Title: | Read and Analyze 'MetIDQ™' Software Output Files |
---|---|
Description: | The 'MetAlyzer' S4 object provides methods to read and reformat metabolomics data for convenient data handling, statistics and downstream analysis. The resulting format corresponds to input data of the Shiny app 'MetaboExtract' (<https://www.metaboextract.shiny.dkfz.de/MetaboExtract/>). |
Authors: | Nils Mechtel [aut, cre] , Luis Herfurth [aut] , Carolin Andresen [aut] , Daniel Huebschmann [aut] |
Maintainer: | Nils Mechtel <[email protected]> |
License: | GPL-3 |
Version: | 1.1.0 |
Built: | 2024-12-06 18:41:30 UTC |
Source: | CRAN |
This function returns the tibble "aggregated_data".
aggregatedData(metalyzer_se)
aggregatedData(metalyzer_se)
metalyzer_se |
SummarizedExperiment |
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) aggregatedData(metalyzer_se)
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) aggregatedData(metalyzer_se)
This method performs a one-way ANOVA on the grouped aggregated_data (the categorical variable is removed from grouping first). The vector of the categorical variable needs to have at least two levels after removing NAs from the dependent variable vector. Otherwise a vector of NA is returned. A Tukey post-hoc test is then used to determine group names, starting with "A" followed by further letters. These group names are added to aggregated_data in the column ANOVA_Group. Thereby, metabolites can be identified which are significantly higher in one or more of the categorical variable compared to all other for each metabolite.
calculate_anova( metalyzer_se, categorical, groups = NULL, impute_perc_of_min = 0.2, impute_NA = TRUE )
calculate_anova( metalyzer_se, categorical, groups = NULL, impute_perc_of_min = 0.2, impute_NA = TRUE )
metalyzer_se |
A Metalyzer object |
categorical |
A column defining the categorical variable |
groups |
A vector of column names of aggregated_data to calculate the ANOVA group wise. If the column does not exists in aggregated_data it is automatically added from meta data. The default value is set to NULL, which uses the existing grouping of aggregated_data. |
impute_perc_of_min |
A numeric value below 1 |
impute_NA |
Logical value whether to impute NA values |
A data frame containing the log2 fold change for each metabolite
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) metalyzer_se <- renameMetaData( metalyzer_se, Extraction_Method = "Sample Description" ) # reduced to only 'Acylcarnitines' (first metabolic class) for simplicity drop_vec = unique(metalyzer_se@elementMetadata$metabolic_classes)[2:24] metalyzer_se <- filterMetabolites( metalyzer_se, drop_metabolites = drop_vec ) metalyzer_se <- filterMetaData( metalyzer_se, Tissue == "Drosophila" ) metalyzer_se <- calculate_anova( metalyzer_se, categorical = "Extraction_Method", groups = c("Metabolite"), impute_perc_of_min = 0.2, impute_NA = TRUE )
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) metalyzer_se <- renameMetaData( metalyzer_se, Extraction_Method = "Sample Description" ) # reduced to only 'Acylcarnitines' (first metabolic class) for simplicity drop_vec = unique(metalyzer_se@elementMetadata$metabolic_classes)[2:24] metalyzer_se <- filterMetabolites( metalyzer_se, drop_metabolites = drop_vec ) metalyzer_se <- filterMetaData( metalyzer_se, Tissue == "Drosophila" ) metalyzer_se <- calculate_anova( metalyzer_se, categorical = "Extraction_Method", groups = c("Metabolite"), impute_perc_of_min = 0.2, impute_NA = TRUE )
This function calculates the mean, standard deviation (SD) and the coefficient of variation (CV) for each group and adds them to aggregated_data.
