
Package: NAC (via r-universe)
October 30, 2024

Type Package

Title Network-Adjusted Covariates for Community Detection

Version 0.1.0

Author Yaofang Hu [aut, cre], Wanjie Wang [aut]

Maintainer Yaofang Hu <yaofangh@smu.edu>

Description Incorporating node-level covariates for community
detection has gained increasing attention these years. This
package provides the function for implementing the novel
community detection algorithm known as Network-Adjusted
Covariates for Community Detection (NAC), which is designed to
detect latent community structure in graphs with node-level
information, i.e., covariates. This algorithm can handle models
such as the degree-corrected stochastic block model (DCSBM)
with covariates. NAC specifically addresses the discrepancy
between the community structure inferred from the adjacency
information and the community structure inferred from the
covariates information. For more detailed information, please
refer to the reference paper: Yaofang Hu and Wanjie Wang (2023)
<arXiv:2306.15616>. In addition to NAC, this package includes
several other existing community detection algorithms that are
compared to NAC in the reference paper. These algorithms are
Spectral Clustering On Ratios-of Eigenvectors (SCORE),
network-based regularized spectral clustering (Net-based),
covariate-based spectral clustering (Cov-based),
covariate-assisted spectral clustering (CAclustering) and
semidefinite programming (SDP).

Imports stats, pracma

License GPL-2

Encoding UTF-8

URL https://arxiv.org/abs/2306.15616

RoxygenNote 7.2.3

Suggests testthat, igraph

1

https://arxiv.org/abs/2306.15616
https://arxiv.org/abs/2306.15616

2 CAclustering

Depends R (>= 4.2.2.0)

NeedsCompilation no

Repository CRAN

Date/Publication 2023-12-04 16:40:15 UTC

Contents
CAclustering . 2
Cov_based . 4
NAC . 5
Net_based . 7
SCORE . 8
SDP . 10

Index 13

CAclustering Covariate Assisted Spectral Clustering.

Description

CAclustering clusters graph nodes by applying spectral clustering with the assistance from node
covariates.

Usage

CAclustering(Adj, Covariate, K, alphan = 5, itermax = 100, startn = 10)

Arguments

Adj An n×n symmetric adjacency matrix with diagonals being 0 and positive entries
being 1.

Covariate An n × p covariate matrix. The rows correspond to nodes and the columns
correspond to covariates.

K A positive integer which is no larger than n. This is the predefined number of
communities.

alphan The number of candidate α’s to try within the range (αmin, αmax) given in
Binkiewicz et al. (2017). An optimal α is expected to achieve a balance between
Lτ and X .

itermax k-means parameter, indicating the maximum number of iterations allowed. The
default value is 100.

startn k-means parameter. The number of times the algorithm should be run with
different initial centroids. The default value is 10.

CAclustering 3

Details

CAclustering is an algorithm designed for community detection in networks with node covari-
ates, as introduced in the paper Covariate-assisted spectral clustering of Binkiewicz et al. (2017).
CAclustering applies k-means on the first K leading eigenvectors of Lτ + αXX ′, where Lτ is
the regularized graph Laplacian, X is the covariates matrix, and α is a tuning parameter.

Value

estall A factor indicating nodes’ labels. Items sharing the same label are in the same
community.

References

Binkiewicz, N., Vogelstein, J. T., & Rohe, K. (2017). Covariate-assisted spectral clustering. Biometrika,
104(2), 361-377.
doi:10.1093/biomet/asx008

Examples

Simulate the Network
n = 10; K = 2; p =5; prob1 = 0.9;
theta = 0.4 + (0.45-0.05)*(seq(1:n)/n)^2; Theta = diag(theta);
P = matrix(c(0.8, 0.2, 0.2, 0.8), byrow = TRUE, nrow = K)
set.seed(2022)
l = sample(1:K, n, replace=TRUE); # node labels
Pi = matrix(0, n, K) # label matrix
for (k in 1:K){

