nrow = n)
for(d in 1:d.max) {

Fx <- cbind(Fx, x^d)
effs[d, 1] <- effbound(Fx, rep(1/n, n))
w.opt <- od_REX(Fx)$w.best
effs[d, 2] <- optcrit(Fx, rep(1/n, n)) / optcrit(Fx, w.opt)

}
print(effs)

We see that the lower bound becomes more and more conservative
compared to the real efficiency which actually increases with d.

Compute a D-optimal design for the main effects model
on a random subsample of a 6D cube

n <- 1000000; m <- 6
Fx <- cbind(1, matrix(runif(n*m), ncol = m))
w <- od_REX(Fx, eff = 0.99)$w.best
Fx <- od_DEL(Fx, w)$Fx.keep
w <- od_REX(Fx)$w.best

Now we will compute a lower bound on efficiency of such design
on the entire (continuous) cube:
Fx <- rbind(Fx, Fx_cube(~x1 + x2 + x3 + x4 + x5 + x6, lower = rep(0, 6)))
w <- c(w, rep(0, 2^6))

6 Fx_blocks

effbound(Fx, w)

The real D-efficiency of w on the entire cube is
optcrit(Fx, w)/od_REX(Fx)$Phi.best

End(Not run)

Fx_blocks Matrix of candidate regressors for a block size-two model

Description

Creates the matrix of all candidate regressors of a linear regression model corresponding to the
problem of the optimal block size-two design.

Usage

Fx_blocks(n.treats, blocks=NULL, echo=TRUE)

Arguments

n.treats the number of "treatments" in the block experiment.

blocks the 2 times n matrix of all permissible blocks (that is, permissible pairings of
treatments). If blocks=NULL, blocks is set to combn(n.treats, 2), which
means that all treatment pairings are permissible.

echo Print the call of the function?

Details

Creates the matrix Fx of artificial regressors, such that the D- and A-optimal designs for the cor-
responding artificial LRM are are the same as what is called the D- and A-optimal design in the
original block model with blocks of size two.

Value

the n times m matrix of all candidate regressors of an auxiliary linear regression model corresponding
to the problem of the optimal block size-two design (n is ncol(blocks), m is n.treats-1).

Note

This optimal design problem is equivalent to various optimum-subgraph problems, depending on
the criterion.

Author(s)

Radoslav Harman, Lenka Filova

Fx_CtoA 7

References

Harman R, Filova, L: Computing efficient exact designs of experiments using integer quadratic
programming, Computational Statistics and Data Analysis 71 (2014) 1159-1167.

Sagnol G, Harman R: Computing Exact D-optimal designs by mixed integer second-order cone
programming, The Annals of Statistics 43 (2015), 2198-2224.

See Also

Fx_cube, Fx_simplex, Fx_glm, Fx_dose, Fx_survival

Examples

Not run:
Compute a D-efficient block size-two design
with 15 treatments and 10 blocks of size two

Fx <- Fx_blocks(10)
w <- od_KL(Fx, 15, t.max = 5)$w.best
des <- combn(10, 2)[, as.logical(w)]
print(des)

We can visualize the design as a graph
library(igraph)
grp <- graph_(t(des), from_edgelist(directed = FALSE))
plot(grp, layout=layout_with_graphopt)

End(Not run)

Fx_CtoA Transformation of candidate regressors for regularized c-optimality

Description

Pre-transforms the matrix of all candidate regressors to the form suitable for computing regularized
c-optimal designs via A-optimum algorithms.

Usage

Fx_CtoA(Fx, h=NULL, echo=TRUE)

Arguments

Fx the n times m matrix of candidate regressors (as rows), where n is the number of
candidate design points and m (where m>=2, m<=n) is the number of parameters.

h a non-zero vector of length m corresponding to the coefficients of the linear pa-
rameter combination of interest. If crit is not "C" nor "c" then h is ignored. If
crit is "C" or "c" and h=NULL then h is assumed to be c(0,...,0,1).

echo Print the call of the function?

8 Fx_cube

Details

The standard c-optimal designs are often singular, which may render them unsuitable for practical
use. The regularized c-optimality, which we call C-optimality, is an approach to computing designs
that are non-singular, but still efficient with respect to the criterion of c-optimality. See http:
//www.iam.fmph.uniba.sk/design/ for more details.

Value

The n times m matrix Fx.trans of all candidate regressors with the following property: The A-
optimal design for the problem defined by Fx.trans is the same as the regularized c-optimal (i.e.,
C-optimal) design for the problem defined by Fx.

Author(s)

Radoslav Harman and Lenka Filova

See Also

Fx_ItoA

Examples

We will compute a C-efficient (regularized c-optimal) design
for estimating the mean response in x=1 for a quadratic regression
using and algorithm for A-optimality.

Fx <- Fx_cube(~x1 + I(x1^2), n.levels=101)
Fx.trans <- Fx_CtoA(Fx, h=c(1, 1, 1))
w <- od_REX(Fx.trans, crit="A")$w.best
od_print(Fx, w, h=c(1, 1, 1))

Compare the design to the (non-regularized) c-optimal design
w.crisp <- od_REX(Fx, crit="c", h=c(1, 1, 1))$w.best
od_print(Fx, w.crisp, h=c(1, 1, 1))

The c-efficiency of the C-optimal design is about 0.68
The D-efficiency of the c-optimal design is 0
The D-efficiency of the C-optimal design is a very decent
optcrit(Fx, w) / od_REX(Fx)$Phi.best

Fx_cube Matrix of candidate regressors for a model on a cuboid grid

Description

Creates the matrix of all candidate regressors for a factor regression model on a cuboid grid (up to
9 factors).

http://www.iam.fmph.uniba.sk/design/
http://www.iam.fmph.uniba.sk/design/

Fx_cube 9

Usage

Fx_cube(formula, lower=NULL, upper=NULL, n.levels=NULL, echo=TRUE)

Arguments

formula the formula of the model. The rules for creating the formula are standard for R
but: 1) the formula must not contain the dependent variable (it is one-sided); 2)
the d factors (variables) must be labeled x1,x2,x3,...

lower the d-dimensional vector of the smallest values of factors. If lower=NULL, the
program sets lower <- rep(-1, d).

upper the d-dimensional vector of the largest values of factors. If upper=NULL, the
program sets upper <- rep(1, d).

n.levels the d-dimensional vector of the numbers of levels of each factor. If n.levels=NULL,
the program sets n.levels <- rep(2, d).

echo Print the call of the function?

Value

The n times m matrix of all candidate regressors for a factor regression model on a cuboid grid. The
rows of Fx are the regressors f(x) for all candidate design points x.

Note

Note that Fx is not the design matrix (which is also sometimes called the regression matrix, or the
model matrix). The design matrix depends on Fx as well as on the exact experimental design w.
For this package, an exact experimental design is formalized as the vector of non-negative integer
values corresponding to the replication of trials (observations) in individual design points. Thus,
if Fx is the matrix of all candidate regressors and w is the exact design then Fx[rep(1:nrow(Fx),
w),] is the actual design matrix for the experiment.

Author(s)

Radoslav Harman, Lenka Filova

See Also

Fx_simplex, Fx_blocks, Fx_glm, Fx_survival, Fx_dose

Examples

Not run:
The Fx for the cubic model on a discretized interval
Fx <- Fx_cube(~x1 + I(x1^2) + I(x1^3), lower=0, upper=2, n.levels=101)

The D-optimal design of size 20
w <- od_KL(Fx, 20, t.max=5)$w.best
od_plot(Fx, w, Fx[, 2])

10 Fx_dose

The Fx for the full quadratic response surface model on a non-convex region
Fx <- Fx_cube(~x1 + x2 + I(x1^2) + I(x2^2) + I(x1*x2), n.levels=c(51, 51))
keep <- rep(TRUE, nrow(Fx))
for(i in 1:nrow(Fx)) if(prod(abs(Fx[i, 2:3])) > 0.2) keep[i] <- FALSE
Fx <- Fx[keep,]

The D-optimal design of size 29 without replications
w <- od_KL(Fx, 29, bin=TRUE, t.max=5)$w.best
od_plot(Fx, w, Fx[, 2:3])

The Fx for the chemical weighing with 3 items and a bias term
Fx <- Fx_cube(~x1 + x2 + x3, n.levels=c(3, 3, 3))

The D-optimal design of size 12
w <- od_KL(Fx, 12, t.max=2)$w.best
od_plot(Fx, w, Fx[, 2:4])

End(Not run)

Fx_dose Matrix of candidate regressors for a dose-response model

Description

Creates the matrix of all candidate regressors for a linearization of a dose response model.

Usage

Fx_dose(dose.levels, theta0, dose.model="emax", echo=TRUE)

Arguments

dose.levels the n-dimensional vector of admissible doses.

theta0 the 3-dimensional vector of values of the unknown parameter in which to lin-
earize the model.

dose.model the type of the dose-response model, possible values are "emax", "loglin", and
"exp".

echo Print the call of the function?

Details

For mathematical details, see the referenced paper.

Value

The n times 3 matrix of all candidate regressors of a dose-response model linearized in theta0.

