Title: | Niche-model-Based Species Identification |
---|---|
Description: | Species Identification using DNA Barcodes Integrated with Environmental Niche Models. |
Authors: | Cai-qing YANG [aut, cre], Xin-hai Li [aut], Michael christopher ORR [aut], Ai-bing ZHANG [aut] |
Maintainer: | Cai-qing YANG <[email protected]> |
License: | GPL (>= 3) |
Version: | 1.0 |
Built: | 2025-01-01 07:05:55 UTC |
Source: | CRAN |
A dataset containing 5 of the 19 bioclimatic variables randomly genereated as background points.
bak.vir
bak.vir
a class of matrix.
5000*5 matrix.
A dataset containing 5 of the 19 bioclimatic variables downloaded from WorldClim (version 1.4 with 10 arc minute resolution; Hijmans et al. 2005)).
en.vir
en.vir
a class of RasterBrick.
class: RasterBrick; dimensions : 360, 720, 259200, 5 (nrow, ncol, ncell, nlayers); resolution : 0.5, 0.5 (x, y); extent: -180, 180, -90, 90 (xmin, xmax, ymin, ymax); crs: +proj=longlat +datum=WGS84 +no_defs; source: memory; names: bio1,bio4,bio7,bio12,bio15.
Split comma-separated sample information into different columns of a data frame.
extractSpeInfo(seqID.full)
extractSpeInfo(seqID.full)
seqID.full |
Character, sample ID, taxon information and longitude and latitude data that splitted by comma in class character. |
A data frame of splitted sample ID, taxon information and longitude and latitude data for further analysis.
Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.
data(LappetMoths) ref.seq<-LappetMoths$ref.seq seqID.full<-rownames(ref.seq) infor<-extractSpeInfo(seqID.full) head(infor)
data(LappetMoths) ref.seq<-LappetMoths$ref.seq seqID.full<-rownames(ref.seq) infor<-extractSpeInfo(seqID.full) head(infor)
A dataset containing the sequences IDs of species, coordinates of species sampled, and other attributes
LappetMoths
LappetMoths
list of 8 data frames.
data frame,species identifications by other methods or barocodes,containing query IDs, species identified, and corresponding probablities.
data frame, containing query sampleIDs,and a set of corresponding environmental variables collected by users.
data frame, query samples,containing sample IDs,longitude and latitude of each sample.
query sequences in binary format stored in a matrix
data frame, containing reference sampleIDs, species names, and a set of environmental variables collected by users.
data frame, reference dataset containing sample IDs, taxon information,longitude and latitude of each sample.
reference sequences in binary format stored in a matrix
data frame, additional reference dataset containing taxon information, longitude and latitude of each species.
Calculate the proportion of monophyletic group on a tree given species vector and a tree.
monophyly.prop(phy, sppVector, singletonsMono = TRUE)
monophyly.prop(phy, sppVector, singletonsMono = TRUE)
phy |
A tree of class phylo. |
sppVector |
Species vector. |
singletonsMono |
Logical. Should singletons (i.e. only a single specimen representing that species) be treated as monophyletic? Default of TRUE. Possible values of FALSE and NA. |
A list containing proportion and number of monophyly group.
A set monophyly and of non-monophyly group names.
Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.
library(ape) tree<-ape::rtree(20) tree$tip.label<-sample(tree$tip.label[1:10],size=20,replace = TRUE) plot(tree) sppVector<-tree$tip.label MP<-monophyly.prop(tree,sppVector,singletonsMono = TRUE) MP
library(ape) tree<-ape::rtree(20) tree$tip.label<-sample(tree$tip.label[1:10],size=20,replace = TRUE) plot(tree) sppVector<-tree$tip.label MP<-monophyly.prop(tree,sppVector,singletonsMono = TRUE) MP
Species identification using DNA barcoding integrated with niche model.