Pi[l == k, k] = 1
}
Omega = Theta %*% Pi %*% P %*% t(Pi) %*% Theta;
Adj = matrix(runif(n*n, 0, 1), nrow = n);
Adj = Omega - Adj;
Adj = 1*(Adj >= 0)
diag(Adj) = 0
Adj[lower.tri(Adj)] = t(Adj)[lower.tri(Adj)]
Q = 0.1*matrix(sign(runif(p*K) - 0.5), nrow = p);
for(i in 1:K){

Q[(i-1)*(p/K)+(1:(p/K)), i] = 0.3; #remark. has a change here
}
W = matrix(0, nrow = n, ncol = K);
for(jj in 1:n) {

pp = rep(1/(K-1), K); pp[l[jj]] = 0;
if(runif(1) <= prob1) {W[jj, 1:K] = Pi[jj,];}
else
W[jj, sample(K, 1, prob = pp)] = 1;
}

W = t(W)
D0 = Q %*% W
D = matrix(0, n, p)
for (i in 1:n){

https://doi.org/10.1093/biomet/asx008

4 Cov_based

D[i,] = rnorm(p, mean = D0[,i], sd = 1);
}
CAclustering(Adj, D, 2)

Cov_based Covariates-based Spectral Clustering.

Description

Covariates-based Spectral Clustering is a spectral clustering method that focuses solely on the
covariates structure, i.e., the XX ′ where X is the covariates matrix, as introduced in Lee et al.
(2010).

Usage

Cov_based(Covariate, K, itermax = 100, startn = 10)

Arguments

Covariate An n × p covariate matrix. The rows correspond to nodes and the columns
correspond to covariates.

K A positive integer which is no larger than n. This is the predefined number of
communities.

itermax k-means parameter, indicating the maximum number of iterations allowed. The
default value is 100.

startn k-means parameter. The number of times the algorithm should be run with
different initial centroids. The default value is 10.

Value

estall A factor indicating nodes’ labels. Items sharing the same label are in the same
community.

References

Lee, A. B., Luca, D., Klei, L., Devlin, B., & Roeder, K. (2010). Discovering genetic ancestry using
spectral graph theory. Genetic Epidemiology: The Official Publication of the International Genetic
Epidemiology Society, 34(1), 51-59.
doi:10.1002/gepi.20434

https://doi.org/10.1002/gepi.20434

NAC 5

Examples

Simulate the Covariate Matrix
n = 10; p = 5; K = 2; prob1 = 0.9;
set.seed(2022)
l = sample(1:K, n, replace=TRUE); # node labels
Pi = matrix(0, n, K) # label matrix
for (k in 1:K){

Pi[l == k, k] = 1
}
Q = 0.1*matrix(sign(runif(p*K) - 0.5), nrow = p);
for(i in 1:K){

Q[(i-1)*(p/K)+(1:(p/K)), i] = 0.3; #remark. has a change here
}
W = matrix(0, nrow = n, ncol = K);
for(jj in 1:n) {

pp = rep(1/(K-1), K); pp[l[jj]] = 0;
if(runif(1) <= prob1) {W[jj, 1:K] = Pi[jj,];}
else
W[jj, sample(K, 1, prob = pp)] = 1;
}

W = t(W)
D0 = Q %*% W
D = matrix(0, n, p)
for (i in 1:n){

D[i,] = rnorm(p, mean = D0[,i], sd = 1);
}
Cov_based(D, 2)

NAC Spectral Clustering on Network-Adjusted Covariates.

Description

Using network-adjusted covariates to detect underlying communities.

Usage

NAC(Adj, Covariate, K, alpha = NULL, beta = 0, itermax = 100, startn = 10)

Arguments

Adj An n×n symmetric adjacency matrix with diagonals being 0 and positive entries
being 1.

Covariate An n × p covariate matrix. The rows correspond to nodes and the columns
correspond to covariates.