Fx_glm 11

Author(s)

Radoslav Harman, Lenka Filova

References

Dette H, Kiss C, Bevanda M, Bretz F (2010). Optimal designs for the EMAX, log-linear and
exponential models. Biometrika, 97(2), 513-518.

See Also

Fx_cube, Fx_simplex, Fx_blocks, Fx_glm, Fx_survival

Examples

The loglinear model for the doses 1:150
Localized at the values of theta0=c(0, 0.0797, 1)
Fx <- Fx_dose(1:150, c(0, 0.0797, 1), dose.model="loglin")

The locally D-optimal approximate design
w_a <- od_REX(Fx)$w.best
od_plot(Fx, w_a, 1:150)

The locally D-optimal exact design of size 10
w_e <- od_KL(Fx, 10, t.max=3)$w.best
od_plot(Fx, w_e, 1:150)

Fx_glm Matrix of candidate regressors for a generalized linear model

Description

Creates the matrix of all candidate regressors for a linearization of a generalized linear model.

Usage

Fx_glm(formula, theta0, glm.model="bin-logit", lower=NULL, upper=NULL,
n.levels=NULL, echo=TRUE)

Arguments

formula the formula of the linear part of the model. The rules for creating the formula
are standard for R but: 1) the formula must not contain the dependent variable
(it is one-sided); 2) the d factors (variables) must be labeled x1,x2,x3,...

theta0 the d-dimensional vector of values of the unknown parameter in which to lin-
earize the model

glm.model the type of the generalized linear model. Available models are "bin-logit",
"bin-probit", "bin-cloglog", and Poisson-log.

12 Fx_glm

lower the d-dimensional vector of the smallest values of factors. If lower=NULL, the
program sets lower <- rep(-1, d).

upper the d-dimensional vector of the largest values of factors. If upper=NULL, the
program sets upper <- rep(1, d).

n.levels the d-dimensional vector of the numbers of levels of each factor. If n.levels=NULL,
the program sets n.levels <- rep(2, d).

echo Print the call of the function?

Details

For mathematical details, see the referenced paper.

Value

The n times m matrix of all candidate regressors of a generalized linear regression model linearized
in theta0.

Author(s)

Radoslav Harman, Lenka Filova

References

Atkinson AC, Woods DC (2015). Designs for generalized linear models. Handbook of Design and
Analysis of Experiments, 471-514.

See Also

Fx_cube, Fx_simplex, Fx_blocks, Fx_survival, Fx_dose

Examples

The logistic model with second-order predictors x1, x2 in [-1,1]
discretized into 21 points and theta0=c(1, 2, 2, -1, -1.5, 1.5)

form.quad <- ~ x1 + x2 + I(x1*x2) + I(x1^2) + I(x2^2)
Fx <- Fx_glm(form.quad, c(1, 2, 2, -1, -1.5, 1.5),

glm.model="bin-logit", n.levels=c(21,21))

The locally D-optimal approximate design
w <- od_REX(Fx)$w.best
Fx.lin <- Fx_cube(form.quad, n.levels=c(21,21)) # Just for the plot
od_plot(Fx, w, Fx.lin[, 2:3], dd.size=2)

Not run:
#The GLM with Poisson link and 2 linear predictors x1,x2 in [-1,1]
discretized into 21 points and theta0=c(0,2,2)
Fx <- Fx_glm(~x1+x2, c(0, 2, 2), glm.model="Poisson-log", n.levels=c(21, 21))

The locally D-optimal exact design of size 50 without replications

Fx_ItoA 13

w <- od_KL(Fx, 50, bin=TRUE, t.max=5)$w.best
Fx.lin <- Fx_cube(~x1+x2, n.levels=c(21, 21))
od_plot(Fx, w, Fx.lin[, 2:3], w.lim=Inf)

End(Not run)

Fx_ItoA Transformation of candidate regressors for I-optimality

Description

Pre-transforms the matrix of all candidate regressors to the form suitable for computing I-optimal
designs via A-optimum algorithms.

Usage

Fx_ItoA(Fx, echo=TRUE)

Arguments

Fx the n times m matrix of candidate regressors (as rows), where n is the number of
candidate design points and m (where m>=2, m<=n) is the number of parameters.

echo Print the call of the function?

Details

It is simple to see that the problem of I-optimality is equivalent to the problem of A-optimality
for a transformed matrix of candidate regressors. This function performs the transformation. See
http://www.iam.fmph.uniba.sk/design/ for more details.

Value

The n times m matrix Fx.trans of all candidate regressors with the following property: The A-
optimal design for the problem defined by Fx.trans is the same as the I-optimal design for the
problem defined by Fx.

Note

It is also simple to transform the weighted I-optimality to A-optimality; just multiply the rows of
Fx by the squares roots of weights of individual design points and transform the resulting matrix by
Fx_ItoA.

Author(s)

Radoslav Harman, Lenka Filova

See Also

Fx_CtoA

http://www.iam.fmph.uniba.sk/design/

14 Fx_simplex

Examples

Not run:
Compute an I-efficient exact size 20 design without replications
for the Scheffe mixture model with 4 components
using the AQUA heuristic for A-optimality.

Fx <- Fx_simplex(~x1 + x2 + x3 + x4 + I(x1*x2) + I(x1*x3) + I(x1*x4) +
I(x2*x3) + I(x2*x4) + I(x3*x4) - 1, 11)

w <- od_AQUA(Fx_ItoA(Fx), b3=24, bin=TRUE, crit="I", conic=FALSE)$w.best
od_plot(Fx, w, Fx[, 2:4])

End(Not run)

Fx_simplex Matrix of candidate regressors for a regression model on a simplex
grid

Description

Creates the matrix of all candidate regressors for a mixture regression model on a regular simplex
grid (up to 9 factors).

Usage

Fx_simplex(formula, n.levels.mix=NULL, echo=TRUE)

Arguments

formula the formula of the model. The rules for creating the formula are standard for R
but: 1) the formula must not contain the dependent variable (it is one-sided); 2)
the d factors (variables) must be labeled x1,x2,x3,...

n.levels.mix the number of levels of each factor (each factor has the same number of levels).
If n.levels=NULL, the program sets n.levels <- 2*d + 1.

echo Print the call of the function?

Value

The n times m matrix of all candidate regressors of a mixture regression model on a regular simplex
grid.

Note

Note that Fx is not the design matrix (which is also sometimes called the regression matrix, or the
model matrix). The design matrix depends on Fx as well as on the exact experimental design w.
For this package, an exact experimental design is formalized as the vector of non-negative integer
values corresponding to the replication of trials (observations) in individual design points. Thus,
if Fx is the matrix of all candidate regressors and w is the exact design then Fx[rep(1:nrow(Fx),
w),] is the actual design matrix for the experiment.

Fx_survival 15

Author(s)

Radoslav Harman, Lenka Filova

See Also

Fx_cube, Fx_glm, Fx_dose, Fx_survival, Fx_blocks

Examples

Not run:
The Fx of the Scheffe quadratic mixture model
with 3 mixture components, each with 21 levels.
Fx <- Fx_simplex(~x1 + x2 + x3 + I(x1*x2) + I(x1*x3) + I(x2*x3) - 1, 21)

The approximate I-optimal design of size 20
bound by 1 at each design point
w <- od_MISOCP(Fx, b3=20, bin=TRUE, crit="I", type="approximate")$w.best
od_plot(Fx, w, Fx[, 2:3])

As above, with constraints on the proportions
r <- c(); for (i in 1:nrow(Fx)) if (max(Fx[i, 2:4]) > 0.7) r <- c(r, i)
w <- od_MISOCP(Fx[-r,], b3=20, bin=TRUE, crit="I", type="approximate")$w.best
od_plot(Fx[-r,], w, Fx[-r, 2:3])

Note that one must be careful when choosing a model for a mixture experiment:
Let us compute the matrix of regressors of the simple linear mixture model
with 4 mixture components, each with levels {0, 0.5, 1}.

Fx <- Fx_simplex(~x1 + x2 + x3 + x4, 3)

The model has only 5 parameters and as many as 10 design points,
but there is no design that guarantees estimability of the parameters.
This can be shown by evaluating:
det(infmat(Fx, rep(1, 10)))

End(Not run)

Fx_survival Matrix of candidate regressors for a survival model

Description

Creates the matrix of all candidate regressors for a linearization of a proportional hazards survival
model.

Usage

Fx_survival(formula, theta0, censor.time, survival.model="phI", lower=NULL,
upper=NULL, n.levels=NULL, echo=TRUE)

16 Fx_survival

Arguments

formula the formula of the linear part of the model. The rules for creating the formula
are standard for R but: 1) the formula must not contain the dependent variable
(it is one-sided); 2) the d factors (variables) must be labeled x1,x2,x3,...

theta0 the d-dimensional vector of values of the unknown parameter in which to lin-
earize the model.

censor.time the censoring time, a positive constant.

survival.model the type of the survival model, can be either proportional hazards with Type I
censoring ("phI") or with random censoring ("phrand"). Both models assume
a constant baseline hazard.

lower the d-dimensional vector of the smallest values of factors. If lower=NULL, the
program sets lower <- rep(-1, d).

upper the d-dimensional vector of the largest values of factors. If upper=NULL, the
program sets upper <- rep(1, d).

n.levels the d-dimensional vector of the numbers of levels of each factor. If n.levels=NULL,
the program sets n.levels <- rep(2, d).

echo Print the call of the function?

