Title: | Simulation and Estimation of the Neyman-Scott Type Spatial Cluster Models |
---|---|
Description: | Simulation and estimation for Neyman-Scott spatial cluster point process models and their extensions, based on the methodology in Tanaka, Ogata, and Stoyan (2008) <doi:10.1002/bimj.200610339>. To estimate parameters by the simplex method, parallel computation using 'OpenMP' application programming interface is available. For more details see Tanaka, Saga and Nakano <doi:10.18637/jss.v098.i06>. |
Authors: | Ushio Tanaka [aut] (Fortran original), Masami Saga [aut, cre], Junji Nakano [aut] |
Maintainer: | Masami Saga <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.3.6-1 |
Built: | 2024-12-11 07:22:51 UTC |
Source: | CRAN |
NScluster involves the maximum Palm likelihood estimation procedure for Neyman-Scott cluster point process models and their extensions with parallel computation using OpenMP technology. The maximum Palm likelihood estimates (MPLEs for short) are those that maximize the log-Palm likelihood function. The computation of MPLEs is implemented by simplex maximization with parallel computation via OpenMP. Together with the likelihood estimation procedure, NScluster also provides a simulation procedure for cluster point process models.
The documentation 'A Guide to NScluster: R Package for Maximum Palm Likelihood
Estimation for Cluster Point Process Models using OpenMP' is available in the
package vignette using the vignette
function (e.g.,
vignette("NScluster")
).
The package NScluster comprises of four tasks: simulation, parameter estimation (MPLE), confidence interval estimation, and non-parametric and parametric Palm intensity comparison.
Simulation:
The sim.cppm
function simulates the five cluster point
process models: the Thomas and Inverse-power type models, and the extended
Thomas models of type A, B, and C.
Parameter estimation (MPLE):
The mple.cppm
function improves the given initial parameters
using the simplex method to maximize the log-Palm likelihood function.
The expensive calculation of the estimation for calculating the parameters can be parallelized to reduce calculation time. The package is implemented to employ OpenMP, which is a simple framework for shared memory parallel computation.
Confidence interval of parameter estimates:
The boot.mple
function carries out the bootstarp replicates
for an object generated by mple.cppm
and computes confidence
intervals and standard errors.
Palm intensity comparison:
The package can depict non-parametric and parametric normalized Palm
intensity function of the five cluster point process models using the
palm.cppm
function.
Tanaka, U., Ogata, Y. and Katsura, K. (2008) Simulation and estimation of the Neyman-Scott type spatial cluster models. Computer Science Monographs 34, 1-44. The Institute of Statistical Mathematics, Tokyo. https://www.ism.ac.jp/editsec/csm/
Tanaka, U., Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for Neyman-Scott point processes. Biometrical Journal 50, 43-57.
Tanaka, U., Saga, M. and Nakano, J. (2021) NScluster: An R Package for Maximum Palm Likelihood Estimation for Cluster Point Process Models Using OpenMP. Journal of Statistical Software, 98(6), 1-22. doi:10.18637/jss.v098.i06.
Carry out bootstrap replicates of MPLE on simulated data.
boot.mple(mple.out, n = 100, conf.level = 0.95, se = TRUE, trace = FALSE) ## S3 method for class 'boot.mple' summary(object, ...)
boot.mple(mple.out, n = 100, conf.level = 0.95, se = TRUE, trace = FALSE) ## S3 method for class 'boot.mple' summary(object, ...)