calculate_cv( metalyzer_se, groups = NULL, cv_thresholds = c(0.1, 0.2, 0.3), na.rm = TRUE )
calculate_cv( metalyzer_se, groups = NULL, cv_thresholds = c(0.1, 0.2, 0.3), na.rm = TRUE )
metalyzer_se |
A Metalyzer object |
groups |
A vector of column names of aggregated_data to calculate mean, SD and CV group wise. If the column does not exists in aggregated_data it is automatically added from meta data. The default value is set to NULL, which uses the existing grouping of aggregated_data. |
cv_thresholds |
A numeric vector of upper thresholds (CV <= t) between 0 and 1 for CV categorization. |
na.rm |
a logical evaluating to TRUE or FALSE indicating whether NA values should be stripped before the computation proceeds. |
An updated aggregated_data tibble data frame
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) metalyzer_se <- renameMetaData( metalyzer_se, Extraction_Method = "Sample Description" ) metalyzer_se <- filterMetaData( metalyzer_se, Tissue == "Drosophila" ) metalyzer_se <- calculate_cv( metalyzer_se, groups = c("Tissue", "Extraction_Method", "Metabolite"), cv_thresholds = c(0.1, 0.2, 0.3), na.rm = TRUE )
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) metalyzer_se <- renameMetaData( metalyzer_se, Extraction_Method = "Sample Description" ) metalyzer_se <- filterMetaData( metalyzer_se, Tissue == "Drosophila" ) metalyzer_se <- calculate_cv( metalyzer_se, groups = c("Tissue", "Extraction_Method", "Metabolite"), cv_thresholds = c(0.1, 0.2, 0.3), na.rm = TRUE )
This function calculates log2(FC), p-values, and adjusted p-values of the data using limma.
calculate_log2FC( metalyzer_se, categorical, impute_perc_of_min = 0.2, impute_NA = FALSE )
calculate_log2FC( metalyzer_se, categorical, impute_perc_of_min = 0.2, impute_NA = FALSE )
metalyzer_se |
A Metalyzer object |
categorical |
A column specifying the two groups |
impute_perc_of_min |
A numeric value below 1 |
impute_NA |
Logical value whether to impute NA values |
A data frame containing the log2 fold change for each metabolite
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl()) metalyzer_se <- filterMetabolites( metalyzer_se, drop_metabolites = "Metabolism Indicators" ) metalyzer_se <- renameMetaData( metalyzer_se, Mutant_Control = "Sample Description" ) metalyzer_se <- calculate_log2FC( metalyzer_se, categorical = "Mutant_Control", impute_perc_of_min = 0.2, impute_NA = FALSE )
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl()) metalyzer_se <- filterMetabolites( metalyzer_se, drop_metabolites = "Metabolism Indicators" ) metalyzer_se <- renameMetaData( metalyzer_se, Mutant_Control = "Sample Description" ) metalyzer_se <- calculate_log2FC( metalyzer_se, categorical = "Mutant_Control", impute_perc_of_min = 0.2, impute_NA = FALSE )
This function returns the extraction_data_MxP_Quant_500.xlsx file path.
example_extraction_data()
example_extraction_data()
extraction_data_MxP_Quant_500.xlsx file path
fpath <- example_extraction_data()
fpath <- example_extraction_data()
This function returns the data frame loaded from example_meta_data.RDS.
example_meta_data()
example_meta_data()
data frame loaded from example_meta_data.RDS
fpath <- example_meta_data()
fpath <- example_meta_data()
This function returns the mutation_data_MxP_Quant_500_XL.xlsx file path.
example_mutation_data_xl()
example_mutation_data_xl()
mutation_data_MxP_Quant_500_XL.xlsx file path
fpath <- example_mutation_data_xl()
fpath <- example_mutation_data_xl()
This function exports the filtered raw data in the CSV format.
exportConcValues(metalyzer_se, ..., file_path = "metabolomics_data.csv")
exportConcValues(metalyzer_se, ..., file_path = "metabolomics_data.csv")
metalyzer_se |
SummarizedExperiment |
... |
Additional columns from meta_data |
file_path |
file path |
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) output_file <- file.path(tempdir(), "metabolomics_data.csv") exportConcValues( metalyzer_se, `Sample Description`, Tissue, file_path = output_file ) unlink(output_file)
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) output_file <- file.path(tempdir(), "metabolomics_data.csv") exportConcValues( metalyzer_se, `Sample Description`, Tissue, file_path = output_file ) unlink(output_file)
This function filters out certain classes or metabolites of the metabolites vector. If aggregated_data is not empty, metabolites and class will also be filtered here.