NBSI( ref.seq, que.seq, model = "RF", independence = TRUE, ref.add = NULL, variables = "ALL", en.vir = NULL, bak.vir = NULL )
NBSI( ref.seq, que.seq, model = "RF", independence = TRUE, ref.add = NULL, variables = "ALL", en.vir = NULL, bak.vir = NULL )
ref.seq |
DNAbin, the reference dataset containing sample IDs, taxon information,longitude and latitude, and barcode sequences of samples. |
que.seq |
DNAbin, the query dataset containing sample IDs, longitude and latitude, and barcode sequences of samples. |
model |
Character, string indicating which niche model will be used. Must be one of "RF" (default) or "MAXENT". "MAXENT" can only be applied when the java program paste(system.file(package="dismo"), "/java/maxent.jar", sep=”) exists. |
independence |
Logical. Whether the barcode sequences are related to the ecological variables? |
ref.add |
Data.frame, the additional coordinates collected from GBIF or literatures. |
variables |
Character, the identifier of selected bioclimate variables. Default of "ALL" represents to use all the layers in en.vir; the alternative option of "SELECT" represents to randomly remove the highly-correlated variables (|r| larger than 0.9) with the exception of one layer. |
en.vir |
RasterBrick, the global bioclimate data output from "raster::getData" function. |
bak.vir |
Matrix, bioclimate variables of random background points. |
A dataframe of barcoding identification result for each query sample and corresponding niche model-based probability.
Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.
Breiman, L. 2001. Random forests. Machine Learning 45(1):5-32.
Liaw, A. and M. Wiener. 2002. Clasification and regression by randomForest. R News, 2/3:18-22.
Phillips, S.J., R.P. Anderson and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190:231-259.
Zhang, A.B., M.D. Hao, C.Q. Yang and Z.Y. Shi. (2017). BarcodingR: an integrated R package for species identification using DNA barcodes. Methods in Ecology and Evolution, 8:627-634.
Jin, Q., H.L. Han, X.M. Hu, X.H. Li, C.D. Zhu, S.Y.W. Ho, R.D. Ward and A.B. Zhang. 2013. Quantifying species diversity with a DNA barcoding-based method: Tibetan moth species (Noctuidae) on the Qinghai-Tibetan Plateau. PloS One, 8:e644.
Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15):1965-1978.
data(en.vir) data(bak.vir) #envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5) #en.vir<-raster::brick(envir) #back<-dismo::randomPoints(mask=en.vir,n=5000,ext=NULL,extf=1.1, # excludep=TRUE,prob=FALSE, # cellnumbers=FALSE,tryf=3,warn=2, # lonlatCorrection=TRUE) #bak.vir<-raster::extract(en.vir,back) library(ape) data(LappetMoths) ref.seq<-LappetMoths$ref.seq[1:50,] que.seq<-LappetMoths$que.seq[1:5,] NBSI.out<-NBSI(ref.seq,que.seq,ref.add=NULL, independence=TRUE, model="RF",variables="SELECT", en.vir=en.vir,bak.vir=bak.vir) NBSI.out ### Add a parameter when additional reference coordinates are available ### #ref.add<-LappetMoths$ref.add #NBSI.out2<-NBSI(ref.seq,que.seq,ref.add=ref.add, # independence=TRUE, # model="RF",variables="SELECT", # en.vir=en.vir,bak.vir=bak.vir) #NBSI.out2
data(en.vir) data(bak.vir) #envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5) #en.vir<-raster::brick(envir) #back<-dismo::randomPoints(mask=en.vir,n=5000,ext=NULL,extf=1.1, # excludep=TRUE,prob=FALSE, # cellnumbers=FALSE,tryf=3,warn=2, # lonlatCorrection=TRUE) #bak.vir<-raster::extract(en.vir,back) library(ape) data(LappetMoths) ref.seq<-LappetMoths$ref.seq[1:50,] que.seq<-LappetMoths$que.seq[1:5,] NBSI.out<-NBSI(ref.seq,que.seq,ref.add=NULL, independence=TRUE, model="RF",variables="SELECT", en.vir=en.vir,bak.vir=bak.vir) NBSI.out ### Add a parameter when additional reference coordinates are available ### #ref.add<-LappetMoths$ref.add #NBSI.out2<-NBSI(ref.seq,que.seq,ref.add=ref.add, # independence=TRUE, # model="RF",variables="SELECT", # en.vir=en.vir,bak.vir=bak.vir) #NBSI.out2
If users already have species identified by other barcodes or methods, they can use this function given the identified species names and corresponding probabilities to make further confirm by environmental niche model.
