library(NiLeDAM)
#>
#> ***********************************************************
#>
#> Welcome to the NiLeDAM package
#> An online graphical interface is available at:
#> http://shiny.nathalievilla.org/niledam
#> or run: liveNILEDAM()
#> Citation details with citation('NiLeDAM')
#>
#> For questions/remarks, please contact the maintainer:
#> [email protected]
#>
#> ***********************************************************
The package NiLeDAM
will be tested on a data set called
srilanka, provided by Anne-Magali Seydoux-Guillaume and
published in Seydoux-Guillaume et al. (2012). For more
information about this dataset, refer to the help page:
summary(srilanka)
#> U errU Th ErrTh Pb
#> Min. : 495 Min. :229.0 Min. : 41275 Min. : 856 Min. :1000
#> 1st Qu.:1816 1st Qu.:239.0 1st Qu.: 62489 1st Qu.:1006 1st Qu.:1548
#> Median :6275 Median :271.0 Median :187783 Median :1711 Median :4562
#> Mean :4276 Mean :256.8 Mean :139063 Mean :1433 Mean :3457
#> 3rd Qu.:6760 3rd Qu.:274.0 3rd Qu.:199075 3rd Qu.:1768 3rd Qu.:4871
#> Max. :7359 Max. :277.0 Max. :215401 Max. :1852 Max. :5365
#> ErrPb
#> Min. :314.0
#> 1st Qu.:318.0
#> Median :338.0
#> Mean :331.3
#> 3rd Qu.:341.0
#> Max. :345.0
calculateAges()
As a first step, ages are calculated with the help of the function
calculateAges()
.
nloops
to at least
1000. The larger the number of bootstraps, the more
time-consuming the function gets.seed
is used to make results reproducible.
Any integer can be used.level = 0.05
(statistical risk for the
tests) and verbose = TRUE
.Remark: the data frame used in this function must have exactly 6 columns as the srilanka data set has (in that order). If not, then the function will generate an error.
calculated.ages <- calculateAges(srilanka, nloops = 10, seed = 12, verbose = TRUE)
#> Age estimation...
#> MC simulations...
#> (it might take a while if 'nloops' is large...)
#>
#> 32 ages and confidence intervals estimated from 10 bootstrap samples.
#> Summary:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 447.0 491.2 505.5 515.3 546.5 598.0
What contains this ages
object ?
calculated.ages@ages
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#> 569 447 598 515 543 567 557 567 458 497 481 497 520 519 477 559 515 525 493 581
#> 21 22 23 24 25 26 27 28 29 30 31 32
#> 561 501 479 500 482 505 486 468 506 501 521 494
calculated.ages@ci
#> 1 2 3 4 5 6 7 8 9
#> 2.5% 530.200 384.375 534.600 443.800 487.35 541.900 478.350 521.35 448.225
#> 97.5% 660.325 542.125 662.425 569.725 586.55 612.475 603.175 599.50 486.775
#> 10 11 12 13 14 15 16 17 18
#> 2.5% 447.825 457.925 475.575 496.35 496.025 438.675 434.725 336.075 390.625
#> 97.5% 508.775 508.500 512.975 543.65 539.325 549.275 744.650 572.775 596.475
#> 19 20 21 22 23 24 25 26 27
#> 2.5% 421.175 500.125 497.175 480.675 439.575 475.925 441.925 473.90 473.575
#> 97.5% 535.400 680.450 692.750 533.625 485.775 522.200 510.000 530.05 505.600
#> 28 29 30 31 32
#> 2.5% 453.90 485.95 489.125 488.60 468.725
#> 97.5% 488.75 531.30 518.975 540.65 507.875
tests()
Then, one can estimate the number of age populations using the
previously generated object. This is done with the function
tests
, which help page is accessible with:
One can either test a unique number or a sequence of numbers to find the most likely number of different populations of ages (or common ages).
Here, 1 to 3 populations are tested:
res.tests <- tests(calculated.ages, nbmin = 1, nbmax = 3, verbose = TRUE)
#> Test if the 32 estimated ages are coming from
#> 1 2 3
#> population(s).
#>
#> The ages are found to be likely coming from 2 population(s) at level 5 %.
#> Chi2 test statistic: 26.52015 ~ df: 30
#>
#> Estimated ages: 566 494
#>
#> Population numbers:
#> 1 2 1 2 1 1 1 1 2 2 2 2 2 2 2 1 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2
It appears that the samples come from 2 different populations of ages.
Finally, the results can be visualized thanks to the following methods:
plot
to plot the sample age densities as well as the
common age densitiespopline
to plot samples with Th* (calculated from
estimated ages and from U) on x-axis and with Pb on y-axiscalculateAges()
calculated.ages <- calculateAges(srilanka2, nloops = 10, seed = 12)
#> Age estimation...
#> MC simulations...
#> (it might take a while if 'nloops' is large...)
#>
#> 24 ages and confidence intervals estimated from 10 bootstrap samples.
#> Summary:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 458.0 485.0 500.5 505.2 519.2 581.0
tests()
res.tests <- tests(calculated.ages, nbmax = 3)
#> Test if the 24 estimated ages are coming from
#> 1 2 3
#> population(s).
#>
#> The ages are found to be likely coming from 1 population(s) at level 5 %.
#> Chi2 test statistic: 28.15801 ~ df: 23
#>
#> Estimated ages: 493
#>
#> Population numbers:
#> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
This time, only one population is identified (as expected).
NiLeDAM also contains a shiny graphical interface that can be used to perform the actions described above. This interface in launched using:
Seydoux-Guillaume A.M., Montel J.M., Bingen B., Bosse V., de Parseval P., Paquette J.L., Janots E., Wirth R. (2012) Low-temperature alteration of monazite: fluid mediated coupled dissolution-precipitation, irradiation damage and disturbance of the U-Pb and Th-Pb chronometers. Chemical Geology, 330–331, 140–158.