Details

For mathematical details, see the referenced paper.

Value

The n times m matrix of all candidate regressors of a proportional hazards model linearized in
theta0.

Author(s)

Radoslav Harman, Lenka Filova

References

Konstantinou M, Biedermann S, Kimber A (2014). Optimal designs for two-parameter nonlinear
models with application to survival models. Statistica Sinica, 24(1), 415-428.

See Also

Fx_cube, Fx_simplex, Fx_blocks, Fx_glm, Fx_dose

Examples

The proportional hazards model with random censoring
for three binary explanatory variables x1,x2,x3 without intercept
censoring time 30 and parameter values theta0=c(1,1,1)
Fx <- Fx_survival(~x1 + x2 + x3 - 1, c(1, 1, 1), 30, "phrand",

lower = c(0, 0, 0), upper = c(1, 1, 1), n.levels = c(2, 2, 2))

infmat 17

The locally D-optimal approximate design
w <- od_REX(Fx, crit="D")$w.best
od_print(Fx, w, Fx)

Not run:
The proportional hazards model with random censoring
for explanatory variables x1,x2,x3 in the range [0,1] discretized into 11 points
censoring time 30 and parameter values theta0=c(1,1,1)
Fx <- Fx_survival(~x1 + x2 + x3 - 1, c(1, 1, 1), 30, "phrand",

lower = c(0, 0, 0), upper = c(1, 1, 1), n.levels = c(11, 11, 11))

The locally A-optimal exact design of size 50 without replications
w <- od_KL(Fx, 50, crit="A", bin=TRUE, t.max=5)$w.best
od_plot(Fx, w, Fx)

End(Not run)

infmat Information matrix of a design

Description

Computes the information matrix of a design w in the model determined by the matrix Fx of candi-
date regressors.

Usage

infmat(Fx, w, echo=TRUE)

Arguments

Fx the n times m matrix of candidate regressors (as rows), where n is the number of
candidate design points and m (where m>=2, m<=n) is the number of parameters.

w a non-negative vector of length n representing the design.

echo Print the call of the function?

Value

The information matrix of the design w in the model with all candidate regresors given by the rows
of Fx.

Note

The information matrix is standardized, i.e., it assumes that the variance of the errors is 1.

Author(s)

Radoslav Harman, Lenka Filova

18 mvee_REX

See Also

optcrit

Examples

Compute its information matrix for the design that is
uniform on all the points with at most two levels equal to 1
in the main effects model with 2 factors.

Fx <- Fx_cube(~x1 + x2 + x3 + x4 + x5, lower = rep(0, 5))
w <- rep(0, 2^5)
for (i in 1:(2^5)) if (sum(Fx[i, 2:6]) <= 2) w[i] <- 1
print(M <- infmat(Fx, w))

Not run:
Visualize the correlation matrix of the parameter estimators

V <- solve(M); Y <- diag(1/sqrt(diag(V)))
library(corrplot); corrplot(Y %*% V %*% Y)

End(Not run)

mvee_REX Minimum-volume enclosing ellipsoid

Description

Computes the shape matrix H and the center z of the minimum-volume ellipsoid enclosing a finite
set of data-points.

Usage

mvee_REX(Data, alg.AA="REX", eff=0.999999, it.max=Inf, t.max=60,
picture=FALSE, echo=TRUE, track=TRUE)

Arguments

Data the n times d (where d<n) matrix containing the d-dimensional data-vectors as
rows.

alg.AA the underlying computational method for approximate D-optimal design; possi-
ble values are "REX", "MUL" and "VDM".

eff the minimum required efficiency.

it.max a limit on the number of iterations of the underlying D-optimum approximate
design algorithm.

t.max a limit on the time of computation.

picture Should a picture be plotted? (For the picture, the data need to be either two- or
three-dimensional.)

mvee_REX 19

echo Print the call of the function?

track Display the progress of the computation?

Details

The problem of the minimum-volume data-enclosing ellipsoid (MVEE) is computationally equiv-
alent to the problem of D-optimal approximate design for an artificial problem based on the data.
This procedure performs the computation and the proper conversion of the D-optimal approximate
design to the MVEE parameters (the center and the shape matrix).

Value

Output is a list with components:

call the call of the function

H the shape matrix of the MVEE

z the center of the MVEE

bpts a set containing the boundary points of the MVEE

vol the volume of the MVEE

eff.best the actual precision of the result (1 is the perfect precision)

t.iter the number of iterations of the underlying D-optimum design algorithm

t.act the actual time of the computation

Note

Note: The affine hull of the rows of X should be the full space of dimension d. For the choice of the
algorithm, see the comments in od_REX.

Author(s)

Radoslav Harman, Lenka Filova

References

Harman R, Filova L, Richtarik P (2019). A randomized exchange algorithm for computing optimal
approximate designs of experiments. Journal of the American Statistical Association, 1-30.

See Also

od_REX

Examples

Generate random 1000 points in a 3-dimensional space
and compute the MVEE

Data <- matrix(rnorm(3000), ncol = 3)
mvee_REX(Data, picture = FALSE)

20 od_AQUA

od_AQUA Efficient exact design using a quadratic approximation

Description

Computes an efficient exact design under general linear constraints via a quadratic approximation
of the optimality criterion.

Usage

od_AQUA(Fx, b1=NULL, A1=NULL, b2=NULL, A2=NULL, b3=NULL, A3=NULL, w0=NULL,
bin=FALSE, crit="D", h=NULL, M.anchor=NULL, ver.qa="+", conic=TRUE,
t.max=120, echo=TRUE)

Arguments

Fx the n times m (where m>=2, m<=n) matrix containing all candidate regressors (as
rows), i.e., n is the number of design points, and m (where m>=2) is the number
of parameters

b1, A1, b2, A2, b3, A3
the real vectors and matrices that define the constraints on permissible designs
w as follows: A1 %*% w <= b1, A2 %*% w >= b2, A3 %*% w == b3. Each of the argu-
ments can be NULL, but at least one of b1, b2, b3 must be non-NULL. If some bi
is non-NULL and Ai is NULL, then Ai is set to be matrix(1, nrow =1, ncol = n).

w0 a non-negative vector of length n representing the design to be augmented (i.e.,
the function adds the constraint w >= w0 for permissible designs w). This argu-
ment can also be NULL; in that case, w0 is set to the vector of zeros.

bin Should each design point be used at most once?
crit The optimality criterion. Possible values are "D", "A", "I", "C".
h a non-zero vector of length m corresponding to the coefficients of the linear pa-

rameter combination of interest. If crit is not "C" then h is ignored. If crit is
"C" and h=NULL then h is assumed to be c(0,...,0,1).

M.anchor the m times m information matrix of the optimal or nearly-optimal approximate
design for the design problem (for the non-normalized version of the problem
and including the design constraints). The argument M.anchor can also be NULL.
In that case the procedure computes M.anchor using an appropriate approximate
design procedure from the package.

ver.qa version of the criterion; possible values are "+" and "-".
conic Should the conic reformulation be used?
t.max the time limit for the computation.
echo Print the call of the function?

Details

At least one of b1, b2, b3 must be non-NULL. If bi is non-NULL and Ai is NULL for some i then Ai is
set to be the vector of ones. If bi is NULL for some i then Ai is ignored.

od_AQUA 21

Value

A list with the following components:

call The call of the function.

w.best The permissible design found, or NULL. The value NULL indicates a failed com-
putation.

supp The indices of the support of w.best.

w.supp The weights of w.best on the support.

M.best The information matrix of w.best or NULL if w.best is NULL.

Phi.best The value of the criterion of optimality of the design w.best. If w.best has a
singular information matrix or if the computation fails, the value of Phi.best is
0.

status The status variable of the gurobi optimization procedure; see the gurobi solver
documentation for details.

t.act The actual time of the computation.

Note

The function does not support the classical c-optimality, but it includes its regularized version re-
ferred to as C-optimality. The computation is generally stable, but it may fail for instance if the
model is numerically singular, there is no exact design satisfying the constraints, no permissible
exact design was found within the time limit, the set of feasible exact designs is unbounded and so
on; see the status variable for more details. Note, however, that status = "OPTIMAL" indicates
that the auxiliary integer programming problem was completely solved, which for this procedure
does not guarantee that the result is a globally optimal design.