filterMetabolites( metalyzer_se, drop_metabolites = c("Metabolism Indicators"), drop_NA_concentration = FALSE, drop_quant_status = NULL, min_percent_valid = NULL, valid_status = c("Valid", "LOQ"), per_group = NULL, inplace = FALSE )
filterMetabolites( metalyzer_se, drop_metabolites = c("Metabolism Indicators"), drop_NA_concentration = FALSE, drop_quant_status = NULL, min_percent_valid = NULL, valid_status = c("Valid", "LOQ"), per_group = NULL, inplace = FALSE )
metalyzer_se |
SummarizedExperiment |
drop_metabolites |
A character vector defining metabolite classes or individual metabolites to be removed |
drop_NA_concentration |
A boolean whether to drop metabolites which have any NAs in their concentration value |
drop_quant_status |
A character, vector of characters or list of characters specifying which quantification status to remove. Metabolites with at least one quantification status of this vector will be removed. |
min_percent_valid |
A numeric lower threshold between 0 and 1 (t less than or equal to x) to remove invalid metabolites that do not meet a given percentage of valid measurements per group (default per Metabolite). |
valid_status |
A character vector that defines which quantification status is considered valid. |
per_group |
A character vector of column names from meta_data that will be used to split each metabolite into groups. The threshold 'min_percent_valid' will be applied for each group. The selected columns from meta_data will be added to aggregated_data. |
inplace |
If FALSE, return a copy. Otherwise, do operation inplace and return None. |
An updated SummarizedExperiment
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) drop_metabolites <- c("C0", "C2", "C3", "Metabolism Indicators", inplace = TRUE ) metalyzer_se <- filterMetabolites(metalyzer_se, drop_metabolites) # or filterMetabolites(metalyzer_se, drop_metabolites, inplace = TRUE)
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) drop_metabolites <- c("C0", "C2", "C3", "Metabolism Indicators", inplace = TRUE ) metalyzer_se <- filterMetabolites(metalyzer_se, drop_metabolites) # or filterMetabolites(metalyzer_se, drop_metabolites, inplace = TRUE)
This function updates the "Filter" column in meta_data to filter out samples.
filterMetaData(metalyzer_se, ..., inplace = FALSE)
filterMetaData(metalyzer_se, ..., inplace = FALSE)
metalyzer_se |
SummarizedExperiment |
... |
Use ´col_name´ and condition to filter selected variables. |
inplace |
If FALSE, return a copy. Otherwise, do operation inplace and return None. |
An updated SummarizedExperiment
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) metalyzer_se <- filterMetaData(metalyzer_se, !is.na(Tissue)) metalyzer_se <- filterMetaData(metalyzer_se, `Sample Description` %in% 1:6) # or filterMetaData(metalyzer_se, !is.na(Tissue), inplace = TRUE) filterMetaData(metalyzer_se, `Sample Description` %in% 1:6, inplace = TRUE)
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) metalyzer_se <- filterMetaData(metalyzer_se, !is.na(Tissue)) metalyzer_se <- filterMetaData(metalyzer_se, `Sample Description` %in% 1:6) # or filterMetaData(metalyzer_se, !is.na(Tissue), inplace = TRUE) filterMetaData(metalyzer_se, `Sample Description` %in% 1:6, inplace = TRUE)
This function returns the tibble "log2FC".
log2FC(metalyzer_se)
log2FC(metalyzer_se)
metalyzer_se |
SummarizedExperiment |
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl()) metalyzer_se <- filterMetabolites( metalyzer_se, drop_metabolites = "Metabolism Indicators" ) metalyzer_se <- renameMetaData( metalyzer_se, Mutant_Control = "Sample Description" ) metalyzer_se <- calculate_log2FC( metalyzer_se, categorical = "Mutant_Control", impute_perc_of_min = 0.2, impute_NA = TRUE ) log2FC(metalyzer_se)
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl()) metalyzer_se <- filterMetabolites( metalyzer_se, drop_metabolites = "Metabolism Indicators" ) metalyzer_se <- renameMetaData( metalyzer_se, Mutant_Control = "Sample Description" ) metalyzer_se <- calculate_log2FC( metalyzer_se, categorical = "Mutant_Control", impute_perc_of_min = 0.2, impute_NA = TRUE ) log2FC(metalyzer_se)
This function returns the vector loaded from metalyzer_colors.RDS.
metalyzer_colors()
metalyzer_colors()
data frame loaded from metalyzer_colors.RDS
fpath <- metalyzer_colors()
fpath <- metalyzer_colors()
This function creates a SummarizedExperiment (SE) from the given 'MetIDQ' output Excel sheet: metabolites (rowData), meta data (colData), concentration data (assay), quantification status(assay) The column "Sample Type" and the row "Class" are used as anchor cells in the Excel sheet and are therefore a requirement.