mple.out |
an object of class "mple", usually the result of a call to
|
n |
number of bootstrap replicates performed. |
conf.level |
the confidence level required. |
se |
logical. If |
trace |
logical: if |
object |
an object of class |
... |
ignored. |
boot.mple
returns an object of class "boot.mple"
containing the
following components:
boot.mples |
a matrix of |
confint |
confidence intervals for MPLEs. |
mple |
MPLE of |
### Thomas Model # simulation pars <- c(mu = 50.0, nu = 30.0, sigma = 0.03) t.sim <- sim.cppm("Thomas", pars, seed = 117) ## Not run: # estimation (need long CPU time) init.pars <- c(mu = 40.0, nu = 40.0, sigma = 0.05) t.mple <- mple.cppm("Thomas", t.sim$offspring$xy, init.pars) t.boot <- boot.mple(t.mple) summary(t.boot) ## End(Not run)
### Thomas Model # simulation pars <- c(mu = 50.0, nu = 30.0, sigma = 0.03) t.sim <- sim.cppm("Thomas", pars, seed = 117) ## Not run: # estimation (need long CPU time) init.pars <- c(mu = 40.0, nu = 40.0, sigma = 0.05) t.mple <- mple.cppm("Thomas", t.sim$offspring$xy, init.pars) t.boot <- boot.mple(t.mple) summary(t.boot) ## End(Not run)
MPLE of the five cluster point process models.
mple.cppm(model = "Thomas", xy.points, pars = NULL, eps = 0.001, uplimit = 0.3, skip = 1) ## S3 method for class 'mple' coef(object, ...) ## S3 method for class 'mple' summary(object, ...)
mple.cppm(model = "Thomas", xy.points, pars = NULL, eps = 0.001, uplimit = 0.3, skip = 1) ## S3 method for class 'mple' coef(object, ...) ## S3 method for class 'mple' summary(object, ...)
model |
a character string indicating each cluster point process model:
|
xy.points |
a matrix containing the coordinates |
pars |
a named vector containing a given initial guess of each
parameter. If |
eps |
the sufficiently small number to implement the optimization
procedure for the log-Palm likelihood function. The procedure is iterated
at most 1000 times until the |
uplimit |
upper limit in place of |
skip |
the variable enables one to obtain speedily the initial MPLEs, but
rough approximation. The |
object |
an object of class |
... |
ignored. |
"Thomas"
(Thomas model)
The Palm intensity function is given as follows:
For all ,
The log-Palm likelihood function is given by
"TypeB"
(Type B model)
The Palm intensity function is given as follows:
For all ,
where and
are the total
intensity and the ratio of the intensity of the parent points of the
smaller cluster to the total one, respectively.
The log-Palm likelihood function is given by
where and
.
"TypeC"
(Type C model)
The Palm intensity function is given as follows:
For all ,
where and
are the total intensity and the
ratio of the intensity of the smaller cluster to the total one,
respectively.
The log-Palm likelihood function is given by
where and
.
For the inverse-power model and the Type A models, we need to take the alternative form without explicit representation of the Palm intensity function. See the second reference below for details.
mple.cppm
returns an object of class "mple"
containing the
following main components:
mple |
MPLE (maximum Palm likelihood estimate). |
log.mpl |
the log maximum Palm likelihood. |
aic |
AIC. |
process1 |
a list with following components.
|
process2 |
a list with following components.
|
There are other methods plot.mple
and print.mple
for this class.
Tanaka, U., Ogata, Y. and Katsura, K. (2008) Simulation and estimation of the Neyman-Scott type spatial cluster models. Computer Science Monographs 34, 1-44. The Institute of Statistical Mathematics, Tokyo. https://www.ism.ac.jp/editsec/csm/.
Tanaka, U., Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for Neyman-Scott point processes. Biometrical Journal 50, 43-57.