Author(s)

Radoslav Harman, Lenka Filova

References

Harman R., Filova L. (2014): Computing efficient exact designs of experiments using integer
quadratic programming, Computational Statistics & Data Analysis, Volume 71, pp. 1159-1167

Filova L., Harman R. (2018). Ascent with Quadratic Assistance for the Construction of Exact
Experimental Designs. arXiv preprint arXiv:1801.09124. (Submitted to Computational Statistics)

See Also

od_KL, od_RC, od_MISOCP

Examples

Not run:
Compute an I-efficient non-replicated exact design of size 51
for the "special cubic" model with 3 mixture components

22 od_DEL

Each factor has 11 levels:
form.sc <- ~x1 + x2 + x3 + I(x1*x2) + I(x1*x3) + I(x2*x3) + I(x1*x2*x3) - 1
Fx <- Fx_simplex(form.sc, 11)
w <- od_AQUA(Fx, b3 = 51, crit = "I", bin = TRUE)$w.best
od_plot(Fx, w, Fx[, 1:3])

Each factor has 101 levels (memory intensive without the conic trick)
Fx <- Fx_simplex(form.sc, 101)
w <- od_AQUA(Fx, b3 = 51, crit = "I", bin = TRUE, t.max = 10)$w.best
od_plot(Fx, w, Fx[, 1:3])

Find an A-efficient exact design for the spring balance model
with 5 items and 10 weighings
Fx <- Fx_cube(~x1 + x2 + x3 + x4 + x5 - 1, lower = rep(0, 5))
w <- od_AQUA(Fx, b3 = 10, crit = "A", t.max = 10)$w.best
od_print(Fx, w)

End(Not run)

od_DEL Removal of redundant design points

Description

Removes the design points (or, equivalently, candidate regressors) that cannot support an optimal
approximate design.

Usage

od_DEL(Fx, w, crit = "D", h=NULL, echo = TRUE)

Arguments

Fx the n times m (where m>=2, m<=n) matrix containing all candidate regressors (as
rows), i.e., n is the number of candidate design points, and m is the number of
parameters

w a non-negative vector of length n representing the design

crit the optimality criterion. Possible values are "D", "A", "I", "C".

h a non-zero vector of length m corresponding to the coefficients of the linear pa-
rameter combination of interest. If crit is not "C" nor "c" then h is ignored. If
crit is "C" or "c" and h=NULL then h is assumed to be c(0,...,0,1).

echo Print the call of the function?

od_DEL 23

Value

Output is the list with components:

call the call of the function

keep the indices of w that have not been removed

w.keep the approximate design on the reduced space

Fx.keep the model matrix of the regressors on the reduced space

Note

The design vector w should have a non-singular information matrix. The procedure is valid only for
the standard (size) constraint.

Author(s)

Radoslav Harman, Lenka Filova

References

Harman R, Pronzato L (2007): Improvements on removing non-optimal support points in D-optimum
design algorithms, Statistics & Probability Letters 77, 90-94

Pronzato L (2013): A delimitation of the support of optimal designs for Kiefers Phi_p-class of
criteria. Statistics & Probability Letters 83, 2721-2728

Examples

Not run:
Generate a model matrix for the quadratic model
on a semi-circle with a huge number of design points
form.q <- ~x1 + x2 + I(x1^2) + I(x2^2) + I(x1*x2)
Fx <- Fx_cube(form.q, lower = c(-1, 0), n.levels = c(1001, 501))
remove <- (1:nrow(Fx))[Fx[,2]^2 + Fx[,3]^2 > 1]
Fx <- Fx[-remove,]

Compute an approximate design w with an efficiency of cca 0.999
w <- od_REX(Fx, eff = 0.999)$w.best

Remove the redundant design points based on w
Fx <- od_DEL(Fx, w)$Fx.keep

Now an almost perfect design can be computed very rapidly:
w <- od_REX(Fx, eff = 0.9999999999)$w.best

Plotting of the relevant directional derivative is also faster:
od_plot(Fx, w, Fx[, 2:3], dd.size = 0.1)

End(Not run)

24 od_KL

od_KL The KL exchange algorithm for efficient exact designs

Description

Computes an optimal or near-optimal exact design of experiments under the standard (size) con-
straint on the size of the experiment.

Usage

od_KL(Fx, N, bin=FALSE, Phi.app=NULL, crit="D", h=NULL, w1=NULL, K=NULL,
L=NULL, rest.max=Inf, t.max=120, echo=TRUE, track=TRUE)

Arguments

Fx the n times m (where m>=2, m<=n) matrix containing all candidate regressors (as
rows), i.e., n is the number of candidate design points, and m (where m>=2) is the
number of parameters.

N the size of the experiment (i.e., the required number of trials).

bin Should each design point be used at most once?

Phi.app the optimal value of the corresponding approximate (relaxed) problem. If Phi.app
= NULL, the value is pre-computed using od_REX.

crit the optimality criterion. Possible values are "D", "A", "I", "C".

h a non-zero vector of length m corresponding to the coefficients of the linear pa-
rameter combination of interest. If crit is not "C" nor "c" then h is ignored. If
crit is "C" or "c" and h=NULL then h is assumed to be c(0,...,0,1).

w1 the initial design; it must have a non-singular information matrix and the size
sum(w1) of w1 must be N. The default option w1 = NULL prompts the algorithm
to generate its own initial design using od_PIN.

K, L integer numbers (or Inf) representing parameters of the method. Various com-
binations of K and L lead to specific variants of the exchange method. If K =
NULL or L = NULL, the algorithm automatically chooses appropriate values.

rest.max the limit on the number of restarts of the method.

t.max the time limit for the computation.

echo Print the call of the function?

track Display the progress of the computation?

Details

This implementation of the KL algorithm is loosely based on the ideas described in Atkinson et al.
(2007); see the references.

The tuning parameter K is the (upper bound on the) number of "least promising" support points of
the current design, for which exchanges are attempted. The tuning parameter L is the (upper bound
on the) number of "most promising" candidate design points for which exchanges are attempted.

od_KL 25

The implemented method is greedy in the sense that each improving exchange is immediately exe-
cuted. If the algorithm stops in a local optimum before the allotted time elapsed, the computation is
restarted with a random initial design (independent of w1). The final result is the best design found
within all restarts.

The performance of the function depends on the problem, on the chosen parameters, and on the
hardware used, but in most cases the function can compute a nearly-optimal exact design for a
problem with a ten thousands design points within seconds of computing time. Because this is only
a heuristic, we advise the user to verify the quality of the resulting design by comparing it to the
result of an alternative method (such as od_RC).

Value

Output is the list with components:

call the call of the function

w.best the best exact design found by the algorithm

supp the indices of the support of w.best

w.supp the weights of w.best on the support

M.best the information matrix of w.best

Phi.best the criterion value of w.best

eff.best a lower bound on the eff of w.best with respect to Phi.app

n.rest number of restarts performed

n.ex the total number of exchanges performed

t.act the actual time of the computation

Author(s)

Radoslav Harman, Lenka Filova

References

Atkinson AC, Donev AN, Tobias RD (2007): Optimum experimental designs, with SAS. Vol. 34.
Oxford: Oxford University Press.

See Also

od_RC, od_AQUA, od_MISOCP

Examples

Not run:
Compute a D-efficient exact design of size 27 on a unit square
for the full quadratic model with 2 discretized factors

form.q <- ~x1 + x2 + I(x1^2) + I(x2^2) + I(x1*x2)
Fx <- Fx_cube(form.q, n.levels = c(101, 101))
w <- od_KL(Fx, 13, t.max = 8)$w.best

26 od_MISOCP

od_plot(Fx, w, Fx[, 2:3])
od_print(Fx, w)

Compute an I-efficient exact design of size 100 without replications
on a discretized L1 ball for the full quadratic model with 3 factors

form.q <- ~x1 + x2 + x3 + I(x1^2) + I(x2^2) + I(x3^2) + I(x1*x2) + I(x1*x3) + I(x2*x3)
Fx <- Fx_cube(form.q, n.levels = c(21, 21, 21))
remove <- (1:nrow(Fx))[apply(abs(Fx[, 2:4]), 1, sum) > 1 + 1e-9]
Fx <- Fx[-remove,]
w <- od_KL(Fx, 100, bin = TRUE, crit = "I", t.max = 3)$w.best
od_plot(Fx, w, Fx[, 2:4])

Compute a D-efficient exact design of size 20 on a 4D cube
for the full quadratic model with 4 continuous factors

We can begin with a crude discretization and compute
an initial (already good) exact design using the KL algorithm

form.q <- ~x1 + x2 + x3 + x4 + I(x1^2) + I(x2^2) + I(x3^2) + I(x4^2) +
I(x1*x2) + I(x1*x3) + I(x1*x4) + I(x2*x3) + I(x2*x4) + I(x3*x4)

Fx <- Fx_cube(form.q, n.levels = rep(11, 4))
w <- od_KL(Fx, 20, t.max = 10)$w.best
od_print(Fx, w)$design[, c(2:5, 16)]
print(paste("D-criterion value:", optcrit(Fx, w)))

Now we can fine-tune the positions of the design points
using any general-purpose continuous optimization method

F <- Fx[rep(1:nrow(Fx), w),]
f <- function(x) {c(1, x, x^2, x[1]*x[2], x[1]*x[3], x[1]*x[4],

x[2]*x[3], x[2]*x[4], x[3]*x[4])}
obj <- function(x, M.red) {-log(det(M.red + f(x) %*% t(f(x))))}
for (i in 1:10)

for (j in 1:20) {
F[j,] <- f(optim(F[j, 2:5], obj, M.red = t(F[-j,]) %*% F[-j,],

method = "L-BFGS-B", lower = rep(-1, 3), upper = rep(1, 3))$par)
}

tune <- od_pool(round(F, 4), rep(1, 20))
Fx.tune <- tune$X.unique; w.tune <- tune$val.pooled
od_print(Fx.tune, w.tune)$design[, c(2:5, 16)]
print(paste("D-criterion value:", optcrit(Fx.tune, w.tune)))

End(Not run)

od_MISOCP Optimal exact design using mixed integer second-order cone program-
ming

od_MISOCP 27

Description

Computes an optimal or nearly-optimal approximate or exact experimental design using mixed
integer second-order cone programming.

