# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "MicroMacroMultilevel" in publications use:' type: software license: GPL-2.0-or-later title: 'MicroMacroMultilevel: Micro-Macro Multilevel Modeling' version: 0.4.0 doi: 10.32614/CRAN.package.MicroMacroMultilevel abstract: Most multilevel methodologies can only model macro-micro multilevel situations in an unbiased way, wherein group-level predictors (e.g., city temperature) are used to predict an individual-level outcome variable (e.g., citizen personality). In contrast, this R package enables researchers to model micro-macro situations, wherein individual-level (micro) predictors (and other group-level predictors) are used to predict a group-level (macro) outcome variable in an unbiased way. authors: - family-names: Lu given-names: Jackson G email: jackson.guannan.lu@gmail.com - family-names: Page-Gould given-names: Elizabeth email: liz@psych.utoronto.ca - family-names: Xu given-names: Nancy R email: nancyranxu@gmail.com repository: https://CRAN.R-project.org/package=MicroMacroMultilevel date-released: '2017-07-01' contact: - family-names: Xu given-names: Nancy R email: nancyranxu@gmail.com