NBSI2( ref.infor = NULL, que.infor = NULL, ref.env = NULL, que.env = NULL, barcode.identi.result, model = "RF", variables = "ALL", en.vir = NULL, bak.vir = NULL )
NBSI2( ref.infor = NULL, que.infor = NULL, ref.env = NULL, que.env = NULL, barcode.identi.result, model = "RF", variables = "ALL", en.vir = NULL, bak.vir = NULL )
ref.infor |
Data frame, reference dataset containing sample IDs, taxon information,longitude and latitude of each sample. |
que.infor |
Data frame, query samples,containing sample IDs,longitude and latitude of each sample. |
ref.env |
Data frame,containing reference sampleIDs, species names, and a set of environmental variables collected by users. |
que.env |
Data frame,containing query sampleIDs,and a set of corresponding environmental variables collected by users. |
barcode.identi.result |
Data frame, species identifications by other methods or barocodes, containing query IDs, species identified, and corresponding probabilities. |
model |
Character, string indicating which niche model will be used. Must be one of "RF" (default) or "MAXENT". "MAXENT" can only be applied when the java program paste(system.file(package="dismo"), "/java/maxent.jar", sep=”) exists. |
variables |
Character, the identifier of selected bioclimate variables. Default of "ALL" represents to use all the layers in en.vir; the alternative option of "SELECT" represents to randomly remove the highly-correlated variables (|r| larger than 0.9) with the exception of one layer. |
en.vir |
RasterBrick, the global bioclimate data output from "raster::getData" function. |
bak.vir |
Matrix, bioclimate variables of random background points. |
A dataframe of identifications for query samples and their niche-based reliability.
Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.
Breiman, L. 2001. Random forests. Machine Learning 45(1):5-32.
Liaw, A. and M. Wiener. 2002. Clasification and regression by randomForest. R News, 2/3:18-22.
Phillips, S.J., R.P. Anderson and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190:231-259.
Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15):1965-1978.
data(en.vir) data(bak.vir) #envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5) #en.vir<-raster::brick(envir) #back<-dismo::randomPoints(mask=en.vir,n=5000,ext=NULL,extf=1.1, # excludep=TRUE,prob=FALSE, # cellnumbers=FALSE,tryf=3,warn=2, # lonlatCorrection=TRUE) #bak.vir<-raster::extract(en.vir,back) data(LappetMoths) barcode.identi.result<-LappetMoths$barcode.identi.result ref.infor<-LappetMoths$ref.infor que.infor<-LappetMoths$que.infor if(class(en.vir) == "NULL"){ NBSI2.out<-NBSI2(ref.infor=ref.infor,que.infor=que.infor, barcode.identi.result=barcode.identi.result, model="RF",variables="SELECT", en.vir=NULL,bak.vir=NULL) }else{ NBSI2.out<-NBSI2(ref.infor=ref.infor,que.infor=que.infor, barcode.identi.result=barcode.identi.result, model="RF",variables="SELECT", en.vir=en.vir,bak.vir=bak.vir) } NBSI2.out ref.env<-LappetMoths$ref.env que.env<-LappetMoths$que.env NBSI2.out2<-NBSI2(ref.env=ref.env,que.env=que.env, barcode.identi.result=barcode.identi.result, model="RF",variables="ALL", en.vir=en.vir,bak.vir=bak.vir) NBSI2.out2
data(en.vir) data(bak.vir) #envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5) #en.vir<-raster::brick(envir) #back<-dismo::randomPoints(mask=en.vir,n=5000,ext=NULL,extf=1.1, # excludep=TRUE,prob=FALSE, # cellnumbers=FALSE,tryf=3,warn=2, # lonlatCorrection=TRUE) #bak.vir<-raster::extract(en.vir,back) data(LappetMoths) barcode.identi.result<-LappetMoths$barcode.identi.result ref.infor<-LappetMoths$ref.infor que.infor<-LappetMoths$que.infor if(class(en.vir) == "NULL"){ NBSI2.out<-NBSI2(ref.infor=ref.infor,que.infor=que.infor, barcode.identi.result=barcode.identi.result, model="RF",variables="SELECT", en.vir=NULL,bak.vir=NULL) }else{ NBSI2.out<-NBSI2(ref.infor=ref.infor,que.infor=que.infor, barcode.identi.result=barcode.identi.result, model="RF",variables="SELECT", en.vir=en.vir,bak.vir=bak.vir) } NBSI2.out ref.env<-LappetMoths$ref.env que.env<-LappetMoths$que.env NBSI2.out2<-NBSI2(ref.env=ref.env,que.env=que.env, barcode.identi.result=barcode.identi.result, model="RF",variables="ALL", en.vir=en.vir,bak.vir=bak.vir) NBSI2.out2
Build a niche model for a given species according to its distribution data.