Usage

od_MISOCP(Fx, b1=NULL, A1=NULL, b2=NULL, A2=NULL, b3=NULL, A3=NULL, w0=NULL,
bin=FALSE, type="exact", crit="D", h=NULL, gap=NULL,
t.max=120, echo=TRUE)

Arguments

Fx the n times m (where m>=2, m<=n) matrix containing all candidate regressors (as
rows), i.e., n is the number of candidate design points, and m (where m>=2) is the
number of parameters

b1, A1, b2, A2, b3, A3
the real vectors and matrices that define the constraints on permissible designs
w as follows: A1 %*% w <= b1, A2 %*% w >= b2, A3 %*% w == b3. Each of the argu-
ments can be NULL, but at least one of b1, b2, b3 must be non-NULL. If some bi
is non-NULL and Ai is NULL, then Ai is set to be matrix(1, nrow =1, ncol = n).

w0 a non-negative vector of length n representing the design to be augmented (i.e.,
the function adds the constraint w >= w0 for permissible designs w). This argu-
ment can also be NULL; in that case, w0 is set to the vector of zeros.

bin Should each design point be used at most once?

type the type of the design. Permissible values are "approximate" and "exact".

crit the optimality criterion. Possible values are "D", "A", "I", "C", "c".

h a non-zero vector of length m corresponding to the coefficients of the linear pa-
rameter combination of interest. If crit is not "C" nor "c" then h is ignored. If
crit is "C" or "c" and h=NULL then h is assumed to be c(0,...,0,1).

gap the gap for the MISOCP solver to stop the computation. If NULL, the default gap
is used. Setting gap=0 and t.max=Inf will ultimately provide the optimal exact
design, but the computation may be extremely time consuming.

t.max the time limit for the computation.

echo Print the call of the function?

Details

At least one of b1, b2, b3 must be non-NULL. If bi is non-NULL and Ai is NULL for some i then Ai is
set to be the vector of ones. If bi is NULL for some i then Ai is ignored.

Value

A list with the following components:

call the call of the function

w.best the permissible design found, or NULL. The value NULL indicates a failed com-
putation

28 od_MISOCP

supp the indices of the support of w.best
w.supp the weights of w.best on the support
M.best the information matrix of w.best or NULL if w.best is NULL
Phi.best the value of the criterion of optimality of the design w.best. If w.best has a

singular information matrix or if the computation fails, the value of Phi.best is
0

status the status variable of the gurobi optimization procedure; see the gurobi solver
documentation for details

t.act the actual time of the computation

Author(s)

Radoslav Harman, Lenka Filova

References

Sagnol G, Harman R (2015): Computing exact D-optimal designs by mixed integer second order
cone programming. The Annals of Statistics, Volume 43, Number 5, pp. 2198-2224.

See Also

od_KL, od_RC, od_AQUA

Examples

Not run:
Compute an A-optimal block size two design
for 6 treatments and 9 blocks

Fx <- Fx_blocks(6)
w <- od_MISOCP(Fx, b3 = 9, crit = "A", bin = TRUE)$w.best
des <- combn(6, 2)[, as.logical(w)]
print(des)

library(igraph)
grp <- graph_(t(des), from_edgelist(directed = FALSE))
plot(grp, layout=layout_with_graphopt)

Compute a symmetrized D-optimal approximate design
for the full quadratic model on a square grid
with uniform marginal constraints

Fx <- Fx_cube(~x1 + x2 + I(x1^2) + I(x2^2) + I(x1*x2), n.levels = c(21, 21))
A3 <- matrix(0, nrow = 21, ncol = 21^2)
for(i in 1:21) A3[i, (i*21 - 20):(i*21)] <- 1
w <- od_MISOCP(Fx, b3 = rep(1, 21), A3 = A3, crit = "D", type = "approximate")$w.best
w.sym <- od_SYM(Fx, w, b3 = rep(1, 21), A3 = A3)$w.sym
od_plot(Fx, w.sym, Fx[, 2:3], dd.size = 2)

End(Not run)

od_PIN 29

od_PIN Efficient saturated exact design

Description

Use a fast greedy method to compute an efficient saturated subset (saturated exact design).

Usage

od_PIN(Fx, alg.PIN="KYM", echo=TRUE)

Arguments

Fx the n times m (where m>=2, m<=n) matrix containing all candidate regressors (as
rows), i.e., n is the number of candidate design points, and m is the number of
parameters.

alg.PIN the method used (either "KYM" or "GKM"). KYM is randomized, faster but pro-
vides somewhat less efficient subsets/designs. GKM is deterministic, slower,
but tends to give more efficient subsets/designs.

echo Print the call of the function?

Details

The function is developed with the criterion of D-optimality in mind, but it also gives reasonably
efficient subset/designs with respect to other criteria. The main purpose of od_PIN is to initialize
algorithms for computing optimal approximate and exact designs. It can also be used to verify
whether a model, represented by a matrix Fx of candidate regressors, permits a non-singular design.

Value

Output is the list with components:

call the call of the function

w.pin the resulting exact design

supp the indices of the support of w.pin

M.pin the information matrix of w.pin

Phi.D the D-criterion value of w.pin

t.act the actual time of the computation

Author(s)

Radoslav Harman, Samuel Rosa, Lenka Filova

References

Harman R, Rosa S (2019): On greedy heuristics for computing D-efficient saturated subsets, (sub-
mitted to Operations Research Letters), https://arxiv.org/abs/1905.07647

https://arxiv.org/abs/1905.07647

30 od_plot

Examples

Compute a saturated subset of a random Fx
Fx <- matrix(rnorm(10000), ncol = 5)
w.KYM <- od_PIN(Fx)$w.pin
w.GKM <- od_PIN(Fx, alg.PIN = "GKM")$w.pin
w.REX <- 5*od_REX(Fx)$w.best
optcrit(Fx, w.KYM)
optcrit(Fx, w.GKM)
optcrit(Fx, w.REX)

od_plot Visualization of a design

Description

Visualizes selected aspects of an experimental design

Usage

od_plot(Fx, w, X=NULL, w.pool=c("sum", "0"), w.color="darkblue",
w.size=1, w.pch=16, w.cex=0.8, w.lim=0.01, crit="D",
h=NULL, dd.pool=c("max", "mean"), dd.color="orange",
dd.size=1.5, dd.pch=15, asp = NA, main.lab="",
y.lab="", return.pools=FALSE, echo=TRUE)

Arguments

Fx the n times m (where m>=2, m<=n) matrix containing all candidate regressors (as
rows), i.e., n is the number of candidate design points, and m is the number of
parameters

w the vector of non-negative real numbers of length n representing the design

X an n times k matrix of coordinates of design points

w.pool a vector with components from the set "sum", "min", "max", "mean", "median",
"0" that determines various "pools" of the design weights along the projections
defined by the coordinates provided by X

w.color the color string for plotting the design weight (from the standard list of R colors)

w.size the size of the characters/balls that represent the non-zero design weights

w.pch the numerical code of the characters used to plot the non-zero design weights

w.cex the size of the text labels representing the magnitudes of the design weights

w.lim a threshold fraction of the total design weight to plot the labels

crit the optimality criterion. Possible values are "D", "A", "I", "C"

h a non-zero vector of length m corresponding to the coefficients of the linear pa-
rameter combination of interest. If crit is not "C" then h is ignored. If crit is
"C" and h=NULL then h is assumed to be c(0,...,0,1)

od_plot 31

dd.pool a vector with components from the set "sum", "min", "max", "mean", "median",
"0" that determines various "pools" of the directional derivatives along the pro-
jections defined by the coordinates provided by X

dd.color the color string for plotting the directional derivatives (from the standard list of
R colors)

dd.size the size of the characters that represent the directional derivatives

dd.pch the numerical code of the character used to plot the directional derivatives

asp the aspect ration of the axes

main.lab the main title of the plot

y.lab the label of the y axis

return.pools Return the pooled values?

echo Print the call of the function?

Details

This function performs a simple visualization of some aspects of an experimental design. It visual-
izes (the selected pools of) the design weights and (the selected pools of) the directional derivative.
The type of graph depends on the number of columns in X.

Value

If return.pool is set to TRUE, the procedure returns the data used to plot the figure. The data can
be used to plot a different figure according to the user’s needs.

Note

The labels of the axes correspond to the column names of X. For a large unique(Fx), rendering the
plot can take a considerable time. Note also that using RStudio, it may be a good idea to open an
external graphical window (using the command windows()) before running od_plot.

