Title: | Penalized Matrix-Normal Linear Discriminant Analysis |
---|---|
Description: | Fits the penalized matrix-normal model to be used for linear discriminant analysis with matrix-valued predictors. For a description of the method, see Molstad and Rothman (2018) <doi:10.1080/10618600.2018.1476249>. |
Authors: | Aaron J. Molstad [aut, cre] |
Maintainer: | Aaron J. Molstad <[email protected]> |
License: | GPL-2 |
Version: | 0.2 |
Built: | 2024-12-29 08:12:31 UTC |
Source: | CRAN |
-class penalized matrix-normal model for a single pair of tuning parameters. A function for fitting the -class penalized matrix-normal model based on a single set of tuning parameters
. Returns an object of class "MN", which can be used for prediction using the
PredictMN
function.
MatLDA(X, class, lambda1, lambda2, quiet = TRUE, Xval = NULL, classval = NULL, k.iter = 100, cov.tol = 1e-05, m.tol = 1e-05, full.tol = 1e-06)
MatLDA(X, class, lambda1, lambda2, quiet = TRUE, Xval = NULL, classval = NULL, k.iter = 100, cov.tol = 1e-05, m.tol = 1e-05, full.tol = 1e-06)
X |
An |
class |
|
lambda1 |
A non-negative tuning parameter for the mean penalty. |
lambda2 |
A non-negative tuning parameter for the Kronecker penalty. |
quiet |
Logical. Should the objective function value be printed at each update? Default is |
Xval |
An |
classval |
|
k.iter |
Maximum number of iterations for full blockwise coordinate descent algorithm. |
cov.tol |
Convergence tolerance for graphical lasso sub-algorithms; passed to |
m.tol |
Convergence tolerance for mean update alternating minimization algorithm. Default is |
full.tol |
Convergence tolerance for full blockwise coordinate descent algorithm; based on decrease in objective function value. Default is |
Returns of list of class "MN", which contains the following elements:
Val |
The misclassification rate on the validation set, if provided. |
Mean |
|
U |
|
V |
|
pi.list |
|
Molstad, A. J., and Rothman, A. J. (2018). A penalized likelihood method for classification with matrix-valued predictors. Journal of Computational and Graphical Statistics.
## Generate realizations of matrix-normal random variables ## set sample size, dimensionality, number of classes, ## and marginal class probabilities N = 75 N.test = 150 N.val = 75 N.total = N + N.test + N.val r = 16 p = 16 C = 3 pi.list = rep(1/C, C) ## create class means M.array = array(0, dim=c(r, p, C)) M.array[3:4, 3:4, 1] = 1 M.array[5:6, 5:6, 2] = .5 M.array[3:4, 3:4, 3] = -2 M.array[5:6, 5:6, 3] = -.5 ## create covariance matrices U and V Uinv = matrix(0, nrow=r, ncol=r) for (i in 1:r) { for (j in 1:r) { Uinv[i,j] = .5^abs(i-j) } } eoU = eigen(Uinv) Uinv.sqrt = tcrossprod(tcrossprod(eoU$vec, diag(eoU$val^(1/2))),eoU$vec) Vinv = matrix(.5, nrow=p, ncol=p) diag(Vinv) = 1 eoV = eigen(Vinv) Vinv.sqrt = tcrossprod(tcrossprod(eoV$vec, diag(eoV$val^(1/2))),eoV$vec) ## generate N.total realizations of matrix-variate normal data set.seed(10) dat.array = array(0, dim=c(r,p,N.total)) class.total = numeric(length=N.total) for(jj in 1:N.total){ class.total[jj] = sample(1:C, 1, prob=pi.list) dat.array[,,jj] = tcrossprod(crossprod(Uinv.sqrt, matrix(rnorm(r*p), nrow=r)), Vinv.sqrt) + M.array[,,class.total[jj]] } ## store generated data X = dat.array[,,1:N] X.val = dat.array[,,(N+1):(N+N.val)] X.test = dat.array[,,(N+N.val+1):N.total] class = class.total[1:N] class.val = class.total[(N+1):(N+N.val)] class.test = class.total[(N+N.val+1):N.total] ## fit two-dimensional grid of tuning parameters; ## measure classification accuracy on validation set lambda1 = c(2^seq(-5, 0, by=1)) lambda2 = c(2^seq(-8, -4, by=1)) fit.grid = MatLDA_Grid(X=X, class=class, lambda1=lambda1, lambda2=lambda2, quiet=TRUE, Xval=X.val, classval= class.val, k.iter = 100, cov.tol=1e-5, m.tol=1e-5, full.tol=1e-6) ## identify minimum misclassification proportion; ## select tuning parameters corresponding to ## smallest model at minimum misclassification proportion CV.mat = fit.grid$Val.mat G.mat = fit.grid$G.mat*(CV.mat==min(CV.mat)) ind1 = (which(G.mat==max(G.mat), arr.ind=TRUE))[,2] ind2 = (which(G.mat==max(G.mat), arr.ind=TRUE))[,1] out = unique(ind2[which(ind2==max(ind2))]) lambda1.cv = lambda1[out] out2 = unique(max(ind1[ind2==out])) lambda2.cv = lambda2[out2] ## refit model with sinlge tuning parameter pair out = MatLDA(X=X, class=class, lambda1=lambda1.cv, lambda2=lambda2.cv, quiet=FALSE, Xval=X.test, classval= class.test, k.iter = 100, cov.tol=1e-5, m.tol=1e-5, full.tol=1e-6) ## print misclassification proportion on test set out$Val ## print images of estimated mean differences dev.new(width=10, height=3) par(mfrow=c(1,3)) image(t(abs(out$M[,,1] - out$M[,,2]))[,r:1], main=expression(paste("|", hat(mu)[1], "-", hat(mu)[2], "|")), col = grey(seq(1, 0, length = 100))) image(t(abs(out$M[,,1] - out$M[,,3]))[,r:1], main=expression(paste("|", hat(mu)[1], "-", hat(mu)[3], "|")), col = grey(seq(1, 0, length = 100))) image(t(abs(out$M[,,2] - out$M[,,3]))[,r:1], main=expression(paste("|", hat(mu)[2], "-", hat(mu)[3], "|")), col = grey(seq(1, 0, length = 100)))
## Generate realizations of matrix-normal random variables ## set sample size, dimensionality, number of classes, ## and marginal class probabilities N = 75 N.test = 150 N.val = 75 N.total = N + N.test + N.val r = 16 p = 16 C = 3 pi.list = rep(1/C, C) ## create class means M.array = array(0, dim=c(r, p, C)) M.array[3:4, 3:4, 1] = 1 M.array[5:6, 5:6, 2] = .5 M.array[3:4, 3:4, 3] = -2 M.array[5:6, 5:6, 3] = -.5 ## create covariance matrices U and V Uinv = matrix(0, nrow=r, ncol=r) for (i in 1:r) { for (j in 1:r) { Uinv[i,j] = .5^abs(i-j) } } eoU = eigen(Uinv) Uinv.sqrt = tcrossprod(tcrossprod(eoU$vec, diag(eoU$val^(1/2))),eoU$vec) Vinv = matrix(.5, nrow=p, ncol=p) diag(Vinv) = 1 eoV = eigen(Vinv) Vinv.sqrt = tcrossprod(tcrossprod(eoV$vec, diag(eoV$val^(1/2))),eoV$vec) ## generate N.total realizations of matrix-variate normal data set.seed(10) dat.array = array(0, dim=c(r,p,N.total)) class.total = numeric(length=N.total) for(jj in 1:N.total){ class.total[jj] = sample(1:C, 1, prob=pi.list) dat.array[,,jj] = tcrossprod(crossprod(Uinv.sqrt, matrix(rnorm(r*p), nrow=r)), Vinv.sqrt) + M.array[,,class.total[jj]] } ## store generated data X = dat.array[,,1:N] X.val = dat.array[,,(N+1):(N+N.val)] X.test = dat.array[,,(N+N.val+1):N.total] class = class.total[1:N] class.val = class.total[(N+1):(N+N.val)] class.test = class.total[(N+N.val+1):N.total] ## fit two-dimensional grid of tuning parameters; ## measure classification accuracy on validation set lambda1 = c(2^seq(-5, 0, by=1)) lambda2 = c(2^seq(-8, -4, by=1)) fit.grid = MatLDA_Grid(X=X, class=class, lambda1=lambda1, lambda2=lambda2, quiet=TRUE, Xval=X.val, classval= class.val, k.iter = 100, cov.tol=1e-5, m.tol=1e-5, full.tol=1e-6) ## identify minimum misclassification proportion; ## select tuning parameters corresponding to ## smallest model at minimum misclassification proportion CV.mat = fit.grid$Val.mat G.mat = fit.grid$G.mat*(CV.mat==min(CV.mat)) ind1 = (which(G.mat==max(G.mat), arr.ind=TRUE))[,2] ind2 = (which(G.mat==max(G.mat), arr.ind=TRUE))[,1] out = unique(ind2[which(ind2==max(ind2))]) lambda1.cv = lambda1[out] out2 = unique(max(ind1[ind2==out])) lambda2.cv = lambda2[out2] ## refit model with sinlge tuning parameter pair out = MatLDA(X=X, class=class, lambda1=lambda1.cv, lambda2=lambda2.cv, quiet=FALSE, Xval=X.test, classval= class.test, k.iter = 100, cov.tol=1e-5, m.tol=1e-5, full.tol=1e-6) ## print misclassification proportion on test set out$Val ## print images of estimated mean differences dev.new(width=10, height=3) par(mfrow=c(1,3)) image(t(abs(out$M[,,1] - out$M[,,2]))[,r:1], main=expression(paste("|", hat(mu)[1], "-", hat(mu)[2], "|")), col = grey(seq(1, 0, length = 100))) image(t(abs(out$M[,,1] - out$M[,,3]))[,r:1], main=expression(paste("|", hat(mu)[1], "-", hat(mu)[3], "|")), col = grey(seq(1, 0, length = 100))) image(t(abs(out$M[,,2] - out$M[,,3]))[,r:1], main=expression(paste("|", hat(mu)[2], "-", hat(mu)[3], "|")), col = grey(seq(1, 0, length = 100)))
-class penalized matrix-normal model for a two-dimensional grid of tuning parameters. Used for tuning parameter selection. A function for fitting the penalized matrix normal model for a two-dimensional grid of tuning parameters. Meant to be used with a validation set to select tuning parameters. Can also be used inside a -fold cross-validation function where the training set is the data outside the
th fold and the validation set is comprised of the
th fold sample data.
MatLDA_Grid(X, class, lambda1, lambda2, quiet = TRUE, Xval = NULL, classval = NULL, k.iter = 100, cov.tol = 1e-05, m.tol = 1e-05, full.tol = 1e-06)
MatLDA_Grid(X, class, lambda1, lambda2, quiet = TRUE, Xval = NULL, classval = NULL, k.iter = 100, cov.tol = 1e-05, m.tol = 1e-05, full.tol = 1e-06)
X |
An |
class |
|
lambda1 |
A vector of non-negative candidate tuning parameters for the mean penalty. |
lambda2 |
A vector of non-negative candidate tuning parameters for the Kronecker penalty. |
quiet |
Logical. Should the objective function value be printed at each update? Default is |
Xval |
An |
classval |
|
k.iter |
Maximum number of iterations for full blockwise coordinate descent algorithm. Default is 100. |
cov.tol |
Convergence tolerance for graphical lasso subalgorithms; passed to |
m.tol |
Convergence tolerance for mean update alternating minimization algorithm. Default is |
full.tol |
Convergence tolerance for full blockwise coordinate descent algorithm; based on decrease in objective function value. Default is |
Val.mat |
A matrix of dimension |
G.mat |
A matrix of dimension |
U.mat |
A matrix of dimension |
V.mat |
A matrix of dimension |
Molstad, A. J., and Rothman, A. J. (2018). A penalized likelihood method for classification with matrix-valued predictors. Journal of Computational and Graphical Statistics.