K A positive integer which is no larger than n. This is the predefined number of
communities.

6 NAC

alpha An optional numeric vector to tune the weight of covariate matrix. The default

value is
d̄/2

di/logn+ 1
, where di is the degree of node i and d̄ is the average

degree.

beta An optional parameter used when the covariate matrix X is uninformative. By
default, β is set as 0 assuming X carries meaningful information. Otherwise,
users can manually specify a positive value to weigh network information.

itermax k-means parameter, indicating the maximum number of iterations allowed. The
default value is 100.

startn k-means parameter. The number of times the algorithm should be run with
different initial centroids. The default value is 10.

Details

Spectral Clustering Network-Adjusted Covariates (NAC) is fully established in Network-Adjusted
Covariates for Community Detection of Hu & Wang (2023). This method is particularly effective in
the analysis of multiscale networks with covariates, addressing the challenge of misspecification be-
tween networks and covariates. NAC relies on the construction of network-adjusted covariate vectors
yi = αixi+

∑
j:Aij=1 xj , i ∈ 1, · · · , n, where the first part has the nodal covariate information and

the second part conveys network information. By constructing Y = (y1, · · · , yn)′ = AX +DαX
where A is the adjacency matrix, X is the covariate matrix, and Dα is the diagonal matrix with
diagonals as α1, · · · , αn, NAC applies K-means on the first K normalized left singular vectors, treat-
ing each row as a data point. A notable feature of NAC is its tuning-free nature, where node-specific
coefficient αi is computed given the i-th node’s degree. NAC allows for user-specified αi as well.
A generalization with uninformative covariates is considered by adjusting parameter β. As long as
the covariates do provide information, the specification of β can be ignored.

Value

estall A factor indicating nodes’ labels. Items sharing the same label are in the same
community.

References

Hu, Y., & Wang, W. (2023). Network-Adjusted Covariates for Community Detection. arXiv
preprint arXiv:2306.15616.
https://arxiv.org/abs/2306.15616

Examples

Simulate the Network
n = 10; K = 2; p =5; prob1 = 0.9;
theta = 0.4 + (0.45-0.05)*(seq(1:n)/n)^2; Theta = diag(theta);
P = matrix(c(0.8, 0.2, 0.2, 0.8), byrow = TRUE, nrow = K)
set.seed(2022)
l = sample(1:K, n, replace=TRUE); # node labels
Pi = matrix(0, n, K) # label matrix
for (k in 1:K){

https://arxiv.org/abs/2306.15616

Net_based 7

Pi[l == k, k] = 1
}
Omega = Theta %*% Pi %*% P %*% t(Pi) %*% Theta;
Adj = matrix(runif(n*n, 0, 1), nrow = n);
Adj = Omega - Adj;
Adj = 1*(Adj >= 0)
diag(Adj) = 0
Adj[lower.tri(Adj)] = t(Adj)[lower.tri(Adj)]
Q = 0.1*matrix(sign(runif(p*K) - 0.5), nrow = p);
for(i in 1:K){

Q[(i-1)*(p/K)+(1:(p/K)), i] = 0.3; #remark. has a change here
}
W = matrix(0, nrow = n, ncol = K);
for(jj in 1:n) {

pp = rep(1/(K-1), K); pp[l[jj]] = 0;
if(runif(1) <= prob1) {W[jj, 1:K] = Pi[jj,];}
else
W[jj, sample(K, 1, prob = pp)] = 1;
}

W = t(W)
D0 = Q %*% W
D = matrix(0, n, p)
for (i in 1:n){

D[i,] = rnorm(p, mean = D0[,i], sd = 1);
}
NAC(Adj, D, 2)

Net_based Network-based Regularized Spectral Clustering.

Description

Network-based Regularized Spectral Clustering is a spectral clustering with regularized Laplacian
method, fully established in fully established in Impact of Regularization on Spectral Clustering of
Joseph & Yu (2016).

