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1 Preliminaries

A point process is a stochastic model governing the location of events in a given set. We
consider the point process in a subset of Euclidean space. A point pattern is considered a
realization of the point process. To analyze the point pattern, we �rst plot it as observed
in the subset, which is considered an observation window denoted W . Following the
preceding study, for simplicity, we restrict our discussion to W of a two-dimensional
Euclidean space R2 to be standardized, i.e., a unit square (W = [0, 1] × [0, 1]). Thus,
throughout NScluster, we employ a unit square as the observation window. If the window
is a rectangular domain or is irregularly shaped, we select the largest possible square from
the window, and consider it as the unit. We assume that W satis�es a periodic boundary
condition to consider it as a torus.

Throughout NScluster, we refer readers to Tanaka et al. [1, 2] for details.

2 Overview of models

We assume point processes on W satisfy conditions of local �niteness, simplicity, unifor-
mity and isotropy. Note that by virtue of uniformity, point processes are homogeneous,
i.e., they are of constant intensity.

First, we generate a homogeneous Poisson point process with intensity µ. The gen-
erated points are referred to as parent points. Each parent point generates a random
number M of descendant points, which are realized independently and identically. Let
ν be the expectation of M . The descendent points are distributed isotropically around
each parent point, and the distances between each parent point and its descendent points
are distributed independently and identically according to a probability density function
(PDF) relative to the distance from a parent point to its descendent point. We call the
PDF a dispersal kernel and denote it by qτ , where τ indicates the parameter set of the dis-
persal kernel. The Neyman-Scott cluster point process is a union of all descendant points,
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with the exception of all parent points. In other words, the cluster process is unobservable
for each cluster center. The Neyman-Scott cluster point process is also homogeneous, and
its intensity λ equals µν.

We describe �ve cluster point process models, i.e., the Thomas and Inverse-power type
models, and the extended Thomas models of type A, B, and C.

2.1 Neyman-Scott cluster point process model

2.1.1 Thomas model

The Thomas model is the most utilized Neyman-Scott cluster point process model. In
this model, descendant points are scattered according to bivariate Gaussian distribution
with zero mean and covariance matrix σ2I, σ > 0, where I is a 2×2 identity matrix. The
corresponding dispersal kernel with τ = σ is given by

qσ(r) :=
r

σ2
exp

(
− r2

2σ2

)
, r ≥ 0.

In previous studies that analyzed clustering point pattern data, the Thomas model
has been representatively situated to be �tted to such data because one can explicitly
derive classical summary statistics, e.g., Ripley's K-function of the Thomas model, which
is closely related to the Palm intensity (Section 3.2.1).

2.1.2 Inverse-power type model

The Inverse-power type model originated from the frequency of aftershocks per unit time
interval (one day, one month, etc.), which has been referred to as the �modi�ed Omori
formula�. The corresponding dispersal kernel with τ = (p, c) is given by

q(p,c)(r) :=
cp−1(p− 1)

(r + c)p
, r ≥ 0,

where p > 1 and c > 0 imply the decay order and scaling with respect to the distance
between each parent point and its descendant points, respectively.

2.1.3 Type A model

The extended Thomas model of type A (Type A model for short) is a Neyman-Scott cluster
point process model where the dispersal kernel is mixed by that of the two Thomas models
with variable cluster sizes as follows:

q(a,σ1,σ2)(r) := aqσ1(r) + (1− a)qσ2(r), r ≥ 0, (1)

where a is a mixture ratio parameter with 0 < a < 1. From Equation (1), it can be inferred
that the Type A model is suitable for densely and vaguely clustering point pattern data
to be �tted by mixing the Thomas model with the mixture ratio a.
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2.2 Superposed Neyman-Scott cluster point process model

We extend the Neyman-Scott cluster point processes to superposed ones. The superposi-
tion is one of extension manners.

Here, we focus on the superposed Thomas model. The parameters to be estimated are
given by those of two Thomas models: (µi, νi, σi), where i = 1, 2. Note that the intensity
λ of superposed uniform point processes with intensity λi (= µiνi), i = 1, 2, is given by

λ = λ1 + λ2.

