Title: | N-Power Fourier Deconvolution |
---|---|
Description: | Provides tools for non-parametric Fourier deconvolution using the N-Power Fourier Deconvolution (NPFD) method. This package includes methods for density estimation (densprf()) and sample generation (createSample()), enabling users to perform statistical analyses on mixed or replicated data sets. |
Authors: | Akin Anarat [aut, cre] |
Maintainer: | Akin Anarat <[email protected]> |
License: | GPL-3 |
Version: | 1.0.0 |
Built: | 2025-01-04 07:07:13 UTC |
Source: | CRAN |
This function creates a sample from a centered distribution based on replicates of mixed data.
createSample(z1, z2)
createSample(z1, z2)
z1 |
A numeric vector where |
z2 |
A numeric vector of the same length as |
A numeric vector representing a sample from the centered distribution.
# Set seed for reproducibility set.seed(123) # Generate random data x1 <- rnorm(1000) x2 <- rnorm(1000) y <- rgamma(1000, 10, 2) z1 <- x1 + y z2 <- x2 + y # Use createSample to generate a sample x <- createSample(z1, z2) # Perform density estimation f.x <- stats::density(x, adjust = 1.5) x.x <- f.x$x f <- dnorm(x.x) # Plot the results plot(NULL, xlim = range(f.x$x), ylim = c(0, max(f, f.x$y)), xlab = "x", ylab = "Density") lines(x.x, f, col = "blue", lwd = 2) lines(f.x, col = "orange", lwd = 2) legend("topright", legend = c(expression(f), expression(f[x])), col = c("blue", "orange"), lwd = 2)
# Set seed for reproducibility set.seed(123) # Generate random data x1 <- rnorm(1000) x2 <- rnorm(1000) y <- rgamma(1000, 10, 2) z1 <- x1 + y z2 <- x2 + y # Use createSample to generate a sample x <- createSample(z1, z2) # Perform density estimation f.x <- stats::density(x, adjust = 1.5) x.x <- f.x$x f <- dnorm(x.x) # Plot the results plot(NULL, xlim = range(f.x$x), ylim = c(0, max(f, f.x$y)), xlab = "x", ylab = "Density") lines(x.x, f, col = "blue", lwd = 2) lines(f.x, col = "orange", lwd = 2) legend("topright", legend = c(expression(f), expression(f[x])), col = c("blue", "orange"), lwd = 2)
Estimates the density , given vectors
and
, where
results from the convolution of
and
.
deconvolve( x = NULL, z, mode = c("empirical", "denspr"), dfx = 5, dfz = 5, Lx = 10^2, Lz = 10^2, Ly = 10^2, N = 1:100, FT.grid = seq(0, 100, 0.1), lambda = 1, eps = 10^-3, delta = 10^-2, error = c("unknown", "normal", "laplacian"), sigma = NULL, calc.error = FALSE, plot = FALSE, legend = TRUE, positive = FALSE )
deconvolve( x = NULL, z, mode = c("empirical", "denspr"), dfx = 5, dfz = 5, Lx = 10^2, Lz = 10^2, Ly = 10^2, N = 1:100, FT.grid = seq(0, 100, 0.1), lambda = 1, eps = 10^-3, delta = 10^-2, error = c("unknown", "normal", "laplacian"), sigma = NULL, calc.error = FALSE, plot = FALSE, legend = TRUE, positive = FALSE )
x |
Vector of observations for |
z |
Vector of observations for |
mode |
Deconvolution mode ( |
dfx |
Degrees of freedom for the estimation of |
dfz |
Degrees of freedom for the estimation of |
Lx |
Number of points for |
Lz |
Number of points for |
Ly |
Number of points for |
N |
Possible power values. |
FT.grid |
Vector of grid for Fourier transformation of |
lambda |
Smoothing parameter. |
eps |
Tolerance for convergence. |
delta |
Small margin value. |
error |
Error model ( |
sigma |
Standard deviation for normal or Laplacian error. |
calc.error |
Logical indicating whether to calculate error (10 x ISE between |
plot |
Logical indicating whether to plot |
legend |
Logical indicating whether to include a legend in the plot if |
positive |
Logical indicating whether to enforce non-negative density estimation. |
A list with the following components:
x |
A vector of |
y |
A vector of |
N |
The power used in the deconvolution process. |
error |
The calculated error if |
Akin Anarat [email protected]
Anarat A., Krutmann, J., and Schwender, H. (2024). A nonparametric statistical method for deconvolving densities in the analysis of proteomic data. Submitted.