MetAlyzer_dataset( file_path, sheet = 1, status_list = list(Valid = c("#B9DE83", "#00CD66"), LOQ = c("#B2D1DC", "#7FB2C5", "#87CEEB"), LOD = c("#A28BA3", "#6A5ACD"), `ISTD Out of Range` = c("#FFF099", "#FFFF33"), Invalid = "#FFFFCC", Incomplete = c("#CBD2D7", "#FFCCCC")), silent = FALSE )
MetAlyzer_dataset( file_path, sheet = 1, status_list = list(Valid = c("#B9DE83", "#00CD66"), LOQ = c("#B2D1DC", "#7FB2C5", "#87CEEB"), LOD = c("#A28BA3", "#6A5ACD"), `ISTD Out of Range` = c("#FFF099", "#FFFF33"), Invalid = "#FFFFCC", Incomplete = c("#CBD2D7", "#FFCCCC")), silent = FALSE )
file_path |
A character specifying the file path to the Excel file. |
sheet |
A numeric index specifying which sheet of the Excel file to use. |
status_list |
A list of HEX color codes for each quantification status. |
silent |
If TRUE, mute any print command. |
A Summarized Experiment object
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data())
This function returns the pathway.xlsx file path.
pathway()
pathway()
pathway.xlsx file path
fpath <- pathway()
fpath <- pathway()
This method plots the log2 fold change for each metabolite.
plot_log2FC( metalyzer_se, signif_colors = c(`#5F5F5F` = 1, `#FEBF6E` = 0.1, `#EE5C42` = 0.05, `#8B1A1A` = 0.01), hide_labels_for = c(), class_colors = "MetAlyzer", polarity_file = "MxPQuant500", vulcano = FALSE )
plot_log2FC( metalyzer_se, signif_colors = c(`#5F5F5F` = 1, `#FEBF6E` = 0.1, `#EE5C42` = 0.05, `#8B1A1A` = 0.01), hide_labels_for = c(), class_colors = "MetAlyzer", polarity_file = "MxPQuant500", vulcano = FALSE )
metalyzer_se |
A Metalyzer object |
signif_colors |
signif_colors |
hide_labels_for |
vector of Metabolites or Classes for which no labels are printed |
class_colors |
class_colors |
polarity_file |
polarity_file |
vulcano |
boolean value to plot a vulcano plot |
ggplot object
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl()) metalyzer_se <- filterMetabolites( metalyzer_se, drop_metabolites = "Metabolism Indicators" ) metalyzer_se <- renameMetaData( metalyzer_se, Mutant_Control = "Sample Description" ) metalyzer_se <- calculate_log2FC( metalyzer_se, categorical = "Mutant_Control", impute_perc_of_min = 0.2, impute_NA = TRUE ) # p_vulcano <- plot_log2FC(metalyzer_se, vulcano=TRUE) # p_fc <- plot_log2FC(metalyzer_se, vulcano=FALSE)
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl()) metalyzer_se <- filterMetabolites( metalyzer_se, drop_metabolites = "Metabolism Indicators" ) metalyzer_se <- renameMetaData( metalyzer_se, Mutant_Control = "Sample Description" ) metalyzer_se <- calculate_log2FC( metalyzer_se, categorical = "Mutant_Control", impute_perc_of_min = 0.2, impute_NA = TRUE ) # p_vulcano <- plot_log2FC(metalyzer_se, vulcano=TRUE) # p_fc <- plot_log2FC(metalyzer_se, vulcano=FALSE)
This function plots the log2 fold change for each metabolite and visualizes it, in a pathway network.
