Package 'MatrixLDA'

Title: Penalized Matrix-Normal Linear Discriminant Analysis
Description: Fits the penalized matrix-normal model to be used for linear discriminant analysis with matrix-valued predictors. For a description of the method, see Molstad and Rothman (2018) <doi:10.1080/10618600.2018.1476249>.
Authors: Aaron J. Molstad [aut, cre]
Maintainer: Aaron J. Molstad <[email protected]>
License: GPL-2
Version: 0.2
Built: 2024-12-29 08:12:31 UTC
Source: CRAN

Help Index


Fits the JJ-class penalized matrix-normal model for a single pair of tuning parameters.

Description

A function for fitting the JJ-class penalized matrix-normal model based on a single set of tuning parameters (λ1,λ2)(\lambda_1, \lambda_2). Returns an object of class "MN", which can be used for prediction using the PredictMN function.

Usage

MatLDA(X, class, lambda1, lambda2, quiet = TRUE, Xval = NULL,
  classval = NULL, k.iter = 100, cov.tol = 1e-05, m.tol = 1e-05,
  full.tol = 1e-06)

Arguments

X

An r×c×Nr \times c \times N array of training set predictors.

class

NN-vector of training set class labels; should be numeric from {1,...,J}\left\{1,...,J\right\}.

lambda1

A non-negative tuning parameter for the mean penalty.

lambda2

A non-negative tuning parameter for the Kronecker penalty.

quiet

Logical. Should the objective function value be printed at each update? Default is TRUE. Note that quiet=FALSE will increase computational time.

Xval

An r×c×Nvalr \times c \times N_{\rm val} array of validation set predictors. Default is NULL.

classval

NvalN_{\rm val}-vector of validation set class labels; should be numeric from {1,...,J}\left\{1,...,J\right\}. Default is NULL.

k.iter

Maximum number of iterations for full blockwise coordinate descent algorithm.

cov.tol

Convergence tolerance for graphical lasso sub-algorithms; passed to glasso. Default is 1e51e^{-5}.

m.tol

Convergence tolerance for mean update alternating minimization algorithm. Default is 1e51e^{-5}. It is recommended to track the objective function value using quiet = FALSE and adjust if necessary.

full.tol

Convergence tolerance for full blockwise coordinate descent algorithm; based on decrease in objective function value. Default is 1e61e^{-6}. It is recommended to track the objective function value using quiet = FALSE and adjust if necessary.

Value

Returns of list of class "MN", which contains the following elements:

Val

The misclassification rate on the validation set, if provided.

Mean

M^\hat{M}; an r×c×Jr \times c \times J array of estimated class means.

U

U^\hat{U}; the r×rr \times r estimated precision matrix for the row variables.

V

V^\hat{V}; the c×cc \times c estimated precision matrix for the column variables.

pi.list

π^\hat{\pi}; JJ-vector with marginal class probabilities from training set.

References

  • Molstad, A. J., and Rothman, A. J. (2018). A penalized likelihood method for classification with matrix-valued predictors. Journal of Computational and Graphical Statistics.

Examples

## Generate realizations of matrix-normal random variables
## set sample size, dimensionality, number of classes, 
## and marginal class probabilities

N = 75
N.test = 150
N.val = 75

N.total = N + N.test + N.val

r = 16
p = 16
C = 3

pi.list = rep(1/C, C)

## create class means
M.array = array(0, dim=c(r, p, C))
M.array[3:4, 3:4, 1] = 1
M.array[5:6, 5:6, 2] = .5
M.array[3:4, 3:4, 3] = -2
M.array[5:6, 5:6, 3] = -.5


## create covariance matrices U and V
Uinv = matrix(0, nrow=r, ncol=r)
for (i in 1:r) {
	for (j in 1:r) {
		Uinv[i,j] = .5^abs(i-j)
	}
}

eoU = eigen(Uinv)
Uinv.sqrt = tcrossprod(tcrossprod(eoU$vec, 
diag(eoU$val^(1/2))),eoU$vec)