## Not run: # The computation of MPLEs takes a long CPU time in the minimization procedure, # especially for the Inverse-power type and the Type A models. ### Thomas Model # simulation pars <- c(mu = 50.0, nu = 30.0, sigma = 0.03) t.sim <- sim.cppm("Thomas", pars, seed = 117) ## estimation init.pars <- c(mu = 40.0, nu = 40.0, sigma = 0.05) t.mple <- mple.cppm("Thomas", t.sim$offspring$xy, init.pars) coef(t.mple) ### Inverse-Power Type Model # simulation pars <- c(mu = 50.0, nu = 30.0, p = 1.5, c = 0.005) ip.sim <- sim.cppm("IP", pars, seed = 353) ## estimation init.pars <- c(mu = 55.0, nu = 35.0, p = 1.0, c = 0.01) ip.mple <- mple.cppm("IP", ip.sim$offspring$xy, init.pars, skip = 100) coef(ip.mple) ### Type A Model # simulation pars <- c(mu = 50.0, nu = 30.0, a = 0.3, sigma1 = 0.005, sigma2 = 0.1) a.sim <- sim.cppm("TypeA", pars, seed = 575) ## estimation init.pars <- c(mu = 60.0, nu = 40.0, a = 0.5, sigma1 = 0.01, sigma2 = 0.1) a.mple <- mple.cppm("TypeA", a.sim$offspring$xy, init.pars, skip = 100) coef(a.mple) ### Type B Model # simulation pars <- c(mu1 = 10.0, mu2 = 40.0, nu = 30.0, sigma1 = 0.01, sigma2 = 0.03) b.sim <- sim.cppm("TypeB", pars, seed = 257) ## estimation init.pars <- c(mu1 = 20.0, mu2 = 30.0, nu = 30.0, sigma1 = 0.02, sigma2 = 0.02) b.mple <- mple.cppm("TypeB", b.sim$offspring$xy, init.pars) coef(b.mple) ### Type C Model # simulation pars <- c(mu1 = 5.0, mu2 = 9.0, nu1 = 30.0, nu2 = 150.0, sigma1 = 0.01, sigma2 = 0.05) c.sim <- sim.cppm("TypeC", pars, seed = 555) ## estimation init.pars <- c(mu1 = 10.0, mu2 = 10.0, nu1 = 30.0, nu2 = 120.0, sigma1 = 0.03, sigma2 = 0.03) c.mple <- mple.cppm("TypeC", c.sim$offspring$xy, init.pars) coef(c.mple) ## End(Not run)
## Not run: # The computation of MPLEs takes a long CPU time in the minimization procedure, # especially for the Inverse-power type and the Type A models. ### Thomas Model # simulation pars <- c(mu = 50.0, nu = 30.0, sigma = 0.03) t.sim <- sim.cppm("Thomas", pars, seed = 117) ## estimation init.pars <- c(mu = 40.0, nu = 40.0, sigma = 0.05) t.mple <- mple.cppm("Thomas", t.sim$offspring$xy, init.pars) coef(t.mple) ### Inverse-Power Type Model # simulation pars <- c(mu = 50.0, nu = 30.0, p = 1.5, c = 0.005) ip.sim <- sim.cppm("IP", pars, seed = 353) ## estimation init.pars <- c(mu = 55.0, nu = 35.0, p = 1.0, c = 0.01) ip.mple <- mple.cppm("IP", ip.sim$offspring$xy, init.pars, skip = 100) coef(ip.mple) ### Type A Model # simulation pars <- c(mu = 50.0, nu = 30.0, a = 0.3, sigma1 = 0.005, sigma2 = 0.1) a.sim <- sim.cppm("TypeA", pars, seed = 575) ## estimation init.pars <- c(mu = 60.0, nu = 40.0, a = 0.5, sigma1 = 0.01, sigma2 = 0.1) a.mple <- mple.cppm("TypeA", a.sim$offspring$xy, init.pars, skip = 100) coef(a.mple) ### Type B Model # simulation pars <- c(mu1 = 10.0, mu2 = 40.0, nu = 30.0, sigma1 = 0.01, sigma2 = 0.03) b.sim <- sim.cppm("TypeB", pars, seed = 257) ## estimation init.pars <- c(mu1 = 20.0, mu2 = 30.0, nu = 30.0, sigma1 = 0.02, sigma2 = 0.02) b.mple <- mple.cppm("TypeB", b.sim$offspring$xy, init.pars) coef(b.mple) ### Type C Model # simulation pars <- c(mu1 = 5.0, mu2 = 9.0, nu1 = 30.0, nu2 = 150.0, sigma1 = 0.01, sigma2 = 0.05) c.sim <- sim.cppm("TypeC", pars, seed = 555) ## estimation init.pars <- c(mu1 = 10.0, mu2 = 10.0, nu1 = 30.0, nu2 = 120.0, sigma1 = 0.03, sigma2 = 0.03) c.mple <- mple.cppm("TypeC", c.sim$offspring$xy, init.pars) coef(c.mple) ## End(Not run)
Compute the non-parametric and the parametric Palm intensity function of the Neyman-Scott cluster point process models and their extensions.