## Generate realizations of matrix-normal random variables ## set sample size, dimensionality, number of classes, ## and marginal class probabilities N = 75 N.test = 150 N.val = 75 N.total = N + N.test + N.val r = 16 p = 16 C = 3 pi.list = rep(1/C, C) ## create class means M.array = array(0, dim=c(r, p, C)) M.array[3:4, 3:4, 1] = 1 M.array[5:6, 5:6, 2] = .5 M.array[3:4, 3:4, 3] = -2 M.array[5:6, 5:6, 3] = -.5 ## create covariance matrices U and V Uinv = matrix(0, nrow=r, ncol=r) for (i in 1:r) { for (j in 1:r) { Uinv[i,j] = .5^abs(i-j) } } eoU = eigen(Uinv) Uinv.sqrt = tcrossprod(tcrossprod(eoU$vec, diag(eoU$val^(1/2))),eoU$vec) Vinv = matrix(.5, nrow=p, ncol=p) diag(Vinv) = 1 eoV = eigen(Vinv) Vinv.sqrt = tcrossprod(tcrossprod(eoV$vec, diag(eoV$val^(1/2))),eoV$vec) ## generate N.total realizations of matrix-variate normal data set.seed(10) dat.array = array(0, dim=c(r,p,N.total)) class.total = numeric(length=N.total) for(jj in 1:N.total){ class.total[jj] = sample(1:C, 1, prob=pi.list) dat.array[,,jj] = tcrossprod(crossprod(Uinv.sqrt, matrix(rnorm(r*p), nrow=r)), Vinv.sqrt) + M.array[,,class.total[jj]] } ## store generated data X = dat.array[,,1:N] X.val = dat.array[,,(N+1):(N+N.val)] X.test = dat.array[,,(N+N.val+1):N.total] class = class.total[1:N] class.val = class.total[(N+1):(N+N.val)] class.test = class.total[(N+N.val+1):N.total] ## fit two-dimensional grid of tuning parameters; ## measure classification accuracy on validation set lambda1 = c(2^seq(-5, 0, by=1)) lambda2 = c(2^seq(-8, -4, by=1)) fit.grid = MatLDA_Grid(X=X, class=class, lambda1=lambda1, lambda2=lambda2, quiet=TRUE, Xval=X.val, classval= class.val, k.iter = 100, cov.tol=1e-5, m.tol=1e-5, full.tol=1e-6) ## identify minimum misclassification proportion; ## select tuning parameters corresponding to ## smallest model at minimum misclassification proportion CV.mat = fit.grid$Val.mat G.mat = fit.grid$G.mat*(CV.mat==min(CV.mat)) ind1 = (which(G.mat==max(G.mat), arr.ind=TRUE))[,2] ind2 = (which(G.mat==max(G.mat), arr.ind=TRUE))[,1] out = unique(ind2[which(ind2==max(ind2))]) lambda1.cv = lambda1[out] out2 = unique(max(ind1[ind2==out])) lambda2.cv = lambda2[out2] ## refit model with sinlge tuning parameter pair out = MatLDA(X=X, class=class, lambda1=lambda1.cv, lambda2=lambda2.cv, quiet=FALSE, Xval=X.test, classval= class.test, k.iter = 100, cov.tol=1e-5, m.tol=1e-5, full.tol=1e-6) ## print misclassification proportion on test set out$Val ## print images of estimated mean differences dev.new(width=10, height=3) par(mfrow=c(1,3)) image(t(abs(out$M[,,1] - out$M[,,2]))[,r:1], main=expression(paste("|", hat(mu)[1], "-", hat(mu)[2], "|")), col = grey(seq(1, 0, length = 100))) image(t(abs(out$M[,,1] - out$M[,,3]))[,r:1], main=expression(paste("|", hat(mu)[1], "-", hat(mu)[3], "|")), col = grey(seq(1, 0, length = 100))) image(t(abs(out$M[,,2] - out$M[,,3]))[,r:1], main=expression(paste("|", hat(mu)[2], "-", hat(mu)[3], "|")), col = grey(seq(1, 0, length = 100)))
## Generate realizations of matrix-normal random variables ## set sample