niche.Model.Build( prese = NULL, absen = NULL, prese.env = NULL, absen.env = NULL, model = "RF", en.vir = NULL, bak.vir = NULL )
niche.Model.Build( prese = NULL, absen = NULL, prese.env = NULL, absen.env = NULL, model = "RF", en.vir = NULL, bak.vir = NULL )
prese |
Data frame, longitude and latitude of the present data of a species (can be absent when providing prese.env parameter). |
absen |
Data frame, longitude and latitude of the absent data of a species.(can be absent when providing absen.env or back parameter). |
prese.env |
Data frame, bioclimate variables of present data. (can be absent when providing prese parameter). |
absen.env |
Data frame, bioclimate variables of absent data. (can be absent when providing absen or back parameter). |
model |
Character, string indicating which niche model will be used. Must be one of "RF" (default) or "MAXENT". "MAXENT" can only be applied when the java program paste(system.file(package="dismo"), "/java/maxent.jar", sep=”) exists. |
en.vir |
RasterBrick, the global bioclimate data output from "raster::getData" function. |
bak.vir |
Matrix, bioclimate variables of random background points. |
randomForest/MaxEnt, a trained niche model object.
A vector including the specificity, sensitivity and threshold of the trained model.
Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.
Breiman, L. 2001. Random forests. Machine Learning 45(1):5-32.
Liaw, A. and M. Wiener. 2002. Clasification and regression by randomForest. R News, 2/3:18-22.
Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15):1965-1978.
data(en.vir) data(bak.vir) #envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5) #en.vir<-raster::brick(envir) #back<-dismo::randomPoints(mask=en.vir,n=5000,ext=NULL,extf=1.1, # excludep=TRUE,prob=FALSE, # cellnumbers=FALSE,tryf=3,warn=2, # lonlatCorrection=TRUE) #bak.vir<-raster::extract(en.vir,back) data<-data.frame(species=rep("Acosmeryx anceus",3), Lon=c(145.380,145.270,135.461), Lat=c(-16.4800,-5.2500,-16.0810)) present.points<-pseudo.present.points(data,10,2,1,en.vir) NMB.out<-niche.Model.Build(prese=present.points,absen=NULL, prese.env=NULL,absen.env=NULL, model="RF", en.vir=en.vir,bak.vir=bak.vir) NMB.out prese.env<-raster::extract(en.vir,present.points[,2:3]) prese.env<-as.data.frame(prese.env) NMB.out2<-niche.Model.Build(prese=NULL,absen=NULL, prese.env=prese.env,absen.env=NULL, model="RF", en.vir=en.vir,bak.vir=bak.vir) NMB.out2
data(en.vir) data(bak.vir) #envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5) #en.vir<-raster::brick(envir) #back<-dismo::randomPoints(mask=en.vir,n=5000,ext=NULL,extf=1.1, # excludep=TRUE,prob=FALSE, # cellnumbers=FALSE,tryf=3,warn=2, # lonlatCorrection=TRUE) #bak.vir<-raster::extract(en.vir,back) data<-data.frame(species=rep("Acosmeryx anceus",3), Lon=c(145.380,145.270,135.461), Lat=c(-16.4800,-5.2500,-16.0810)) present.points<-pseudo.present.points(data,10,2,1,en.vir) NMB.out<-niche.Model.Build(prese=present.points,absen=NULL, prese.env=NULL,absen.env=NULL, model="RF", en.vir=en.vir,bak.vir=bak.vir) NMB.out prese.env<-raster::extract(en.vir,present.points[,2:3]) prese.env<-as.data.frame(prese.env) NMB.out2<-niche.Model.Build(prese=NULL,absen=NULL, prese.env=prese.env,absen.env=NULL, model="RF", en.vir=en.vir,bak.vir=bak.vir) NMB.out2
Determine whether unknown species belong to a known species through principal component analysis of ecological niche according to their distribution information.