plot_network( metalyzer_se, q_value = 0.05, metabolite_text_size = 3, connection_width = 0.75, pathway_text_size = 6, pathway_width = 4, scale_colors = c("green", "black", "magenta") )
plot_network( metalyzer_se, q_value = 0.05, metabolite_text_size = 3, connection_width = 0.75, pathway_text_size = 6, pathway_width = 4, scale_colors = c("green", "black", "magenta") )
metalyzer_se |
A Metalyzer object |
q_value |
The q-value threshold for significance |
metabolite_text_size |
The text size of metabolite labels |
connection_width |
The line width of connections between metabolites |
pathway_text_size |
The text size of pathway annotations |
pathway_width |
The line width of pathway-specific connection coloring |
scale_colors |
A vector of length 3 with colors for low, mid and high of the gradient. |
ggplot object
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl()) metalyzer_se <- filterMetabolites( metalyzer_se, drop_metabolites = "Metabolism Indicators" ) metalyzer_se <- renameMetaData( metalyzer_se, Mutant_Control = "Sample Description" ) metalyzer_se <- calculate_log2FC( metalyzer_se, categorical = "Mutant_Control", impute_perc_of_min = 0.2, impute_NA = FALSE ) network <- plot_network(metalyzer_se, q_value = 0.05)
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl()) metalyzer_se <- filterMetabolites( metalyzer_se, drop_metabolites = "Metabolism Indicators" ) metalyzer_se <- renameMetaData( metalyzer_se, Mutant_Control = "Sample Description" ) metalyzer_se <- calculate_log2FC( metalyzer_se, categorical = "Mutant_Control", impute_perc_of_min = 0.2, impute_NA = FALSE ) network <- plot_network(metalyzer_se, q_value = 0.05)
This function returns a list with interactive networkplot based on log2 fold change data.
plotly_network( metalyzer_se, q_value = 0.05, metabolite_node_size = 11, connection_width = 1.25, pathway_text_size = 20, pathway_width = 10, plot_height = 800 )
plotly_network( metalyzer_se, q_value = 0.05, metabolite_node_size = 11, connection_width = 1.25, pathway_text_size = 20, pathway_width = 10, plot_height = 800 )
metalyzer_se |
A MetAlyzer Object |
q_value |
A numeric value specifying the cutoff for q-value |
metabolite_node_size |
The text size of the metabolite Nodes |
connection_width |
The line width of connections between metabolites |
pathway_text_size |
The text size of pathway annotations |
pathway_width |
The line width of pathway-specific connection coloring |
plot_height |
The height of the Plot in pixel [px] |
plotly object
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl()) metalyzer_se <- filterMetabolites( metalyzer_se, drop_metabolites = "Metabolism Indicators" ) metalyzer_se <- renameMetaData( metalyzer_se, Mutant_Control = "Sample Description" ) metalyzer_se <- calculate_log2FC( metalyzer_se, categorical = "Mutant_Control", impute_perc_of_min = 0.2, impute_NA = FALSE ) p_network <- plotly_network(metalyzer_se, q_value = 0.05)
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl()) metalyzer_se <- filterMetabolites( metalyzer_se, drop_metabolites = "Metabolism Indicators" ) metalyzer_se <- renameMetaData( metalyzer_se, Mutant_Control = "Sample Description" ) metalyzer_se <- calculate_log2FC( metalyzer_se, categorical = "Mutant_Control", impute_perc_of_min = 0.2, impute_NA = FALSE ) p_network <- plotly_network(metalyzer_se, q_value = 0.05)
This function returns a list with an interactive scatterplot based on log2 fold change data and a comprehensive Legend.
plotly_scatter( metalyzer_se, signif_colors = c(`#5F5F5F` = 1, `#FEBF6E` = 0.1, `#EE5C42` = 0.05, `#8B1A1A` = 0.01), class_colors = metalyzer_colors() )
plotly_scatter( metalyzer_se, signif_colors = c(`#5F5F5F` = 1, `#FEBF6E` = 0.1, `#EE5C42` = 0.05, `#8B1A1A` = 0.01), class_colors = metalyzer_colors() )
metalyzer_se |
A Metalyzer object |
signif_colors |
signif_colors |
class_colors |
A csv file containing class colors hexcodes |
plotly object
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl()) metalyzer_se <- filterMetabolites( metalyzer_se, drop_metabolites = "Metabolism Indicators" ) metalyzer_se <- renameMetaData( metalyzer_se, Mutant_Control = "Sample Description" ) metalyzer_se <- calculate_log2FC( metalyzer_se, categorical = "Mutant_Control", impute_perc_of_min = 0.2, impute_NA = TRUE ) p_scatter <- plotly_scatter(metalyzer_se)
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl()) metalyzer_se <- filterMetabolites( metalyzer_se, drop_metabolites = "Metabolism Indicators" ) metalyzer_se <- renameMetaData( metalyzer_se, Mutant_Control = "Sample Description" ) metalyzer_se <- calculate_log2FC( metalyzer_se, categorical = "Mutant_Control", impute_perc_of_min = 0.2, impute_NA = TRUE ) p_scatter <- plotly_scatter(metalyzer_se)
This function returns a list with interactive vulcanoplot based on log2 fold change data.