size, dimensionality, number of classes, ## and marginal class probabilities N = 75 N.test = 150 N.val = 75 N.total = N + N.test + N.val r = 16 p = 16 C = 3 pi.list = rep(1/C, C) ## create class means M.array = array(0, dim=c(r, p, C)) M.array[3:4, 3:4, 1] = 1 M.array[5:6, 5:6, 2] = .5 M.array[3:4, 3:4, 3] = -2 M.array[5:6, 5:6, 3] = -.5 ## create covariance matrices U and V Uinv = matrix(0, nrow=r, ncol=r) for (i in 1:r) { for (j in 1:r) { Uinv[i,j] = .5^abs(i-j) } } eoU = eigen(Uinv) Uinv.sqrt = tcrossprod(tcrossprod(eoU$vec, diag(eoU$val^(1/2))),eoU$vec) Vinv = matrix(.5, nrow=p, ncol=p) diag(Vinv) = 1 eoV = eigen(Vinv) Vinv.sqrt = tcrossprod(tcrossprod(eoV$vec, diag(eoV$val^(1/2))),eoV$vec) ## generate N.total realizations of matrix-variate normal data set.seed(10) dat.array = array(0, dim=c(r,p,N.total)) class.total = numeric(length=N.total) for(jj in 1:N.total){ class.total[jj] = sample(1:C, 1, prob=pi.list) dat.array[,,jj] = tcrossprod(crossprod(Uinv.sqrt, matrix(rnorm(r*p), nrow=r)), Vinv.sqrt) + M.array[,,class.total[jj]] } ## store generated data X = dat.array[,,1:N] X.val = dat.array[,,(N+1):(N+N.val)] X.test = dat.array[,,(N+N.val+1):N.total] class = class.total[1:N] class.val = class.total[(N+1):(N+N.val)] class.test = class.total[(N+N.val+1):N.total] ## fit two-dimensional grid of tuning parameters; ## measure classification accuracy on validation set lambda1 = c(2^seq(-5, 0, by=1)) lambda2 = c(2^seq(-8, -4, by=1)) fit.grid = MatLDA_Grid(X=X, class=class, lambda1=lambda1, lambda2=lambda2, quiet=TRUE, Xval=X.val, classval= class.val, k.iter = 100, cov.tol=1e-5, m.tol=1e-5, full.tol=1e-6) ## identify minimum misclassification proportion; ## select tuning parameters corresponding to ## smallest model at minimum misclassification proportion CV.mat = fit.grid$Val.mat G.mat = fit.grid$G.mat*(CV.mat==min(CV.mat)) ind1 = (which(G.mat==max(G.mat), arr.ind=TRUE))[,2] ind2 = (which(G.mat==max(G.mat), arr.ind=TRUE))[,1] out = unique(ind2[which(ind2==max(ind2))]) lambda1.cv = lambda1[out] out2 = unique(max(ind1[ind2==out])) lambda2.cv = lambda2[out2] ## refit model with sinlge tuning parameter pair out = MatLDA(X=X, class=class, lambda1=lambda1.cv, lambda2=lambda2.cv, quiet=FALSE, Xval=X.test, classval= class.test, k.iter = 100, cov.tol=1e-5, m.tol=1e-5, full.tol=1e-6) ## print misclassification proportion on test set out$Val ## print images of estimated mean differences dev.new(width=10, height=3) par(mfrow=c(1,3)) image(t(abs(out$M[,,1] - out$M[,,2]))[,r:1], main=expression(paste("|", hat(mu)[1], "-", hat(mu)[2], "|")), col = grey(seq(1, 0, length = 100))) image(t(abs(out$M[,,1] - out$M[,,3]))[,r:1], main=expression(paste("|", hat(mu)[1], "-", hat(mu)[3], "|")), col = grey(seq(1, 0, length = 100))) image(t(abs(out$M[,,2] - out$M[,,3]))[,r:1], main=expression(paste("|", hat(mu)[2], "-", hat(mu)[3], "|")), col = grey(seq(1, 0, length = 100)))
A function for fitting the -class matrix-normal model using maximum likelihood. Uses the so-called “flip-flop” algorithm after initializing at
.