palm.cppm(mple, pars = NULL, delta = 0.001, uplimit = 0.3) ## S3 method for class 'Palm' print(x, ...)
palm.cppm(mple, pars = NULL, delta = 0.001, uplimit = 0.3) ## S3 method for class 'Palm' print(x, ...)
mple |
an object of class "mple". |
pars |
a named vector of the true parameters, if any. |
delta |
a width for the non-parametric Palm intensity function. |
uplimit |
upper limit in place of |
x |
an object of class |
... |
ignored. |
An object of class "Palm"
containing the following components:
r |
the distance |
np.palm |
the corresponding values of the non-parametric Palm intensity
function, which is normalized by the total intensity estimate (the mean
number of points in |
norm.palm |
the corresponding values of the normalized Palm intensity
function, i.e., |
There is another method plot.Palm
for this class.
Tanaka, U., Ogata, Y. and Katsura, K. (2008) Simulation and estimation of the Neyman-Scott type spatial cluster models. Computer Science Monographs 34, 1-44. The Institute of Statistical Mathematics, Tokyo. https://www.ism.ac.jp/editsec/csm/.
See sim.cppm
and mple.cppm
to simulate the
Neyman-Scott cluster point process models and their extensions and to compute
the MPLEs, respectively.
## Not run: # The computation of MPLEs takes a long CPU time in the minimization procedure, # especially for the Inverse-power type and the Type A models. ### Thomas Model #simulation pars <- c(mu = 50.0, nu = 30.0, sigma = 0.03) t.sim <- sim.cppm("Thomas", pars, seed = 117) ## estimation => Palm intensity init.pars <- c(mu = 40.0, nu = 40.0, sigma = 0.05) t.mple <- mple.cppm("Thomas", t.sim$offspring$xy, init.pars) t.palm <- palm.cppm(t.mple, pars) plot(t.palm) ### Inverse-Power Type Model # simulation pars <- c(mu = 50.0, nu = 30.0, p = 1.5, c = 0.005) ip.sim <- sim.cppm("IP", pars, seed = 353) ## estimation => Palm intensity init.pars <- c(mu = 55.0, nu = 35.0, p = 1.0, c = 0.01) ip.mple <- mple.cppm("IP", ip.sim$offspring$xy, init.pars, skip = 100) ip.palm <- palm.cppm(ip.mple, pars) plot(ip.palm) ### Type A Model # simulation pars <- c(mu = 50.0, nu = 30.0, a = 0.3, sigma1 = 0.005, sigma2 = 0.1) a.sim <- sim.cppm("TypeA", pars, seed=575) ## estimation => Palm intensity init.pars <- c(mu=60.0, nu=40.0, a=0.5, sigma1=0.01, sigma2=0.1) a.mple <- mple.cppm("TypeA", a.sim$offspring$xy, init.pars, skip=100) a.palm <- palm.cppm(a.mple, pars) plot(a.palm) ### Type B Model # simulation pars <- c(mu1 = 10.0, mu2 = 40.0, nu = 30.0, sigma1 = 0.01, sigma2 = 0.03) b.sim <- sim.cppm("TypeB", pars, seed = 257) ## estimation => Palm intensity init.pars <- c(mu1 = 20.0, mu2 = 30.0, nu = 30.0, sigma1 = 