Vinv = matrix(.5, nrow=p, ncol=p)
diag(Vinv) = 1 
eoV = eigen(Vinv)
Vinv.sqrt = tcrossprod(tcrossprod(eoV$vec, 
diag(eoV$val^(1/2))),eoV$vec)

## generate N.total realizations of matrix-variate normal data
set.seed(10)
dat.array = array(0, dim=c(r,p,N.total))
	class.total = numeric(length=N.total)
	for(jj in 1:N.total){
		class.total[jj] = sample(1:C, 1, prob=pi.list)
		dat.array[,,jj] = tcrossprod(crossprod(Uinv.sqrt, 
		matrix(rnorm(r*p), nrow=r)),
		Vinv.sqrt) + M.array[,,class.total[jj]]
	}

## store generated data 
X = dat.array[,,1:N]
X.val = dat.array[,,(N+1):(N+N.val)]
X.test = dat.array[,,(N+N.val+1):N.total]

class = class.total[1:N]
class.val = class.total[(N+1):(N+N.val)]
class.test = class.total[(N+N.val+1):N.total]

## fit two-dimensional grid of tuning parameters; 
## measure classification accuracy on validation set
lambda1 = c(2^seq(-5, 0, by=1))
lambda2 = c(2^seq(-8, -4, by=1))
fit.grid = MatLDA_Grid(X=X, class=class, lambda1=lambda1, 
	lambda2=lambda2, quiet=TRUE,
	Xval=X.val, classval= class.val,
	k.iter = 100, cov.tol=1e-5, m.tol=1e-5, full.tol=1e-6)

## identify minimum misclassification proportion; 
## select tuning parameters corresponding to 
## smallest model at minimum misclassification proportion
CV.mat = fit.grid$Val.mat
G.mat = fit.grid$G.mat*(CV.mat==min(CV.mat))
ind1 = (which(G.mat==max(G.mat), arr.ind=TRUE))[,2]
ind2 = (which(G.mat==max(G.mat), arr.ind=TRUE))[,1]
out = unique(ind2[which(ind2==max(ind2))])
lambda1.cv = lambda1[out]
out2 = unique(max(ind1[ind2==out]))
lambda2.cv = lambda2[out2]

## refit model with sinlge tuning parameter pair
out = MatLDA(X=X, class=class, lambda1=lambda1.cv, 
	lambda2=lambda2.cv, quiet=FALSE,
	Xval=X.test, classval= class.test,
	k.iter = 100, cov.tol=1e-5, m.tol=1e-5, full.tol=1e-6)

## print misclassification proportion on test set 
out$Val

## print images of estimated mean differences
dev.new(width=10, height=3)
par(mfrow=c(1,3))
image(t(abs(out$M[,,1] - out$M[,,2]))[,r:1], 
main=expression(paste("|", hat(mu)[1], "-", hat(mu)[2], "|")),
 col = grey(seq(1, 0, length = 100)))
image(t(abs(out$M[,,1] - out$M[,,3]))[,r:1], 
main=expression(paste("|", hat(mu)[1], "-", hat(mu)[3], "|")),
 col = grey(seq(1, 0, length = 100)))
image(t(abs(out$M[,,2] - out$M[,,3]))[,r:1], 
main=expression(paste("|", hat(mu)[2], "-", hat(mu)[3], "|")),
 col = grey(seq(1, 0, length = 100)))

Fits the JJ-class penalized matrix-normal model for a two-dimensional grid of tuning parameters. Used for tuning parameter selection.

Description

A function for fitting the penalized matrix normal model for a two-dimensional grid of tuning parameters. Meant to be used with a validation set to select tuning parameters. Can also be used inside a kk-fold cross-validation function where the training set is the data outside the kkth fold and the validation set is comprised of the kkth fold sample data.