MN_MLE(X, class, max.iter = 1000, tol = 1e-06, quiet = TRUE)
MN_MLE(X, class, max.iter = 1000, tol = 1e-06, quiet = TRUE)
X |
An |
class |
|
max.iter |
Maximum number of iterations for “flip-flop” algorithm. |
tol |
Convergence tolerance for the “flip flop” algorithm; based on decrease in negative log-likelihood. |
quiet |
Logical. Should the objective function value be printed at each update? Default is |
Returns of list of class "MN", which contains the following elements:
Mean |
|
U |
|
V |
|
pi.list |
|
Molstad, A. J., and Rothman, A. J. (2018). A penalized likelihood method for classification with matrix-valued predictors. Journal of Computational and Graphical Statistics.
## Generate realizations of matrix-normal random variables ## set sample size, dimensionality, number of classes, ## and marginal class probabilities N = 75 N.test = 150 N.total = N + N.test r = 16 p = 16 C = 3 pi.list = rep(1/C, C) ## create class means M.array = array(0, dim=c(r, p, C)) M.array[3:4, 3:4, 1] = 1 M.array[5:6, 5:6, 2] = .5 M.array[3:4, 3:4, 3] = -2 M.array[5:6, 5:6, 3] = -.5 ## create covariance matrices U and V Uinv = matrix(0, nrow=r, ncol=r) for (i in 1:r) { for (j in 1:r) { Uinv[i,j] = .5^abs(i-j) } } eoU = eigen(Uinv) Uinv.sqrt = tcrossprod(tcrossprod(eoU$vec, diag(eoU$val^(1/2))),eoU$vec) Vinv = matrix(.5, nrow=p, ncol=p) diag(Vinv) = 1 eoV = eigen(Vinv) Vinv.sqrt = tcrossprod(tcrossprod(eoV$vec, diag(eoV$val^(1/2))),eoV$vec) ## generate N.total realizations of matrix-variate normal data set.seed(1) X = array(0, dim=c(r,p,N.total)) class = numeric(length=N.total) for(jj in 1:N.total){ class[jj] = sample(1:C, 1, prob=pi.list) X[,,jj] = tcrossprod(crossprod(Uinv.sqrt, matrix(rnorm(r*p), nrow=r)), Vinv.sqrt) + M.array[,,class[jj]] } ## fit matrix-normal model using maximum likelihood out = MN_MLE(X = X, class = class)
## Generate realizations of matrix-normal random variables ## set sample size, dimensionality, number of classes, ## and marginal class probabilities N = 75 N.test = 150 N.total = N + N.test r = 16 p = 16 C = 3 pi.list = rep(1/C, C) ## create class means M.array = array(0, dim=c(r, p, C)) M.array[3:4, 3:4, 1] = 1 M.array[5:6, 5:6, 2] = .5 M.array[3:4, 3:4, 3] = -2 M.array[5:6, 5:6, 3] = -.5 ## create covariance matrices U and V Uinv = matrix(0, nrow=r, ncol=r) for (i in 1:r) { for (j in 1:r) { Uinv[i,j] = .5^abs(i-j) } } eoU = eigen(Uinv) Uinv.sqrt = tcrossprod(tcrossprod(eoU$vec, diag(eoU$val^(1/2))),eoU$vec) Vinv = matrix(.5, nrow=p, ncol=p) diag(Vinv) = 1 eoV = eigen(Vinv) Vinv.sqrt = tcrossprod(tcrossprod(eoV$vec, diag(eoV$val^(1/2))),eoV$vec) ## generate N.total realizations of matrix-variate normal data set.seed(1) X = array(0, dim=c(r,p,N.total)) class = numeric(length=N.total) for(jj in 1:N.total){ class[jj] = sample(1:C, 1, prob=pi.list) X[,,jj] = tcrossprod(crossprod(Uinv.sqrt, matrix(rnorm(r*p), nrow=r)), Vinv.sqrt) + M.array[,,class[jj]] } ## fit matrix-normal model using maximum likelihood out = MN_MLE(X = X, class = class)
A function for prediction based on an object of class "MN"; models fit by MatLDA
or MN_MLE
.
PredictMN(object, newdata, newclass = NULL)
PredictMN(object, newdata, newclass = NULL)
object |
An object of class "MN"; output from |
newdata |
New data to be classified; an |
newclass |
Class labels for new data; should be |
pred.class |
An |
misclass |
If |
prob.mat |
A |
Molstad, A. J., and Rothman, A. J. (2018). A penalized likelihood method for classification with matrix-valued predictors. Journal of Computational and Graphical Statistics.
