Package 'NPFD'

Title: N-Power Fourier Deconvolution
Description: Provides tools for non-parametric Fourier deconvolution using the N-Power Fourier Deconvolution (NPFD) method. This package includes methods for density estimation (densprf()) and sample generation (createSample()), enabling users to perform statistical analyses on mixed or replicated data sets.
Authors: Akin Anarat [aut, cre]
Maintainer: Akin Anarat <[email protected]>
License: GPL-3
Version: 1.0.0
Built: 2025-01-04 07:07:13 UTC
Source: CRAN

Help Index


Create a Sample from a Centered Distribution

Description

This function creates a sample from a centered distribution based on replicates of mixed data.

Usage

createSample(z1, z2)

Arguments

z1

A numeric vector where z1=x1+yz_1 = x_1 + y.

z2

A numeric vector of the same length as z1z_1 where z2=x2+yz_2 = x_2 + y.

Value

A numeric vector representing a sample from the centered distribution.

Examples

# Set seed for reproducibility
set.seed(123)

# Generate random data
x1 <- rnorm(1000)
x2 <- rnorm(1000)
y <- rgamma(1000, 10, 2)
z1 <- x1 + y
z2 <- x2 + y

# Use createSample to generate a sample
x <- createSample(z1, z2)

# Perform density estimation
f.x <- stats::density(x, adjust = 1.5)
x.x <- f.x$x
f <- dnorm(x.x)

# Plot the results
plot(NULL, xlim = range(f.x$x), ylim = c(0, max(f, f.x$y)), xlab = "x", ylab = "Density")
lines(x.x, f, col = "blue", lwd = 2)
lines(f.x, col = "orange", lwd = 2)
legend("topright", legend = c(expression(f), expression(f[x])), col = c("blue", "orange"), lwd = 2)

N-Power Fourier Deconvolution

Description

Estimates the density fyf_y, given vectors xx and zz, where fzf_z results from the convolution of fxf_x and fyf_y.

Usage

deconvolve(
  x = NULL,
  z,
  mode = c("empirical", "denspr"),
  dfx = 5,
  dfz = 5,
  Lx = 10^2,
  Lz = 10^2,
  Ly = 10^2,
  N = 1:100,
  FT.grid = seq(0, 100, 0.1),
  lambda = 1,
  eps = 10^-3,
  delta = 10^-2,
  error = c("unknown", "normal", "laplacian"),
  sigma = NULL,
  calc.error = FALSE,
  plot = FALSE,
  legend = TRUE,
  positive = FALSE
)

Arguments

x

Vector of observations for xx.

z

Vector of observations for zz.

mode

Deconvolution mode (empirical or denspr). If empirical, the Fourier transforms of xx and zz are estimated using the empirical form. If denspr, they are calculated based on the density estimations using densprf (see the package siggenes).

dfx

Degrees of freedom for the estimation of fxf_x if mode is set to denspr.

dfz

Degrees of freedom for the estimation of fzf_z if mode is set to denspr.

Lx

Number of points for fxf_x-grid if mode is set to denspr.

Lz

Number of points for fzf_z-grid if mode is set to denspr.

Ly

Number of points for fyf_y-grid.

N

Possible power values.

FT.grid

Vector of grid for Fourier transformation of fxf_x and fzf_z.

lambda

Smoothing parameter.

eps

Tolerance for convergence.

delta

Small margin value.

error

Error model (unknown, normal, laplacian). If unknown, the Fourier transform of xx is calculated based on the mode. If normal, the exact form of the Fourier transform of a centered normal distribution with standard deviation sigma is used for xx. If laplacian, the exact form of the Fourier transform of a centered Laplace distribution with standard deviation sigma is used for xx.

sigma

Standard deviation for normal or Laplacian error.

calc.error

Logical indicating whether to calculate error (10 x ISE between fzf_z and fxfyf_x * f_y).

plot

Logical indicating whether to plot fzf_z vs. fxfyf_x * f_y if calc.error is TRUE.

legend

Logical indicating whether to include a legend in the plot if calc.error is TRUE.

positive

Logical indicating whether to enforce non-negative density estimation.

Value

A list with the following components:

x

A vector of xx-values of the resulting density estimation.

y

A vector of yy-values of the resulting density estimation.