niche.PCA(ref.lonlat, que.lonlat, en.vir = NULL)
niche.PCA(ref.lonlat, que.lonlat, en.vir = NULL)
ref.lonlat |
Data frame, longitude and latitude of the known species. |
que.lonlat |
Data frame, longitude and latitude of unknown species. |
en.vir |
RasterBrick, the globle bioclimate data obtained from "raster::getData" function. |
A list containing inportance and loadings of the components.
A dataframe of points that within the 95% confidence interval of the reference dataset ecological space.
A figure shows whether the query points (blue solid circles) are located in the 95%CI range of the niche space of reference species.
Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.
data(en.vir) #envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5) #en.vir<-raster::brick(envir) data(LappetMoths) ref.infor<-LappetMoths$ref.infor que.infor<-LappetMoths$que.infor #windows() # open a new plot window when the image format is abnormal nPCA<-niche.PCA(ref.lonlat=ref.infor[,3:5], que.lonlat=que.infor[,c(2,4:5)], en.vir=en.vir) nPCA$summary nPCA$que.CI data<-data.frame(species=rep("Acosmeryx anceus",3), Lon=c(145.380,145.270,135.461), Lat=c(-16.4800,-5.2500,-16.0810)) simuSites<-pseudo.present.points(data,500,4,2,en.vir) ref.lonlat<-simuSites[1:480,] que.lonlat<-simuSites[481:500,] #windows() # open a new plot window when the image format is abnormal nPCA2<-niche.PCA(ref.lonlat,que.lonlat,en.vir=en.vir) nPCA2$summary nPCA2$que.CI
data(en.vir) #envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5) #en.vir<-raster::brick(envir) data(LappetMoths) ref.infor<-LappetMoths$ref.infor que.infor<-LappetMoths$que.infor #windows() # open a new plot window when the image format is abnormal nPCA<-niche.PCA(ref.lonlat=ref.infor[,3:5], que.lonlat=que.infor[,c(2,4:5)], en.vir=en.vir) nPCA$summary nPCA$que.CI data<-data.frame(species=rep("Acosmeryx anceus",3), Lon=c(145.380,145.270,135.461), Lat=c(-16.4800,-5.2500,-16.0810)) simuSites<-pseudo.present.points(data,500,4,2,en.vir) ref.lonlat<-simuSites[1:480,] que.lonlat<-simuSites[481:500,] #windows() # open a new plot window when the image format is abnormal nPCA2<-niche.PCA(ref.lonlat,que.lonlat,en.vir=en.vir) nPCA2$summary nPCA2$que.CI
Randomly generate pseudo points outside the 95%CI of the ecological space of the present data when there is no absent data for building a niche model.
pseudo.absent.points(data, outputNum = 500, en.vir = NULL, map = TRUE)
pseudo.absent.points(data, outputNum = 500, en.vir = NULL, map = TRUE)
data |
Data frame, longitude and latitude of a single species. |
outputNum |
Numeric, the expected number of points. |
en.vir |
RasterBrick, the globle bioclimate data obtained from "raster::getData" function. |
map |
Logical. Should a map be drawn? |
A data frame of simulated pseudo points.
A data frame of bioclimate variables of each pseudo points.
Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.
data(en.vir) #envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5) #en.vir<-raster::brick(envir) data<-data.frame(species=rep("Acosmeryx anceus",3), Lon=c(145.380,145.270,135.461), Lat=c(-16.4800,-5.2500,-16.0810)) absent.points<-pseudo.absent.points(data,en.vir=en.vir,outputNum=100) head(absent.points$lonlat) head(absent.points$envir)
data(en.vir) #envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5) #en.vir<-raster::brick(envir) data<-data.frame(species=rep("Acosmeryx anceus",3), Lon=c(145.380,145.270,135.461), Lat=c(-16.4800,-5.2500,-16.0810)) absent.points<-pseudo.absent.points(data,en.vir=en.vir,outputNum=100) head(absent.points$lonlat) head(absent.points$envir)
Randomly generate pseudo points around actual present distribution site when the number of present points is inadequate for building a niche model.
pseudo.present.points( data, outputNum = 50, lonRange = 2, latRange = 1, en.vir = NULL, map = TRUE )
pseudo.present.points( data, outputNum = 50, lonRange = 2, latRange = 1, en.vir = NULL, map = TRUE )
data |
Data frame, longitude and latitude of a single species. |
outputNum |
Numeric, the expected number of points. |
lonRange |
Range of the longitude of the points generated. |
latRange |
Range of the latitude of the points generated. |
en.vir |
RasterBrick, the globle bioclimate data obtained from "raster::getData" function. |
map |
Logical. Should a map be drawn? |
A data frame, containing actual present points and simulated pseudo points.
Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.
data(en.vir) #envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5) #en.vir<-raster::brick(envir) data<-data.frame(species=rep("Acosmeryx anceus",3), Lon=c(145.380,145.270,135.461), Lat=c(-16.4800,-5.2500,-16.0810)) present.points<-pseudo.present.points(data,10,2,1,en.vir=en.vir) present.points
data(en.vir) #envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5) #en.vir<-raster::brick(envir) data<-data.frame(species=rep("Acosmeryx anceus",3), Lon=c(145.380,145.270,135.461), Lat=c(-16.4800,-5.2500,-16.0810)) present.points<-pseudo.present.points(data,10,2,1,en.vir=en.vir) present.points
Determine the independence between genetic distance and ecological distance for a reference dataset at the level of species.
spe.mantel.test( fas, dna.model = "raw", ecol.dist.method = "euclidean", mantel.method = "spearman", permutations = 999, en.vir = NULL )
spe.mantel.test( fas, dna.model = "raw", ecol.dist.method = "euclidean", mantel.method = "spearman", permutations = 999, en.vir = NULL )
fas |
DNAbin, reference dataset containing sample IDs, taxon information, longitude and latitude, and barcode sequences of samples. |
dna.model |
Character, specifying the evolutionary model to be used; must be one of "raw" (default), "N", "TS", "TV", "JC69", "K80", "F81", "K81", "F84", "BH87", "T92", "TN93", "GG95", "logdet", "paralin", "indel", or "indelblock". |
ecol.dist.method |
Character, distance measure to be used; must be one of "euclidean" (default), "maximum", "manhattan", "canberra", "binary" or "minkowski". |
mantel.method |
Character, correlation method, as accepted by cor: "pearson","spearman" (default) or "kendall". |
permutations |
Numeric, the number of permutations required. |
en.vir |
RasterBrick, the global bioclimate data output from "raster::getData" function. |
The Mantel statistic.
The empirical significance level from permutations.
A matrix of interspecific pairwise genetic distance.
A matrix of interspecific pairwise ecological distance.
Cai-qing YANG (Email: yangcq_ivy(at)163.com) and Ai-bing ZHANG (Email:zhangab2008(at)cnu.edu.cn), Capital Normal University (CNU), Beijing, CHINA.
Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Can. Res. 27:209-220.
Oksanen J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs and H Wagner. 2016. vegan: Community Ecology Package https://CRAN.R-project.org/package=vegan. r package version 2.5-6.
data(en.vir) #envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5) #en.vir<-raster::brick(envir) library(ape) data(LappetMoths) ref.seq<-LappetMoths$ref.seq spe.mantel<-spe.mantel.test(fas=ref.seq,en.vir=en.vir) spe.mantel$MantelStat.r spe.mantel$p.value
data(en.vir) #envir<-raster::getData("worldclim",download=FALSE,var="bio",res=2.5) #en.vir<-raster::brick(envir) library(ape) data(LappetMoths) ref.seq<-LappetMoths$ref.seq spe.mantel<-spe.mantel.test(fas=ref.seq,en.vir=en.vir) spe.mantel$MantelStat.r spe.mantel$p.value