# Deconvolution when mixed data and data from an independent experiment are provided: set.seed(123) x <- rnorm(1000) y <- rgamma(1000, 10, 2) z <- x + y f <- function(x) dgamma(x, 10, 2) independent.x <- rnorm(100) fy.NPFD <- deconvolve(independent.x, z, calc.error = TRUE, plot = TRUE) x.x <- fy.NPFD$x fy <- f(x.x) # Check power and error values fy.NPFD$N fy.NPFD$error # Plot density functions plot(NULL, xlim = range(y), ylim = c(0, max(fy, fy.NPFD$y)), xlab = "x", ylab = "Density") lines(x.x, fy, col = "blue", lwd = 2) lines(fy.NPFD, col = "orange", lwd = 2) legend("topright", legend = c(expression(f[y]), expression(f[y]^{NPFD})), col = c("blue", "orange"), lwd = c(2, 2)) # For replicated mixed data: set.seed(123) x1 <- VGAM::rlaplace(1000, 0, 1/sqrt(2)) x2 <- VGAM::rlaplace(1000, 0, 1/sqrt(2)) y <- rgamma(1000, 10, 2) z1 <- z <- x1 + y z2 <- x2 + y x <- createSample(z1, z2) fy.NPFD <- deconvolve(x, z, mode = "denspr", calc.error = TRUE, plot = TRUE) x.x <- fy.NPFD$x fy <- f(x.x) # Check power and error values fy.NPFD$N fy.NPFD$error # Plot density functions plot(NULL, xlim = range(y), ylim = c(0, max(fy, fy.NPFD$y)), xlab = "x", ylab = "Density") lines(x.x, fy, col = "blue", lwd = 2) lines(fy.NPFD, col = "orange", lwd = 2) legend("topright", legend = c(expression(f[y]), expression(f[y]^{NPFD})), col = c("blue", "orange"), lwd = c(2, 2)) # When the distribution of x is asymmetric and the sample size is very small: set.seed(123) x <- rgamma(5, 4, 2) y <- rgamma(1000, 10, 2) z <- x + y fy.NPFD <- deconvolve(x, z, mode = "empirical", lambda = 2) x.x <- fy.NPFD$x fy <- f(x.x) # Check power value fy.NPFD$N # Plot density functions plot(NULL, xlim = range(y), ylim = c(0, max(fy, fy.NPFD$y)), xlab = "x", ylab = "Density") lines(x.x, fy, col = "blue", lwd = 2) lines(fy.NPFD, col = "orange", lwd = 2) legend("topright", legend = c(expression(f[y]), expression(f[y]^{NPFD})), col = c("blue", "orange"), lwd = c(2, 2))
# Deconvolution when mixed data and data from an independent experiment are provided: set.seed(123) x <- rnorm(1000) y <- rgamma(1000, 10, 2) z <- x + y f <- function(x) dgamma(x, 10, 2) independent.x <- rnorm(100) fy.NPFD <- deconvolve(independent.x, z, calc.error = TRUE, plot = TRUE) x.x <- fy.NPFD$x fy <- f(x.x) # Check power and error values fy.NPFD$N fy.NPFD$error # Plot density functions plot(NULL, xlim = range(y), ylim = c(0, max(fy, fy.NPFD$y)), xlab = "x", ylab = "Density") lines(x.x, fy, col = "blue", lwd = 2) lines(fy.NPFD, col = "orange", lwd = 2) legend("topright", legend = c(expression(f[y]), expression(f[y]^{NPFD})), col = c("blue", "orange"), lwd = c(2, 2)) # For replicated mixed data: set.seed(123) x1 <- VGAM::rlaplace(1000, 0, 1/sqrt(2)) x2 <- VGAM::rlaplace(1000, 0, 1/sqrt(2)) y <- rgamma(1000, 10, 2) z1 <- z <- x1 + y z2 <- x2 + y x <- createSample(z1, z2) fy.NPFD <- deconvolve(x, z, mode = "denspr", calc.error = TRUE, plot = TRUE) x.x <- fy.NPFD$x fy <- f(x.x) # Check power and error values fy.NPFD$N fy.NPFD$error # Plot density functions plot(NULL, xlim = range(y), ylim = c(0, max(fy, fy.NPFD$y)), xlab = "x", ylab = "Density") lines(x.x, fy, col = "blue", lwd = 2) lines(fy.NPFD, col = "orange", lwd = 2) legend("topright", legend = c(expression(f[y]), expression(f[y]^{NPFD})), col = c("blue", "orange"), lwd = c(2, 2)) # When the distribution of x is asymmetric and the sample size is very small: set.seed(123) x <- rgamma(5, 4, 2) y <- rgamma(1000, 10, 2) z <- x + y fy.NPFD <- deconvolve(x, z, mode = "empirical", lambda = 2) x.x <- fy.NPFD$x fy <- f(x.x) # Check power value fy.NPFD$N # Plot density functions plot(NULL, xlim = range(y), ylim = c(0, max(fy, fy.NPFD$y)), xlab = "x", ylab = "Density") lines(x.x, fy, col = "blue", lwd = 2) lines(fy.NPFD, col = "orange", lwd = 2) legend("topright", legend = c(expression(f[y]), expression(f[y]^{NPFD})), col = c("blue", "orange"), lwd = c(2, 2))
This function estimates the density using a Poisson GLM with natural splines.
densprf( x, n.interval = NULL, df = 5, knots.mode = TRUE, type.nclass = c("wand", "scott", "FD"), addx = FALSE )
densprf( x, n.interval = NULL, df = 5, knots.mode = TRUE, type.nclass = c("wand", "scott", "FD"), addx = FALSE )
x |
Input data vector. |
n.interval |
Number of intervals (optional). |
df |
Degrees of freedom for the splines. |
knots.mode |
Boolean to determine if quantiles should be used for knots. |
type.nclass |
Method for determining number of classes. |
addx |
Add |
densprf
is a modification of the denspr
function from the siggenes package.
For more details, see the documentation in the siggenes package.
The function densprf(x)
returns a function that, for a given input z
, computes the estimated density evaluated at the position values of z
as a result.
# Set seed for reproducibility set.seed(123) # Generate random data z <- rnorm(1000) # Apply densprf function f <- densprf(z) # Define sequences for evaluation x1 <- seq(-4, 4, 0.5) x2 <- seq(-5, 5, 0.1) # Evaluate the density function at specified points f1 <- f(x1) f2 <- f(x2)
# Set seed for reproducibility set.seed(123) # Generate random data z <- rnorm(1000) # Apply densprf function f <- densprf(z) # Define sequences for evaluation x1 <- seq(-4, 4, 0.5) x2 <- seq(-5, 5, 0.1) # Evaluate the density function at specified points f1 <- f(x1) f2 <- f(x2)