Author(s)

Radoslav Harman, Lenka Filova

See Also

od_pool, od_print

Examples

Compute a D-optimal approximate design
for the 2nd degree Fourier regression on a partial circle
Use several types of graphs to visualize the design

Fx <- Fx_cube(~I(cos(x1)) + I(sin(x1)) + I(cos(2*x1)) + I(sin(2*x1)),
lower = -2*pi/3, upper = 2*pi/3, n.levels = 121)

w <- od_REX(Fx)$w.best
par(mfrow = c(2, 2))

32 od_plot

od_plot(Fx, w, X = seq(-2*pi/3, 2*pi/3, length = 121), main = "Plot 1")
od_plot(Fx, w, X = Fx[, 2:3], asp = 1, main = "Plot 2")
od_plot(Fx, w, X = Fx[, c(2,5)], asp = 1, main = "Plot 3")
od_plot(Fx, w, X = Fx[, c(3,4)], asp = 1, main = "Plot 4")
par(mfrow = c(1, 1))

Not run:
Compute an I-efficient exact design of size 20 without replications
for the Scheffe mixture model
Use several types of graphs to visualize the design

Fx <- Fx_simplex(~x1 + x2 + x3 + I(x1*x2) + I(x1*x3) + I(x2*x3) - 1, 21)
w <- od_AQUA(Fx, b3=20, bin=TRUE, crit="I")$w.best
X <- Fx[, 1:2]
colnames(X) <- c("", "")
od_plot(Fx, w, X, asp = 1, main = "Plot 1")
od_plot(Fx, w, Fx[, 1:3], main = "Plot 2")

Compute a symmetrized D-optimal approximate design
for the full quadratic model with 4 factors
Use several types of graphs to visualize the design

form.q <- ~x1 + x2 + x3 + x4 + I(x1^2) + I(x2^2) + I(x3^2) + I(x4^2) +
I(x1*x2) + I(x1*x3) + I(x1*x4) + I(x2*x3) + I(x2*x4) + I(x3*x4)

Fx <- Fx_cube(form.q, n.levels = rep(11, 4))
w <- od_REX(Fx)$w.best
od_plot(Fx, w, Fx[, 2:3], dd.size=3)
od_plot(Fx, w, Fx[, 2:4], w.lim=Inf)

A more complex example:

Compute the D-optimal 17 point exact design
for the spring-balance weighing model with 4 items

Fx <- Fx_cube(~x1 + x2 + x3 + x4 - 1, lower = rep(0, 4))
w <- od_KL(Fx, 17, t.max = 5)$w.best
od_print(Fx, w)$design
U <- eigen(diag(4) - 0.25 * rep(1, 4)

A 2D visualization

X <- Fx[, 1:4]
X[, 2] <- -2*X[, 2]
colnames(X) <- c("V", "Number of items on the pan")
od_plot(Fx, w+0.001, X)
for(i in 1:16) for(j in 1:16)

if(sum(abs(Fx[i,1:4]-Fx[j,1:4]))==1)
lines(X[c(i,j),1], X[c(i,j),2])

A 3D visualization

X <- Fx[, 1:4]

od_pool 33

colnames(X) <- c("V1", "V2", "V3")
od_plot(Fx, w+0.001, X)
for(i in 1:16) for(j in 1:16)

if(sum(abs(Fx[i, 1:4] - Fx[j, 1:4])) == 1)
rgl::lines3d(X[c(i, j), 1], X[c(i, j), 2], X[c(i, j), 3])

End(Not run)

od_pool Pool of a vector

Description

A function pool.fun is applied to all the elements of a vector val that appear within the groups
formed by identical rows of a matrix X.

Usage

od_pool(X, val=NULL, pool.fun="sum", echo=TRUE)

Arguments

X the n times k matrix of real values.

val a real vector of length n.

pool.fun a string denoting the function to be applied to the subgroups of elements of
val corresponding to the identical rows of X. Possible values are "sum", "min",
"max", "mean", "median" and "0".

echo Print the call of the function?

Details

This function is useful for plotting (and understanding) of designs of experiments with more factors
than the dimension of the plot.

Value

A list with components:

call the call of the function

X.unique the matrix of unique rows of X

val.pooled the vector of the length nrows(X.unique) containing the values of val pooled
using pool.fun

Note

The function performs a non-trivial operation only if some of the rows of X are identical.

34 od_print

Author(s)

Radoslav Harman, Lenka Filova

See Also

od_plot, od_print

Examples

v1 <- c(1, 2, 3); v2 <- c(2, 4, 6); v3 <- c(2, 5, 3)
X <- rbind(v1, v1, v1, v1, v2, v3, v2, v3, v3)
val <- c(1, 2, 7, 9, 5, 8, 4, 3, 6)
od_pool(X, val, "sum")

The result $val.pooled is a vector with components:
19 (=1+2+7+9) because the first 4 rows of X are identical
9 (=5+4) because the 5th and the 7th rows of X are identical
17 (=8+3+6) because the 6th, the 8th and the 9th rows of X are identical

od_print Compact information about a design

Description

Prints various characteristics of an experimental design

Usage

od_print(Fx, w, X=NULL, h=NULL, echo=TRUE)

Arguments

Fx the n times m (where m>=2, m<=n) matrix containing all candidate regressors (as
rows), i.e., n is the number of candidate design points, and m is the number of
parameters

w the vector of non-negative real numbers of length n representing the design

X an n times k matrix of coordinates of design points

h a non-zero vector of length m corresponding to the coefficients of the linear pa-
rameter combination of interest. If crit is not "C" then h is ignored. If crit is
"C" and h=NULL then h is assumed to be c(0,...,0,1)

echo Print the call of the function?

od_PUK 35

Value

Output is a list with components

call the call of the function
design a matrix with the rows of Fx corresponding to non-zero design weights and the

non-weights themselves
M the information matrix of w
eigenvalues the eigenvalues of M
D.value the value of the D-optimality criterion for w
A.value the value of the A-optimality criterion for w
I.value the value of the I-optimality criterion for w
C.value the value of the C-optimality criterion for w
c.value the value of the c-optimality criterion for w

Author(s)

Radoslav Harman, Lenka Filova

See Also

od_plot, od_pool

Examples

Fx <- Fx_cube(~x1 + I(x1^2), n.levels = 11)
w <- 1:11/sum(1:11)
od_print(Fx, w, Fx[, 2])

od_PUK Efficient rounding of an approximate design

Description

Compute the classical efficient rounding of a non-normalized approximate design w such that the
resulting exact design has size floor(sum(w)).

Usage

od_PUK(Fx, w, echo=TRUE)

Arguments

Fx the n times m (where m>=2, m<=n) matrix containing all candidate regressors (as
rows), i.e., n is the number of candidate design points, and m (where m>=2) is the
number of parameters

w the vector of non-negative real numbers of length n representing the design
echo Print the call of the function?

36 od_RC

Value

The rounded version of w

Author(s)

Radoslav Harman and Samuel Rosa

References

Pukelsheim F, Rieder S (1992) Efficient rounding of approximate designs. Biometrika, 79(4), 763–
770.

Examples

Compute a D-optimal approximate design
Round it using the efficient rounding to various sizes
Visualize the designs

Fx <- Fx_cube(~x1 + I(x1^2) + I(x1^3), lower = 0, upper = 1, n.levels = 11)
w.app <- od_REX(Fx)$w.best
Phi.app <- optcrit(Fx, w.app)

w.ex10 <- od_PUK(Fx, 10*w.app)$w.round
w.ex20 <- od_PUK(Fx, 20*w.app)$w.round
w.ex30 <- od_PUK(Fx, 30*w.app)$w.round

par(mfrow = c(2, 2))
od_plot(Fx, w.app, main.lab = "Approximate")
od_plot(Fx, w.ex10, main.lab = paste("N=10, Eff:", round(optcrit(Fx, w.ex10)/Phi.app/10, 4)))
od_plot(Fx, w.ex20, main.lab = paste("N=20, Eff:", round(optcrit(Fx, w.ex20)/Phi.app/20, 4)))
od_plot(Fx, w.ex30, main.lab = paste("N=30, Eff:", round(optcrit(Fx, w.ex30)/Phi.app/30, 4)))
par(mfrow = c(1, 1))

od_RC Efficient exact design using the RC heuristic

Description

Computes an efficient exact design under multiple linear resource constraints using the RC heuristic.

Usage

od_RC(Fx, b, A = NULL, w0 = NULL, bin = FALSE, Phi.app = NULL, crit = "D",
h=NULL, w1 = NULL, rest.max = Inf, t.max = 120,
echo = TRUE, track=TRUE)

od_RC 37

Arguments

Fx the n times m (where m>=2, m<=n) matrix containing all candidate regressors (as
rows), i.e., n is the number of candidate design points, and m is the number of
parameters.

b, A the vector of length k with positive real components and the k times n matrix
of non-negative reals numbers. Each column of A must have at least one strictly
positive element. The linear constraints A%*%w<=b, w0<=w define the set of per-
missible designs w (where w0 is a described below.) The argument A can also
be NULL; in that case b must be a positive number and A is set to the 1 times n
matrix of ones.

w0 a non-negative vector of length n representing the design to be augmented (i.e.,
the function adds the constraint w >= w0 for permissible designs w). This argu-
ment can also be NULL; in that case, w0 is set to the vector of zeros.

bin Should each design point be used at most once?