2.2.1 Type B and C models

We handle two types of the superposed Thomas model, which are referred to as the
etended Thomas model of type B (Type B model for short) if ν1 = ν2 and the extended

Thomas model of type C (Type C model for short) if ν1 ̸= ν2.

3 Overview of functions

The package NScluster comprises four tasks, i.e., simulation, MPLE, con�dence interval
estimation, and non-parametric and parametric Palm intensity comparison.

3.1 Simulation

The �rst and most intuitive step to understand the model characteristics is to observe the
data generated by the model. This can be realized using the sim.cppm function.

3.2 MPLE

3.2.1 Palm intensity

We begin with a brief overview of the Palm intensity of the point processes. Translating
each point of the given point process into the origin o ∈ R2, we obtain a superposed point
process at o. We call it the di�erence process. The di�erence process is symmetric with
respect to o. The Palm intensity focuses on the di�erence process induced from pairwise
coordinates of the original process rather than the original given point process.

Let us de�ne the Palm intensity. We denote by N a counting measure, i.e., the total
mass of random geometrical objects such as the number of points, lengths of �bers, areas
of surfaces, and volume of grains within Borel sets. The Palm intensity λo is de�ned as
follows:

λo(x) :=
Pr({N(dx) ≥ 1 | N({o}) = 1 })

Vol(dx)
, (2)

where dx represents an in�nitesimal set containing an arbitrary given point x ∈ W . Here,
we examine Equation (2). λo implies the occurrence rate at an arbitrary given point x
provided that a point is at o. Let r be the distance from o to x. We see that λo depends
only on r. Thus, we obtain its polar coordinate representation with respect to distance r
as follows:

λo(x) = λo(r, θ) = λo(r), r ≥ 0, 0 ≤ θ < 2π.
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Generally, the Palm intensity of cluster point processes cannot be derived analytically,
say the aforementioned Inverse-power type and the Type A models.

Here, we further assume the point processes to be orderly, i.e., Pr({N(dx) ≥ 2}) is
of a smaller order of magnitude than Vol(dx). The orderliness allows us to represent the
Palm intensity in terms of Ripley's K-function, which is de�ned as the average number
of other points that have appeared within the distance from the typical point.

3.2.2 Palm likelihood function

The maximum Palm likelihood estimation procedure is based on the assumption that the
di�erence process is well approximated by an isotropic and inhomogeneous Poisson point
process with intensity function N(W )λo(r), which is centered at o.

We are positioned to state the log-Palm likelihood function. Let θ denote the parameter
set of the cluster point process models. The log-Palm likelihood function, denoted lnL
based on the Palm intensity λo (including θ) is given as follows:

lnL(θ) =
∑

i,j;i<j,0<rij≤1/2

ln (N(W )λo(rij))− 2π N(W )

∫ 1/2

0

λo(r) r dr, (3)

where the summation is taken over each pair (i, j) with i < j such that the distance rij
between distinct points xi and xj of the cluster point processes satis�es 0 < rij ≤ 1/2.
Note that in Equation (3) �i < j� and �1/2� are due to the symmetry of di�erence
processes and the periodic boundary condition for W = [0, 1]× [0, 1], respectively.

The maximum Palm likelihood estimates (MPLE s for short) are those that maximize
Equation (3). Note that maximizing lnL(θ) in Equation (3) to obtain MPLEs, N(W )
assigning the non-parametric part of Equation (3) is removable.

The mple.cppm function improves the given initial parameters using the simplex
method to maximize lnL(θ) in Equation (3).

3.3 Con�dence interval of parameter estimates

We develop a con�dence interval of parameters using bootstrap method. When we es-
timate one model, we generate simulated data several times for the estimated model,
then, we estimate the parameters and repeatedly. The empirical distribution of given
parameters can be used to decide the interval estimation of the parameter.

3.4 Display of normalized Palm intensity

To determine the adequacy of MPLEs, NScluster provides users with a non-parametric
estimation of the Palm intensity. NScluster can depict the Palm intensity of the �ve
cluster point process models using the palm.cppm function.
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