0.02, sigma2 = 0.02) b.mple <- mple.cppm("TypeB", b.sim$offspring$xy, init.pars) b.palm <- palm.cppm(b.mple, pars) plot(b.palm) ### Type C Model # simulation pars <- c(mu1 = 5.0, mu2 = 9.0, nu1 = 30.0, nu2 = 150.0, sigma1 = 0.01, sigma2 = 0.05) c.sim <- sim.cppm("TypeC", pars, seed = 555) ## estimation => Palm intensity init.pars <- c(mu1 = 10.0, mu2 = 10.0, nu1 = 30.0, nu2 = 120.0, sigma1 = 0.03, sigma2 = 0.03) c.mple <- mple.cppm("TypeC", c.sim$offspring$xy, init.pars) c.palm <- palm.cppm(c.mple, pars) plot(c.palm) ## End(Not run)
## Not run: # The computation of MPLEs takes a long CPU time in the minimization procedure, # especially for the Inverse-power type and the Type A models. ### Thomas Model #simulation pars <- c(mu = 50.0, nu = 30.0, sigma = 0.03) t.sim <- sim.cppm("Thomas", pars, seed = 117) ## estimation => Palm intensity init.pars <- c(mu = 40.0, nu = 40.0, sigma = 0.05) t.mple <- mple.cppm("Thomas", t.sim$offspring$xy, init.pars) t.palm <- palm.cppm(t.mple, pars) plot(t.palm) ### Inverse-Power Type Model # simulation pars <- c(mu = 50.0, nu = 30.0, p = 1.5, c = 0.005) ip.sim <- sim.cppm("IP", pars, seed = 353) ## estimation => Palm intensity init.pars <- c(mu = 55.0, nu = 35.0, p = 1.0, c = 0.01) ip.mple <- mple.cppm("IP", ip.sim$offspring$xy, init.pars, skip = 100) ip.palm <- palm.cppm(ip.mple, pars) plot(ip.palm) ### Type A Model # simulation pars <- c(mu = 50.0, nu = 30.0, a = 0.3, sigma1 = 0.005, sigma2 = 0.1) a.sim <- sim.cppm("TypeA", pars, seed=575) ## estimation => Palm intensity init.pars <- c(mu=60.0, nu=40.0, a=0.5, sigma1=0.01, sigma2=0.1) a.mple <- mple.cppm("TypeA", a.sim$offspring$xy, init.pars, skip=100) a.palm <- palm.cppm(a.mple, pars) plot(a.palm) ### Type B Model # simulation pars <- c(mu1 = 10.0, mu2 = 40.0, nu = 30.0, sigma1 = 0.01, sigma2 = 0.03) b.sim <- sim.cppm("TypeB", pars, seed = 257) ## estimation => Palm intensity init.pars <- c(mu1 = 20.0, mu2 = 30.0, nu = 30.0, sigma1 = 0.02, sigma2 = 0.02) b.mple <- mple.cppm("TypeB", b.sim$offspring$xy, init.pars) b.palm <- palm.cppm(b.mple, pars) plot(b.palm) ### Type C Model # simulation pars <- c(mu1 = 5.0, mu2 = 9.0, nu1 = 30.0, nu2 = 150.0, sigma1 = 0.01, sigma2 = 0.05) c.sim <- sim.cppm("TypeC", pars, seed = 555) ## estimation => Palm intensity init.pars <- c(mu1 = 10.0, mu2 = 10.0, nu1 = 30.0, nu2 = 120.0, sigma1 = 0.03, sigma2 = 0.03) c.mple <- mple.cppm("TypeC", c.sim$offspring$xy, init.pars) c.palm <- palm.cppm(c.mple, pars) plot(c.palm) ## End(Not run)
Plot method for object of class "mple"
shows process for optimizing the
normalized parameters depending on a given initial guess of each parameter.