Phi.app the optimal value of the corresponding approximate (relaxed) problem. If Phi.app
= NULL, a very conservative upper bound on Phi.app is pre-computed.

crit the optimality criterion. Possible values are "D", "A", "I", "C".

h a non-zero vector of length m corresponding to the coefficients of the linear pa-
rameter combination of interest. If crit is not "C" then h is ignored. If crit is
"C" and h=NULL then h is assumed to be c(0,...,0,1).

w1 an n times 1 nonnegative vector that represents the initial design. The design w1
must satisfy w0<=w1 and A*w1<=b. The argument w1 can also be NULL; in that
case the procedure sets w1 to be w0.

rest.max the maximum allowed number of restarts of the method.

t.max the time limit for the computation.

echo Print the call of the function?

track Trace the computation?

Details

This is an implementation of the algorithm proposed by Harman et al. (2016); see the references.
The inequalities A%*%w<=b, w0<=w with the specific properties mentioned above, form the so-called
resource constraints. They encompass many practical restrictions on the design, and lead to a
bounded set of feasible solutions.

The information matrix of w1 should preferably have the reciprocal condition number of at least
1e-5. Note that the floor of an optimal approximate design (computed for instance using od_MISOCP)
is often a good initial design. Alternatively, the initial design can be the result of another optimal
design procedure, such as od_AQUA. Even if no initial design is provided, the model should be non-
singular in the sense that there exists an exact design w with a well conditioned information matrix,
satisfying all constraints. If this requirement is not satisfied, the computation may fail, or it may
produce a deficient design.

The procedure always returns a permissible design, but in some cases, especially if t.max is too
small, the resulting design can be inefficient. The performance depends on the problem and on
the hardware used, but in most cases the function can compute a nearly-optimal exact design for

38 od_RC

a problem with a few hundreds design points and tens of constraints within minutes of computing
time. Because this is a heuristic method, we advise the user to verify the quality of the resulting
design by comparing it to the result of an alternative method (such as od_AQUA and od_MISOCP)
and/or by computing its efficiency relative to the corresponding optimal approximate design.

In the very special (but frequently used) case of the single constraint on the experimental size, it is
generally more efficient to use the function od_KL.

Value

A list with the following components:

call The call of the function.

w.best The resulting exact design.

supp The indices of the support of w.best.

w.supp The weights of w.best on the support.

M.best The information matrix of w.best.

Phi.best The criterion value of w.best.

eff.best A lower bound on the efficiency of w.best with respect to the optimal approxi-
mate design.

n.rest The number of restarts performed.

t.act The actual time of the computation.

Author(s)

Radoslav Harman, Alena Bachrata, Lenka Filova

References

Harman R, Bachrata A, Filova L (2016): Heuristic construction of exact experimental designs under
multiple resource constraints, Applied Stochastic Models in Business and Industry, Volume 32, pp.
3-17

See Also

od_AQUA, od_MISOCP, od_KL

Examples

Not run:
A D-efficient exact design for a quadratic model with 2 factors
constrained by the total time and the total cost of the experiment.
The cost of a single trial in (x1, x2) is 10 + x1 + 2*x2
The limit on the total cost is 1000
(we do not know the number of trials in advance)

form.quad <- ~x1 + x2 + I(x1^2) + I(x2^2) + I(x1 * x2)
Fx <- Fx_cube(form.quad, lower = c(0, 0), upper = c(10, 10), n.levels = c(11, 11))
n <- nrow(Fx); A <- matrix(0, nrow = 1, ncol = n)

od_REX 39

for(i in 1:n) A[1, i] <- 5 + Fx[i, 2] + 2*Fx[i, 3]
w <- od_RC(Fx, 1000, A, bin = TRUE, t.max = 8)$w.best
od_plot(Fx, w, Fx[, 2:3], dd.size = 3)

End(Not run)

od_REX Optimal approximate size-constrained design

Description

Computes an optimal approximate design under the standard (size) constraint using one of three
methods.

Usage

od_REX(Fx, crit="D", h=NULL, w1=NULL, alg.AA="REX",
eff=0.999999, it.max=Inf, t.max=60, echo=TRUE, track=TRUE)

Arguments

Fx the n times m (where m>=2, m<=n) matrix containing all candidate regressors (as
rows), i.e., n is the number of candidate design points, and m (where m>=2) is the
number of parameters

crit the optimality criterion. Possible values are "D", "A", "I", "C" and "c".

h a non-zero vector of length m corresponding to the coefficients of the linear pa-
rameter combination of interest. If crit is not "C" nor "c" then h is ignored. If
crit is "C" or "c" and h=NULL then h is assumed to be c(0,...,0,1).

w1 a real vector of length n with non-negative components, representing the initial
design. The information matrix of w1 must be nonsingular. It should have a
small support (e.g., m) provided that alg.AA="REX" and it should have the full
support of length n provided that alg.AA="MUL". The argument w1 can also be
NULL; in that case a non-singular initial design is generated by od_PIN.

alg.AA the computational method to be applied; possible choices are "REX", "MUL", and
"VDM". For crit="c", argument alg.AA is ignored and the function uses the
rapid linear programming approach (see the references).

eff the efficiency for the stopping rule in the interval (0,1). The algorithm will be
stopped if a lower bound on the efficiency of the actual design is equal or greater
than eff.

it.max the maximum allowed number of iterations of the method.

t.max the time limit for the computation.

echo Print the call of the function?

track Trace the computation?

40 od_REX

Details

The function implements three algorithms for the computation of optimal approximate designs with
respect to the criteria of D-, A-, I-, and C-optimality: the standard vertex-direction method ("VDM"),
the standard multiplicative method ("MUL"), and the randomized exchange method ("REX"). The
first two methods are classical and the method REX is proposed in Harman et al (2019).

For the specific criterion of c-optimality, the function runs the LP-based method from Harman and
Jurik (2008).

The information matrix of w1 should have the reciprocal condition number of at least 1e-5. Even
if no initial design is provided, the model should be non-singular in the sense that there exists
an approximate design w with an information matrix that is not severely ill-conditioned. If this
requirement is not satisfied, the computation may fail, or it may produce a deficient design. If
w1=NULL, the initial design is computed with od_PIN.

Since the result is a normalized approximate design, it only gives recommended proportions of
trials in individual design points. To convert it to an optimal approximate design of size N (under
the standard, i.e., size, constraints), just multiply w.best by N. To obtain an efficient exact design
with N trials, w.best must be multiplied by N and the result should be properly rounded to the
neighboring integers by, for example, od_PUK. However, it is often more efficient to directly use
od_KL to obtain an efficient exact design of size N.

Value

A list with the following components:

call The call of the function.

w.best The resulting exact design.

supp The indices of the support of w.best.

w.supp The weights of w.best on the support.

M.best The information matrix of w.best.

Phi.best The criterion value of w.best.

eff.best A lower bound on the efficiency of w.best with respect to the optimal approxi-
mate design.

n.iter The number of iterations performed.

t.act The actual time of the computation.

Note

REX is a randomized algorithm, therefore the resulting designs may differ from run to run. In case
that the optimal design is unique, the fluctuation of the results are minor and can be made negligible
by setting eff to a value very close to 1.

If the optimal design is not unique, REX provides a selection of significantly different optimal
designs by running it multiple times, which can help choosing the best optimal design based on a
secondary criterion.

A unique and often "symmetric" optimal design (within the possibly infinite set of optimal designs)
can be computed by od_SYM.

od_SYM 41

Note also that the optimal information matrix is always unique for criteria of D-, A-, I- and C-
optimality, even if the optimal design is not unique.

While the default choice is alg.AA="REX", our numerical experience suggests that alg.AA="MUL"
may be a better choice in problems with a relatively small n and a relatively large m.

The method VDM is included mostly for teaching purposes; it is only rarely competitive with REX
or MUL. Its advantage is that it tends to be easy to generalize to more complex optimum design
problems.

Author(s)

Radoslav Harman, Lenka Filova

References

Harman R, Jurik T (2008). Computing c-optimal experimental designs using the simplex method
of linear programming. Computational Statistics and Data Analysis 53 (2008) 247-254

Harman R, Filova L, Richtarik P (2019). A randomized exchange algorithm for computing optimal
approximate designs of experiments. Journal of the American Statistical Association, 1-30.

See Also

od_KL, od_RC, od_MISOCP, od_AQUA

Examples

Not run:
Note: Many small examples of od_REX are in other help files.

Compute an essentially perfect D-optimal design
on 10 million design points in a few seconds
n <- 10000000; m <- 5
Fx <- matrix(rnorm(n*m), ncol = m)
w <- od_REX(Fx, t.max = 10)$w.best
Fx.small <- od_DEL(Fx, w)$Fx.keep
w <- od_REX(Fx.small, eff = 0.999999999)$w.best
od_plot(Fx.small, w, Fx.small[, 1:2], dd.pch = 16, dd.size = 0.35)

End(Not run)

od_SYM Symmetrization of an approximate design

Description

Attempts to "symmetrize" an approximate design w by minimizing its norm while keeping its infor-
mation matrix.