Usage

MatLDA_Grid(X, class, lambda1, lambda2, quiet = TRUE, Xval = NULL,
  classval = NULL, k.iter = 100, cov.tol = 1e-05, m.tol = 1e-05,
  full.tol = 1e-06)

Arguments

X

An r×c×Nr \times c \times N array of training set predictors.

class

NN-vector of training set class labels; should be numeric from {1,...,J}\left\{1,...,J\right\}.

lambda1

A vector of non-negative candidate tuning parameters for the mean penalty.

lambda2

A vector of non-negative candidate tuning parameters for the Kronecker penalty.

quiet

Logical. Should the objective function value be printed at each update? Default is TRUE. Note that quiet=FALSE will increase computational time.

Xval

An r×c×Nvalr \times c \times N_{\rm val} array of validation set predictors. Default is NULL.

classval

NvalN_{\rm val}-vector of validation set class labels; should be numeric from {1,...,J}\left\{1,...,J\right\}.Default is NULL.

k.iter

Maximum number of iterations for full blockwise coordinate descent algorithm. Default is 100.

cov.tol

Convergence tolerance for graphical lasso subalgorithms; passed to glasso. Default is 1e51e^{-5}.

m.tol

Convergence tolerance for mean update alternating minimization algorithm. Default is 1e51e^{-5}. It is recommended to track the objective function value using quiet = FALSE and adjust tolerance if necessary.

full.tol

Convergence tolerance for full blockwise coordinate descent algorithm; based on decrease in objective function value. Default is 1e61e^{-6}. It is recommended to track the objective function value using quiet = FALSE and adjust tolerance if necessary.

Value

Val.mat

A matrix of dimension length(lambda1) ×\timeslength(lambda2) with validation set misclassification propotions.

G.mat

A matrix of dimension length(lambda1) ×\timeslength(lambda2) with the number of pairwise mean differences that are zero, i.e., a larger entry corresponds to a more sparse model.

U.mat

A matrix of dimension length(lambda1) ×\timeslength(lambda2) with the number of zeros in U^\hat{U}.

V.mat

A matrix of dimension length(lambda1) ×\timeslength(lambda2) with the number of zeros in V^\hat{V}.

References

  • Molstad, A. J., and Rothman, A. J. (2018). A penalized likelihood method for classification with matrix-valued predictors. Journal of Computational and Graphical Statistics.

Examples

## Generate realizations of matrix-normal random variables
## set sample size, dimensionality, number of classes, 
## and marginal class probabilities

N = 75
N.test = 150
N.val = 75

N.total = N + N.test + N.val

r = 16
p = 16
C = 3

pi.list = rep(1/C, C)

## create class means
M.array = array(0, dim=c(r, p, C))
M.array[3:4, 3:4, 1] = 1
M.array[5:6, 5:6, 2] = .5
M.array[3:4, 3:4, 3] = -2
M.array[5:6, 5:6, 3] = -.5


## create covariance matrices U and V
Uinv = matrix(0, nrow=r, ncol=r)
for (i in 1:r) {
	for (j in 1:r) {
		Uinv[i,j] = .5^abs(i-j)
	}
}

eoU = eigen(Uinv)
Uinv.sqrt = tcrossprod(tcrossprod(eoU$vec, 
diag(eoU$val^(1/2))),eoU$vec)

Vinv = matrix(.5, nrow=p, ncol=p)
diag(Vinv) = 1 
eoV = eigen(Vinv)
Vinv.sqrt = tcrossprod(tcrossprod(eoV$vec, 
diag(eoV$val^(1/2))),eoV$vec)

## generate N.total realizations of matrix-variate normal data
set.seed(10)
dat.array = array(0, dim=c(r,p,N.total))
class.total = numeric(length=N.total)
for(jj in 1:N.total){
	class.total[jj] = sample(1:C, 1, prob=pi.list)
	dat.array[,,jj] = tcrossprod(crossprod(Uinv.sqrt, 
	matrix(rnorm(r*p), nrow=r)),
	Vinv.sqrt) + M.array[,,class.total[jj]]
}