## S3 method for class 'mple' plot(x, ...)
## S3 method for class 'mple' plot(x, ...)
x |
an object of class |
... |
further graphical parameters from |
Plot method for objects of class "Palm"
.
## S3 method for class 'Palm' plot(x, ..., log = "xy")
## S3 method for class 'Palm' plot(x, ..., log = "xy")
x |
an object of class |
... |
optional. At most 4 additional objects of class "Palm". |
log |
a character string indicating if logarithmic axes are to be used. |
Print the process for minimizing the negative log-Palm likelihood function and/or the process for optimizing the normalized parameters depending on a given initial guess of each parameter by the simplex method.
## S3 method for class 'mple' print(x, print.level = 0, ...)
## S3 method for class 'mple' print(x, print.level = 0, ...)
x |
an object of class |
print.level |
We have the following processes:
|
... |
ignored. |
Simulation for the Thomas and Inverse-power type models, and the extended Thomas models of type A, B, and C.
sim.cppm(model = "Thomas", pars, seed = NULL) ## S3 method for class 'sim.cpp' print(x, ...) ## S3 method for class 'sim.cpp' plot(x, parents.distinct = FALSE, ...)
sim.cppm(model = "Thomas", pars, seed = NULL) ## S3 method for class 'sim.cpp' print(x, ...) ## S3 method for class 'sim.cpp' plot(x, parents.distinct = FALSE, ...)
model |
a character string indicating each cluster point process model:
|
pars |
a named vector giving the values of each parameter. See 'Details'. |
seed |
arbitrary positive integer to generate a sequence of uniform random numbers. The default seed is based on the current time. |
x |
an object of class |
parents.distinct |
logical. If |
... |
further graphical parameters from |
We consider the five cluster point process models: the Thomas and Inverse-power type models, and the extended Thomas models of type A, B, and C.
"Thomas"
(Thomas model)
The parameters of the model are as follows:
mu
: the intensity of parent points.
nu
: the expectation of a random number of descendant points
of each parent point.
sigma
: the parameter set of the dispersal kernel.
Let a random variable be independently and uniformly distributed
in [0,1].
Consider
where is the random variable of the distance between each parent
point and the descendant points associated with the given parent. The
distance is distributed independently and identically according to the
dispersal kernel.
We have
Let be a coordinate of each parent
point where the integer
is generated from the Poisson random
variable
with mean
from now on. Then, for
each
, the number of offspring
is generated by the random
variable
with mean
. Then, using series of
different uniform random numbers
for different
and
, each of the offspring coordinates
is given by
owing to the isotropy condition of the distribution.
Given a positive number and let a sequence of a random variable
be independently and uniformly distributed in [0,1],
the Poisson random number
is the smallest integer such that
where represents natural logarithm.
"IP"
(Inverse-power type model)
The parameters of the model are as follows:
mu
: the intensity of parent points.
nu
: the expectation of a random number of descendant points
of each parent point.
p
, c
: the set of parameters of the dispersal kernel,
where p
> 1 and c
> 0.
Let be as above.
For all ,
Here, we put . From this, we have
The parent points and their descendant points are generated the same as the Thomas model.
"TypeA"
(Type A model)
The parameters of the model are as follows:
mu
: the intensity of parent points.
nu
: the expectation of a random number of descendant points
of each parent point.
a
, sigma1
, sigma2
: the set of parameters of
the dispersal kernel, where where a
is a mixture ratio
parameter with 0 < a
< 1.
Let each random variable , be independently and
uniformly distributed in [0,1].
Then satisfies as follows:
The parent points and their descendant points are generated the same as the Thomas model.
"TypeB"
(Type B model)
The TypeB is a superposed Thomas model. The parameters of the model are as follows:
mu1
, mu2
: the corresponding intensity of parent
points of each Thomas model.
nu
: the expectation of a random number of descendant points
of each parent point.
sigma1
, sigma2
: the corresponding set of parameters
of the dispersal kernel of each Thomas model.