Usage

Net_based(Adj, K, tau = NULL, itermax = 100, startn = 10)

Arguments

Adj An n×n symmetric adjacency matrix with diagonals being 0 and positive entries
being 1.

K A positive positive integer which is no larger than n. This is the predefined
number of communities.

tau An optional tuning parameter to add J to the adjacency matrix A, where J is a
constant matrix with all entries equal to 1/n. The default value is the mean of
nodes’ degrees.

8 SCORE

itermax k-means parameter, indicating the maximum number of iterations allowed. The
default value is 100.

startn k-means parameter. The number of times the algorithm should be run with
different initial centroids. The default value is 10.

Value

estall A factor indicating nodes’ labels. Items sharing the same label are in the same
community.

References

Joseph, A., & Yu, B. (2016). Impact of Regularization on Spectral Clustering. The Annals of Statis-
tics, 44(4), 1765-1791.
doi:10.1214/16AOS1447

Examples

Simulate the Network
n = 10; K = 2;
theta = 0.4 + (0.45-0.05)*(seq(1:n)/n)^2; Theta = diag(theta);
P = matrix(c(0.8, 0.2, 0.2, 0.8), byrow = TRUE, nrow = K)
set.seed(2022)
l = sample(1:K, n, replace=TRUE); # node labels
Pi = matrix(0, n, K) # label matrix
for (k in 1:K){

Pi[l == k, k] = 1
}
Omega = Theta %*% Pi %*% P %*% t(Pi) %*% Theta;
Adj = matrix(runif(n*n, 0, 1), nrow = n);
Adj = Omega - Adj;
Adj = 1*(Adj >= 0)
diag(Adj) = 0
Adj[lower.tri(Adj)] = t(Adj)[lower.tri(Adj)]
Net_based(Adj, 2)

SCORE Spectral Clustering On Ratios-of-Eigenvectors.

Description

Using ratios-of-eigenvectors to detect underlying communities.

Usage

SCORE(G, K, itermax = 100, startn = 10)

https://doi.org/10.1214/16-AOS1447

SCORE 9

Arguments

G An n×n symmetric adjacency matrix with diagonals being 0 and positive entries
being 1, where isolated nodes are not allowed.

K A positive integer which is no larger than n. This is the predefined number of
communities.

itermax k-means parameter, indicating the maximum number of iterations allowed. The
default value is 100.

startn k-means parameter. The number of times the algorithm should be run with
different initial centroids. The default value is 10.

Details

SCORE is fully established in Fast community detection by SCORE of Jin (2015). SCORE uses the
entrywise ratios between the first leading eigenvector and each of the other K−1 leading eigenvec-
tors for clustering. It is noteworthy that SCORE only works on connected graphs. In other words,
it does not allow for isolated vertices.

Value

estall A factor indicating nodes’ labels. Items sharing the same label are in the same
community.

References

Jin, J. (2015). Fast community detection by score. The Annals of Statistics, 43 (1), 57–89.
doi:10.1214/14AOS1265

Examples

Simulate the Network
n = 10; K = 2;
theta = 0.4 + (0.45-0.05)*(seq(1:n)/n)^2; Theta = diag(theta);
P = matrix(c(0.8, 0.2, 0.2, 0.8), byrow = TRUE, nrow = K)
set.seed(2022)
l = sample(1:K, n, replace=TRUE); # node labels
Pi = matrix(0, n, K) # label matrix
for (k in 1:K){

Pi[l == k, k] = 1
}
Omega = Theta %*% Pi %*% P %*% t(Pi) %*% Theta;
Adj = matrix(runif(n*n, 0, 1), nrow = n);
Adj = Omega - Adj;
Adj = 1*(Adj >= 0)
diag(Adj) = 0
Adj[lower.tri(Adj)] = t(Adj)[lower.tri(Adj)]
library(igraph)
is.igraph(Adj) # [1] FALSE
ix = components(graph.adjacency(Adj))
componentLabel = ix$membership

https://doi.org/10.1214/14-AOS1265

10 SDP

giantLabel = which(componentLabel == which.max(ix$csize))
Giant = Adj[giantLabel, giantLabel]
SCORE(Giant, 2)

SDP Semidefinite programming for Community Detection in Networks with
Covariates.

