# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "OHPL" in publications use:' type: software license: GPL-3.0-only title: 'OHPL: Ordered Homogeneity Pursuit Lasso for Group Variable Selection' version: 1.4.1 doi: 10.1016/j.chemolab.2017.07.004 identifiers: - type: doi value: 10.32614/CRAN.package.OHPL - type: url value: https://ohpl.io/doc/ abstract: Ordered homogeneity pursuit lasso (OHPL) algorithm for group variable selection proposed in Lin et al. (2017) . The OHPL method exploits the homogeneity structure in high-dimensional data and enjoys the grouping effect to select groups of important variables automatically. This feature makes it particularly useful for high-dimensional datasets with strongly correlated variables, such as spectroscopic data. authors: - family-names: Lin given-names: You-Wu email: lyw015813@126.com - family-names: Xiao given-names: Nan email: me@nanx.me orcid: https://orcid.org/0000-0002-0250-5673 preferred-citation: type: article title: Ordered homogeneity pursuit lasso for group variable selection with applications to spectroscopic data authors: - family-names: Lin given-names: You-Wu email: lyw015813@126.com - family-names: Xiao given-names: Nan email: me@nanx.me orcid: https://orcid.org/0000-0002-0250-5673 - family-names: Wang given-names: Li-Li - family-names: Li given-names: Chuan-Quan - family-names: Xu given-names: Qing-Song journal: Chemometrics and Intelligent Laboratory Systems volume: '168' year: '2017' doi: 10.1016/j.chemolab.2017.07.004 start: '62' end: '71' repository: https://CRAN.R-project.org/package=OHPL repository-code: https://github.com/nanxstats/OHPL url: https://ohpl.io date-released: '2024-07-20' contact: - family-names: Xiao given-names: Nan email: me@nanx.me orcid: https://orcid.org/0000-0002-0250-5673