Consider the two types of the Thomas model with parameters
and
.
Parents' configuration and numbers of the descendant cluster sizes are
generated by the two types of uniformly distributed parents
with
for
,
respectively.
Then, using series of different uniform random numbers
for different
and
, each of the descendant coordinates
of the parents
,
,
, is
given by
where
with different random numbers for different
, and
.
"TypeC"
(Type C model)
The TypeC is a superposed Thomas model. The parameters of the model are as follows:
mu1
, mu2
: the corresponding intensity of parent
points of each Thomas model.
nu1
, nu2
: the corresponding expectation of a random
number of descendant points of each Thomas model.
sigma1
, sigma2
: the corresponding set of parameters
of the dispersal kernel of each Thomas model.
The parent points and their descendant points are generated the same as the Type B model.
sim.cppm
returns an object of class "sim.cpp"
containing the
following components which has print
and plot
methods.
parents |
a list containing two components named " |
offspring |
a list containing two components named " |
Tanaka, U., Ogata, Y. and Katsura, K. (2008) Simulation and estimation of the Neyman-Scott type spatial cluster models. Computer Science Monographs 34, 1-44. The Institute of Statistical Mathematics, Tokyo. https://www.ism.ac.jp/editsec/csm/.
## Thomas Model pars <- c(mu = 50.0, nu = 30.0, sigma = 0.03) t.sim <- sim.cppm("Thomas", pars, seed = 117) t.sim plot(t.sim) ## Inverse-Power Type Model pars <- c(mu = 50.0, nu = 30.0, p = 1.5, c = 0.005) ip.sim <- sim.cppm("IP", pars, seed = 353) ip.sim plot(ip.sim) ## Type A Model pars <- c(mu = 50.0, nu = 30.0, a = 0.3, sigma1 = 0.005, sigma2 = 0.1) a.sim <- sim.cppm("TypeA", pars, seed = 575) a.sim plot(a.sim) ## Type B Model pars <- c(mu1 = 10.0, mu2 = 40.0, nu = 30.0, sigma1 = 0.01, sigma2 = 0.03) b.sim <- sim.cppm("TypeB", pars, seed = 257) b.sim plot(b.sim, parents.distinct = TRUE) ## Type C Model pars <- c(mu1 = 5.0, mu2 = 9.0, nu1 = 30.0, nu2 = 150.0, sigma1 = 0.01, sigma2 = 0.05) c.sim <- sim.cppm("TypeC", pars, seed = 555) c.sim plot(c.sim, parents.distinct = FALSE)
## Thomas Model pars <- c(mu = 50.0, nu = 30.0, sigma = 0.03) t.sim <- sim.cppm("Thomas", pars, seed = 117) t.sim plot(t.sim) ## Inverse-Power Type Model pars <- c(mu = 50.0, nu = 30.0, p = 1.5, c = 0.005) ip.sim <- sim.cppm("IP", pars, seed = 353) ip.sim plot(ip.sim) ## Type A Model pars <- c(mu = 50.0, nu = 30.0, a = 0.3, sigma1 = 0.005, sigma2 = 0.1) a.sim <- sim.cppm("TypeA", pars, seed = 575) a.sim plot(a.sim) ## Type B Model pars <- c(mu1 = 10.0, mu2 = 40.0, nu = 30.0, sigma1 = 0.01, sigma2 = 0.03) b.sim <- sim.cppm("TypeB", pars, seed = 257) b.sim plot(b.sim, parents.distinct = TRUE) ## Type C Model pars <- c(mu1 = 5.0, mu2 = 9.0, nu1 = 30.0, nu2 = 150.0, sigma1 = 0.01, sigma2 = 0.05) c.sim <- sim.cppm("TypeC", pars, seed = 555) c.sim plot(c.sim, parents.distinct = FALSE)