N

The power used in the deconvolution process.

error

The calculated error if calc.error = TRUE.

Author(s)

Akin Anarat [email protected]

References

Anarat A., Krutmann, J., and Schwender, H. (2024). A nonparametric statistical method for deconvolving densities in the analysis of proteomic data. Submitted.

Examples

# Deconvolution when mixed data and data from an independent experiment are provided:
set.seed(123)
x <- rnorm(1000)
y <- rgamma(1000, 10, 2)
z <- x + y

f <- function(x) dgamma(x, 10, 2)

independent.x <- rnorm(100)

fy.NPFD <- deconvolve(independent.x, z, calc.error = TRUE, plot = TRUE)
x.x <- fy.NPFD$x
fy <- f(x.x)

# Check power and error values
fy.NPFD$N
fy.NPFD$error

# Plot density functions
plot(NULL, xlim = range(y), ylim = c(0, max(fy, fy.NPFD$y)), xlab = "x", ylab = "Density")
lines(x.x, fy, col = "blue", lwd = 2)
lines(fy.NPFD, col = "orange", lwd = 2)
legend("topright", legend = c(expression(f[y]), expression(f[y]^{NPFD})),
       col = c("blue", "orange"), lwd = c(2, 2))

# For replicated mixed data:
set.seed(123)
x1 <- VGAM::rlaplace(1000, 0, 1/sqrt(2))
x2 <- VGAM::rlaplace(1000, 0, 1/sqrt(2))
y <- rgamma(1000, 10, 2)
z1 <- z <- x1 + y
z2 <- x2 + y

x <- createSample(z1, z2)

fy.NPFD <- deconvolve(x, z, mode = "denspr", calc.error = TRUE, plot = TRUE)
x.x <- fy.NPFD$x
fy <- f(x.x)

# Check power and error values
fy.NPFD$N
fy.NPFD$error

# Plot density functions
plot(NULL, xlim = range(y), ylim = c(0, max(fy, fy.NPFD$y)), xlab = "x", ylab = "Density")
lines(x.x, fy, col = "blue", lwd = 2)
lines(fy.NPFD, col = "orange", lwd = 2)
legend("topright", legend = c(expression(f[y]), expression(f[y]^{NPFD})),
       col = c("blue", "orange"), lwd = c(2, 2))

# When the distribution of x is asymmetric and the sample size is very small:
set.seed(123)
x <- rgamma(5, 4, 2)
y <- rgamma(1000, 10, 2)
z <- x + y

fy.NPFD <- deconvolve(x, z, mode = "empirical", lambda = 2)
x.x <- fy.NPFD$x
fy <- f(x.x)

# Check power value
fy.NPFD$N

# Plot density functions
plot(NULL, xlim = range(y), ylim = c(0, max(fy, fy.NPFD$y)), xlab = "x", ylab = "Density")
lines(x.x, fy, col = "blue", lwd = 2)
lines(fy.NPFD, col = "orange", lwd = 2)
legend("topright", legend = c(expression(f[y]), expression(f[y]^{NPFD})),
       col = c("blue", "orange"), lwd = c(2, 2))

Density Estimation Function

Description

This function estimates the density using a Poisson GLM with natural splines.

Usage

densprf(
  x,
  n.interval = NULL,
  df = 5,
  knots.mode = TRUE,
  type.nclass = c("wand", "scott", "FD"),
  addx = FALSE
)

Arguments

x

Input data vector.

n.interval

Number of intervals (optional).

df

Degrees of freedom for the splines.

knots.mode

Boolean to determine if quantiles should be used for knots.

type.nclass

Method for determining number of classes.

addx

Add xx values (optional).

Details

densprf is a modification of the denspr function from the siggenes package.

For more details, see the documentation in the siggenes package.

Value

The function densprf(x) returns a function that, for a given input z, computes the estimated density evaluated at the position values of z as a result.

Examples

# Set seed for reproducibility
set.seed(123)

# Generate random data
z <- rnorm(1000)

# Apply densprf function
f <- densprf(z)

# Define sequences for evaluation
x1 <- seq(-4, 4, 0.5)
x2 <- seq(-5, 5, 0.1)

# Evaluate the density function at specified points
f1 <- f(x1)
f2 <- f(x2)