Description

Semidefinite programming (SDP) for optimizing the inner product between combined network and
the solution matrix.

Usage

SDP(
Adj,
Covariate,
lambda,
K,
alpha,
rho,
TT,
tol,
quiet = NULL,
report_interval = NULL,
r = NULL

)

Arguments

Adj An n×n symmetric adjacency matrix with diagonals being 0 and positive entries
being 1.

Covariate An n × p covariate matrix. The rows correspond to nodes and the columns
correspond to covariates.

lambda A tuning parameter to weigh the covariate matrix.

K A positive integer which is no larger than n. This is the predefined number of
communities.

alpha The element-wise upper bound in the SDP.

rho The learning rate of SDP.

TT The maximum of iteration.

tol The tolerance for stopping criterion.

quiet An optional input, indicating whether to print result at each step.

SDP 11

report_interval

An optional input. The frequency to print intermediate result.

r An optional input. The expected rank of the solution, leave NULL if no constraint
is required.

Details

SDP is proposed in Covariate Regularized Community Detection in Sparse Graphs of Yan & Sarkar
(2021). This method relies on semidefinite programming relaxations for detecting the community
structure in sparse networks with covariates.

Value

estall A factor indicating nodes’ labels. Items sharing the same label are in the same
community.

References

Yan, B., & Sarkar, P. (2021). Covariate Regularized Community Detection in Sparse Graphs. Jour-
nal of the American Statistical Association, 116(534), 734-745.
doi:10.1080/01621459.2019.1706541

Examples

Simulate the Network
n = 10; K = 2; p =5; prob1 = 0.9;
theta = 0.4 + (0.45-0.05)*(seq(1:n)/n)^2; Theta = diag(theta);
P = matrix(c(0.8, 0.2, 0.2, 0.8), byrow = TRUE, nrow = K)
set.seed(2022)
l = sample(1:K, n, replace=TRUE); # node labels
Pi = matrix(0, n, K) # label matrix
for (k in 1:K){

Pi[l == k, k] = 1
}
Omega = Theta %*% Pi %*% P %*% t(Pi) %*% Theta;
Adj = matrix(runif(n*n, 0, 1), nrow = n);
Adj = Omega - Adj;
Adj = 1*(Adj >= 0)
diag(Adj) = 0
Adj[lower.tri(Adj)] = t(Adj)[lower.tri(Adj)]
Q = 0.1*matrix(sign(runif(p*K) - 0.5), nrow = p);
for(i in 1:K){

Q[(i-1)*(p/K)+(1:(p/K)), i] = 0.3; #remark. has a change here
}
W = matrix(0, nrow = n, ncol = K);
for(jj in 1:n) {

pp = rep(1/(K-1), K); pp[l[jj]] = 0;
if(runif(1) <= prob1) {W[jj, 1:K] = Pi[jj,];}
else
W[jj, sample(K, 1, prob = pp)] = 1;

https://doi.org/10.1080/01621459.2019.1706541

12 SDP

}
W = t(W)
D0 = Q %*% W
D = matrix(0, n, p)
for (i in 1:n){

D[i,] = rnorm(p, mean = D0[,i], sd = 1);
}
SDP(Adj, D, lambda = 0.2, K = 2, alpha = 0.5, rho = 2, TT = 100, tol = 5)

Index

CAclustering, 2
Cov_based, 4

NAC, 5
Net_based, 7

SCORE, 8
SDP, 10

13

	CAclustering
	Cov_based
	NAC
	Net_based
	SCORE
	SDP
	Index