## Generate realizations of matrix-normal random variables ## set sample size, dimensionality, number of classes, ## and marginal class probabilities N = 75 N.test = 150 N.total = N + N.test r = 16 p = 16 C = 3 pi.list = rep(1/C, C) ## create class means M.array = array(0, dim=c(r, p, C)) M.array[3:4, 3:4, 1] = 1 M.array[5:6, 5:6, 2] = .5 M.array[3:4, 3:4, 3] = -2 M.array[5:6, 5:6, 3] = -.5 ## create covariance matrices U and V Uinv = matrix(0, nrow=r, ncol=r) for (i in 1:r) { for (j in 1:r) { Uinv[i,j] = .5^abs(i-j) } } eoU = eigen(Uinv) Uinv.sqrt = tcrossprod(tcrossprod(eoU$vec, diag(eoU$val^(1/2))),eoU$vec) Vinv = matrix(.5, nrow=p, ncol=p) diag(Vinv) = 1 eoV = eigen(Vinv) Vinv.sqrt = tcrossprod(tcrossprod(eoV$vec, diag(eoV$val^(1/2))),eoV$vec) ## generate N.total realizations of matrix-variate normal data set.seed(1) dat.array = array(0, dim=c(r,p,N.total)) class.total = numeric(length=N.total) for(jj in 1:N.total){ class.total[jj] = sample(1:C, 1, prob=pi.list) dat.array[,,jj] = tcrossprod(crossprod(Uinv.sqrt, matrix(rnorm(r*p), nrow=r)), Vinv.sqrt) + M.array[,,class.total[jj]] } ## store generated data X = dat.array[,,1:N] X.test = dat.array[,,(N+1):N.total] class = class.total[1:N] class.test = class.total[(N+1):N.total] ## fit matrix-normal model using maximum likelihood out = MN_MLE(X = X, class = class) ## use output to classify test set check = PredictMN(out, newdata = X.test, newclass = class.test) ## print misclassification proportion check$misclass
## Generate realizations of matrix-normal random variables ## set sample size, dimensionality, number of classes, ## and marginal class probabilities N = 75 N.test = 150 N.total = N + N.test r = 16 p = 16 C = 3 pi.list = rep(1/C, C) ## create class means M.array = array(0, dim=c(r, p, C)) M.array[3:4, 3:4, 1] = 1 M.array[5:6, 5:6, 2] = .5 M.array[3:4, 3:4, 3] = -2 M.array[5:6, 5:6, 3] = -.5 ## create covariance matrices U and V Uinv = matrix(0, nrow=r, ncol=r) for (i in 1:r) { for (j in 1:r) { Uinv[i,j] = .5^abs(i-j) } } eoU = eigen(Uinv) Uinv.sqrt = tcrossprod(tcrossprod(eoU$vec, diag(eoU$val^(1/2))),eoU$vec) Vinv = matrix(.5, nrow=p, ncol=p) diag(Vinv) = 1 eoV = eigen(Vinv) Vinv.sqrt = tcrossprod(tcrossprod(eoV$vec, diag(eoV$val^(1/2))),eoV$vec) ## generate N.total realizations of matrix-variate normal data set.seed(1) dat.array = array(0, dim=c(r,p,N.total)) class.total = numeric(length=N.total) for(jj in 1:N.total){ class.total[jj] = sample(1:C, 1, prob=pi.list) dat.array[,,jj] = tcrossprod(crossprod(Uinv.sqrt, matrix(rnorm(r*p), nrow=r)), Vinv.sqrt) + M.array[,,class.total[jj]] } ## store generated data X = dat.array[,,1:N] X.test = dat.array[,,(N+1):N.total] class = class.total[1:N] class.test = class.total[(N+1):N.total] ## fit matrix-normal model using maximum likelihood out = MN_MLE(X = X, class = class) ## use output to classify test set check = PredictMN(out, newdata = X.test, newclass = class.test) ## print misclassification proportion check$misclass