## store generated data 
X = dat.array[,,1:N]
X.val = dat.array[,,(N+1):(N+N.val)]
X.test = dat.array[,,(N+N.val+1):N.total]

class = class.total[1:N]
class.val = class.total[(N+1):(N+N.val)]
class.test = class.total[(N+N.val+1):N.total]

## fit two-dimensional grid of tuning parameters; 
## measure classification accuracy on validation set
lambda1 = c(2^seq(-5, 0, by=1))
lambda2 = c(2^seq(-8, -4, by=1))
fit.grid = MatLDA_Grid(X=X, class=class, lambda1=lambda1, 
	lambda2=lambda2, quiet=TRUE,
	Xval=X.val, classval= class.val,
	k.iter = 100, cov.tol=1e-5, m.tol=1e-5, full.tol=1e-6)

## identify minimum misclassification proportion; 
## select tuning parameters corresponding to 
## smallest model at minimum misclassification proportion
CV.mat = fit.grid$Val.mat
G.mat = fit.grid$G.mat*(CV.mat==min(CV.mat))
ind1 = (which(G.mat==max(G.mat), arr.ind=TRUE))[,2]
ind2 = (which(G.mat==max(G.mat), arr.ind=TRUE))[,1]
out = unique(ind2[which(ind2==max(ind2))])
lambda1.cv = lambda1[out]
out2 = unique(max(ind1[ind2==out]))
lambda2.cv = lambda2[out2]

## refit model with sinlge tuning parameter pair
out = MatLDA(X=X, class=class, lambda1=lambda1.cv, 
	lambda2=lambda2.cv, quiet=FALSE,
	Xval=X.test, classval= class.test,
	k.iter = 100, cov.tol=1e-5, m.tol=1e-5, full.tol=1e-6)

## print misclassification proportion on test set 
out$Val

## print images of estimated mean differences
dev.new(width=10, height=3)
par(mfrow=c(1,3))
image(t(abs(out$M[,,1] - out$M[,,2]))[,r:1], 
main=expression(paste("|", hat(mu)[1], "-", hat(mu)[2], "|")), 
col = grey(seq(1, 0, length = 100)))
image(t(abs(out$M[,,1] - out$M[,,3]))[,r:1], 
main=expression(paste("|", hat(mu)[1], "-", hat(mu)[3], "|")), 
col = grey(seq(1, 0, length = 100)))
image(t(abs(out$M[,,2] - out$M[,,3]))[,r:1], 
main=expression(paste("|", hat(mu)[2], "-", hat(mu)[3], "|")), 
col = grey(seq(1, 0, length = 100)))

Matrix-normal maximum likelihood estimator

Description

A function for fitting the JJ-class matrix-normal model using maximum likelihood. Uses the so-called “flip-flop” algorithm after initializing at U=IrU = I_r.

Usage

MN_MLE(X, class, max.iter = 1000, tol = 1e-06, quiet = TRUE)

Arguments

X

An r×c×Nr \times c \times N array of training set predictors.

class

NN-vector of training set class labels; should be numeric from {1,...,J}\left\{1,...,J\right\}.

max.iter

Maximum number of iterations for “flip-flop” algorithm.

tol

Convergence tolerance for the “flip flop” algorithm; based on decrease in negative log-likelihood.

quiet

Logical. Should the objective function value be printed at each update? Default is TRUE. Note that quiet=FALSE will increase computational time.

Value

Returns of list of class "MN", which contains the following elements:

Mean

Xˉ\bar{X}; An r×c×Cr \times c \times C array of sample class means.

U

U^MLE\hat{U}^{\rm MLE}; the r×rr \times r estimated precision matrix for the row variables.

V

V^MLE\hat{V}^{\rm MLE}; the c×cc \times c estimated precision matrix for the column variables.

pi.list

π^\hat{\pi}; JJ-vector with marginal class probabilities from training set.