42 od_SYM

Usage

od_SYM(Fx, w, b1=NULL, A1=NULL, b2=NULL, A2=NULL, b3=NULL, A3=NULL, w0=NULL,
crit="D", h=NULL, echo=TRUE)

Arguments

Fx the n times m (where m>=2, m<=n) matrix containing all candidate regressors (as
rows), i.e., n is the number of candidate design points, and m is the number of
parameters

w a non-negative vector of length n representing the design
b1, A1, b2, A2, b3, A3

the real vectors and matrices that define the constraints on permissible designs
w as follows: A1 %*% w <= b1, A2 %*% w >= b2, A3 %*% w == b3. Each of the argu-
ments can be NULL, but at least one of b1, b2, b3 must be non-NULL. If some bi
is non-NULL and Ai is NULL, then Ai is set to be matrix(1, nrow =1, ncol = n).

w0 a non-negative vector of length n representing the design to be augmented (i.e.,
the function adds the constraint w >= w0 for permissible designs w). This argu-
ment can also be NULL; in that case, w0 is set to the vector of zeros.

crit the optimality criterion. Possible values are "D", "A", "I", "C", "c".

h a non-zero vector of length m corresponding to the coefficients of the linear pa-
rameter combination of interest. If crit is not "C" nor "c" then h is ignored. If
crit is "C" or "c" and h=NULL then h is assumed to be c(0,...,0,1).

echo Print the call of the function?

Details

For some models, the optimum approximate design is not unique (although the optimum informa-
tion matrix usually is unique). This function uses one optimal approximate design to produce an
optimal approximate design with a minimum Euclidean norm, which is unique and usually more
"symmetric".

Value

A list with the following components:

call The call of the function

w.sym The resulting "symmetrized" approximate design

Author(s)

Radoslav Harman, Lenka Filova

References

Harman R, Filova L, Richtarik P (2019). A randomized exchange algorithm for computing opti-
mal approximate designs of experiments. Journal of the American Statistical Association, 1-30.
(Subsection 5.1)

optcrit 43

Examples

Compute a D-optimal approximate design using the randomized method REX.
Visualize both the design obtained by REX and its symmetrized version.

form.q <- ~x1 + x2 + x3 + I(x1^2) + I(x2^2) + I(x3^2) + I(x1*x2) + I(x1*x3) + I(x2*x3)
Fx <- Fx_cube(form.q, n.levels = c(5, 5, 5))
w.app <- od_REX(Fx)$w.best
od_plot(Fx, w.app, X=Fx[, 2:3])
w.app.sym <- od_SYM(Fx, w.app, b3 = 1)$w.sym
od_plot(Fx, w.app.sym, X=Fx[, 2:3])

optcrit Criterion value of a design

Description

Computes the criterion value of a design w in the model determined by the matrix Fx of all regres-
sors.

Usage

optcrit(Fx, w, crit="D", h=NULL, echo=TRUE)

Arguments

Fx the n times m (where m>=2, m<=n) matrix containing all candidate regressors (as
rows), i.e., n is the number of candidate design points, and m (where m>=2) is the
number of parameters.

w a non-negative vector of length n representing the design.

crit the criterion; possible values are "D", "A", "I", "C" and "c".

h a non-zero vector of length m corresponding to the coefficients of the linear pa-
rameter combination of interest. If crit is not "C" nor "c" then h is ignored. If
crit is "C" or "c" and h=NULL then h is assumed to be c(0,...,0,1).

echo Print the call of the function?

Details

The package works with optimality criteria as information functions, i.e., the criteria are concave,
positive homogeneous and upper semicontinuous on the set of all non-negative definite matrices.
The criteria are normalized such that they assign the value of 1 to any design with information
matrix equal to the identity matrix.

Value

A non-negative number corresponding to the criterion value.

44 varfun

Note

Since the criteria are positive homogeneous, the relative efficiency of two designs is just the ratio of
their criterion values.

Author(s)

Radoslav Harman, Lenka Filova

See Also

infmat

Examples

The Fx matrix for the spring balance weighing model with 6 weighed items.
Fx <- Fx_cube(~x1 + x2 + x3 + x4 + x5 + x6 - 1, lower = rep(0, 6), n.levels = rep(2, 6))

Criteria of the design of size 15 that weighs each pair of items exactly once.
w2 <- rep(0, 64); w2[apply(Fx, 1, sum) == 2] <- 1
optcrit(Fx, w2, crit = "D")
optcrit(Fx, w2, crit = "A")
optcrit(Fx, w2, crit = "I")

Criteria for the design of size 15 that weighs each quadruple of items exactly once.
w4 <- rep(0, 64); w4[apply(Fx, 1, sum) == 4] <- 1
optcrit(Fx, w4, crit = "D")
optcrit(Fx, w4, crit = "A")
optcrit(Fx, w4, crit = "I")

varfun Vector of variances

Description

Computes the vector of variances (sensitivities) for a given design w.

Usage

varfun(Fx, w, crit="D", h=NULL, echo=TRUE)

Arguments

Fx the n times m matrix of candidate regressors (as rows), where n is the number of
candidate design points and m (where m>=2, m<=n) is the number of parameters.

w a non-negative vector of length n representing the design.

crit the criterion; possible values are "D", "A", "I", "C" and "c".

varfun 45

h a non-zero vector of length m corresponding to the coefficients of the linear pa-
rameter combination of interest. If crit is not "C" nor "c" then h is ignored. If
crit is "C" or "c" and h=NULL then h is assumed to be c(0,...,0,1).

echo Print the call of the function?

Details

For D-optimality, the i-th element of the vector of variances is the variance of the best linear unbi-
ased estimator of the mean value of observations under the experimental conditions represented by
the i-th design point (where the variance of the observational errors is assumed to be 1). There is
a linear transformation relation of the vector of variances and the vector of directional derivatives
for the criterion of D-optimality. See the reference paper at http://www.iam.fmph.uniba.sk/
design/ for mathematical details.

Value

The vector of variances (sensitivities) for a given design w.

Note

The design w should have a non-singular information matrix.

Author(s)

Radoslav Harman, Lenka Filova

See Also

effbound, dirder

Examples

The values of the variance function (for crit=D)
of D-, I-, and C-optimal approximate design

Fx <- Fx_cube(~x1 + I(x1^2), n.levels = 21)
wD <- od_REX(Fx)$w.best
wI <- od_REX(Fx, crit="I")$w.best
wC <- od_REX(Fx, crit="C", h=c(1, 0, 0))$w.best
vD <- varfun(Fx, wD)
vI <- varfun(Fx, wI)
vC <- varfun(Fx, wC)
plot(Fx[, 2], rep(0, nrow(Fx)), ylim = c(0, max(vD, vI, vC)),

type = "n", xlab = "x", ylab = "var", lwd = 2)
grid()
lines(Fx[, 2], vD, col = "red")
lines(Fx[, 2], vI, col = "blue")
lines(Fx[, 2], vC, col = "green")

The D-optimal approximate design minimized the maximum
of the var. function (it is "G-optimal").

http://www.iam.fmph.uniba.sk/design/
http://www.iam.fmph.uniba.sk/design/

46 varfun

The I-optimal approximate design minimizes the integral of the var. function.
The C-optimal design with h=f(0) makes the var. function small around 0.

Index

∗ A-optimality
OptimalDesign-package, 2

∗ D-optimality
OptimalDesign-package, 2

∗ I-optimality
OptimalDesign-package, 2

∗ Optimal Design
OptimalDesign-package, 2

∗ c-optimality
OptimalDesign-package, 2

dirder, 2, 5, 45

effbound, 3, 4, 45

Fx_blocks, 6, 9, 11, 12, 15, 16
Fx_CtoA, 7, 13
Fx_cube, 7, 8, 11, 12, 15, 16
Fx_dose, 7, 9, 10, 12, 15, 16
Fx_glm, 7, 9, 11, 11, 15, 16
Fx_ItoA, 8, 13
Fx_simplex, 7, 9, 11, 12, 14, 16
Fx_survival, 7, 9, 11, 12, 15, 15

infmat, 17, 44

mvee_REX, 18

od_AQUA, 20, 25, 28, 37, 38, 41
od_DEL, 22
od_KL, 21, 24, 28, 38, 41
od_MISOCP, 21, 25, 26, 37, 38, 41
od_PIN, 24, 29, 40
od_plot, 30, 34, 35
od_pool, 31, 33, 35
od_print, 31, 34, 34
od_PUK, 35
od_RC, 21, 25, 28, 36, 41
od_REX, 19, 24, 39
od_SYM, 41
optcrit, 18, 43

OptimalDesign (OptimalDesign-package), 2
OptimalDesign-package, 2

varfun, 3, 5, 44

47

	OptimalDesign-package
	dirder
	effbound
	Fx_blocks
	Fx_CtoA
	Fx_cube
	Fx_dose
	Fx_glm
	Fx_ItoA
	Fx_simplex
	Fx_survival
	infmat
	mvee_REX
	od_AQUA
	od_DEL
	od_KL
	od_MISOCP
	od_PIN
	od_plot
	od_pool
	od_print
	od_PUK
	od_RC
	od_REX
	od_SYM
	optcrit
	varfun
	Index