plotly_vulcano( metalyzer_se, cutoff_y = 0.05, cutoff_x = 1.5, class_colors = metalyzer_colors() )
plotly_vulcano( metalyzer_se, cutoff_y = 0.05, cutoff_x = 1.5, class_colors = metalyzer_colors() )
metalyzer_se |
A Metalyzer object |
cutoff_y |
A numeric value specifying the cutoff for q-value |
cutoff_x |
A numeric value specifying the cutoff for log2 fold change |
class_colors |
A csv file containing class colors hexcodes |
plotly object
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl()) metalyzer_se <- filterMetabolites( metalyzer_se, drop_metabolites = "Metabolism Indicators" ) metalyzer_se <- renameMetaData( metalyzer_se, Mutant_Control = "Sample Description" ) metalyzer_se <- calculate_log2FC( metalyzer_se, categorical = "Mutant_Control", impute_perc_of_min = 0.2, impute_NA = TRUE ) p_vulcano <- plotly_vulcano(metalyzer_se, cutoff_y = 0.05, cutoff_x = 1.5)
metalyzer_se <- MetAlyzer_dataset(file_path = example_mutation_data_xl()) metalyzer_se <- filterMetabolites( metalyzer_se, drop_metabolites = "Metabolism Indicators" ) metalyzer_se <- renameMetaData( metalyzer_se, Mutant_Control = "Sample Description" ) metalyzer_se <- calculate_log2FC( metalyzer_se, categorical = "Mutant_Control", impute_perc_of_min = 0.2, impute_NA = TRUE ) p_vulcano <- plotly_vulcano(metalyzer_se, cutoff_y = 0.05, cutoff_x = 1.5)
This function returns the polarity.csv file path.
polarity()
polarity()
polarity.csv file path
fpath <- polarity()
fpath <- polarity()
This function reads in the named regions of an excel file.
read_named_region(file_path, named_region)
read_named_region(file_path, named_region)
file_path |
The file path of the file |
named_region |
The region name u want to read in |
This function renames a column of meta_data.
renameMetaData(metalyzer_se, ..., inplace = FALSE)
renameMetaData(metalyzer_se, ..., inplace = FALSE)
metalyzer_se |
SummarizedExperiment |
... |
Use new_name = old_name to rename selected variables |
inplace |
If FALSE, return a copy. Otherwise, do operation inplace and return None. |
An updated SummarizedExperiment
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) metalyzer_se <- renameMetaData( metalyzer_se, Method = `Sample Description` ) # or renameMetaData(metalyzer_se, Model_Organism = Tissue, inplace = TRUE)
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) metalyzer_se <- renameMetaData( metalyzer_se, Method = `Sample Description` ) # or renameMetaData(metalyzer_se, Model_Organism = Tissue, inplace = TRUE)
This function prints quantiles and NAs of raw data.
summarizeConcValues(metalyzer_se)
summarizeConcValues(metalyzer_se)
metalyzer_se |
SummarizedExperiment |
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) summarizeConcValues(metalyzer_se)
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) summarizeConcValues(metalyzer_se)
This function lists the number of each quantification status and its percentage.
summarizeQuantData(metalyzer_se)
summarizeQuantData(metalyzer_se)
metalyzer_se |
SummarizedExperiment |
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) summarizeQuantData(metalyzer_se)
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) summarizeQuantData(metalyzer_se)
This function adds another column to filtered meta_data.
updateMetaData(metalyzer_se, ..., inplace = FALSE)
updateMetaData(metalyzer_se, ..., inplace = FALSE)
metalyzer_se |
SummarizedExperiment |
... |
Use ´new_col_name = new_column´ to rename selected variables |
inplace |
If FALSE, return a copy. Otherwise, do operation inplace and return None. |
An updated SummarizedExperiment
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) metalyzer_se <- updateMetaData( metalyzer_se, Date = Sys.Date(), Analyzed = TRUE ) # or updateMetaData( metalyzer_se, Date = Sys.Date(), Analyzed = TRUE, inplace = TRUE )
metalyzer_se <- MetAlyzer_dataset(file_path = example_extraction_data()) metalyzer_se <- updateMetaData( metalyzer_se, Date = Sys.Date(), Analyzed = TRUE ) # or updateMetaData( metalyzer_se, Date = Sys.Date(), Analyzed = TRUE, inplace = TRUE )