References

  • Molstad, A. J., and Rothman, A. J. (2018). A penalized likelihood method for classification with matrix-valued predictors. Journal of Computational and Graphical Statistics.

Examples

## Generate realizations of matrix-normal random variables
## set sample size, dimensionality, number of classes, 
## and marginal class probabilities

N = 75
N.test = 150

N.total = N + N.test

r = 16
p = 16
C = 3

pi.list = rep(1/C, C)

## create class means
M.array = array(0, dim=c(r, p, C))
M.array[3:4, 3:4, 1] = 1
M.array[5:6, 5:6, 2] = .5
M.array[3:4, 3:4, 3] = -2
M.array[5:6, 5:6, 3] = -.5


## create covariance matrices U and V
Uinv = matrix(0, nrow=r, ncol=r)
for (i in 1:r) {
	for (j in 1:r) {
		Uinv[i,j] = .5^abs(i-j)
	}
}

eoU = eigen(Uinv)
Uinv.sqrt = tcrossprod(tcrossprod(eoU$vec, 
diag(eoU$val^(1/2))),eoU$vec)

Vinv = matrix(.5, nrow=p, ncol=p)
diag(Vinv) = 1 
eoV = eigen(Vinv)
Vinv.sqrt = tcrossprod(tcrossprod(eoV$vec, 
diag(eoV$val^(1/2))),eoV$vec)

## generate N.total realizations of matrix-variate normal data
set.seed(1)
X = array(0, dim=c(r,p,N.total))
	class = numeric(length=N.total)
	for(jj in 1:N.total){
		class[jj] = sample(1:C, 1, prob=pi.list)
		X[,,jj] = tcrossprod(crossprod(Uinv.sqrt, 
		matrix(rnorm(r*p), nrow=r)),
		Vinv.sqrt) + M.array[,,class[jj]]
	}

## fit matrix-normal model using maximum likelihood
out = MN_MLE(X = X, class = class)

Classify matrix-valued data based on a matrix-normal linear discriminant; an object of class "MN".

Description

A function for prediction based on an object of class "MN"; models fit by MatLDA or MN_MLE.

Usage

PredictMN(object, newdata, newclass = NULL)

Arguments

object

An object of class "MN"; output from MatLDA or MN_MLE.

newdata

New data to be classified; an r×c×Ntestr \times c \times N_{\rm test} array.

newclass

Class labels for new data; should be in{1,,J}in \left\{1, \dots, J\right\}. Default is NULL.

Value

pred.class

An NtestN_{\rm test}-vector of predicted class membership based on the inputed object.

misclass

If newclass is non-NULL, returns the misclassification proportion on the test data set.

prob.mat

A Ntest×JN_{\rm test} \times J matrix with the value of discriminant evaluated at each test data point.

References

  • Molstad, A. J., and Rothman, A. J. (2018). A penalized likelihood method for classification with matrix-valued predictors. Journal of Computational and Graphical Statistics.

Examples

## Generate realizations of matrix-normal random variables
## set sample size, dimensionality, number of classes, 
## and marginal class probabilities

N = 75
N.test = 150

N.total = N + N.test

r = 16
p = 16
C = 3

pi.list = rep(1/C, C)

## create class means
M.array = array(0, dim=c(r, p, C))
M.array[3:4, 3:4, 1] = 1
M.array[5:6, 5:6, 2] = .5
M.array[3:4, 3:4, 3] = -2
M.array[5:6, 5:6, 3] = -.5


## create covariance matrices U and V
Uinv = matrix(0, nrow=r, ncol=r)
for (i in 1:r) {
	for (j in 1:r) {
		Uinv[i,j] = .5^abs(i-j)
	}
}


eoU = eigen(Uinv)
Uinv.sqrt = tcrossprod(tcrossprod(eoU$vec, diag(eoU$val^(1/2))),eoU$vec)

Vinv = matrix(.5, nrow=p, ncol=p)
diag(Vinv) = 1 
eoV = eigen(Vinv)
Vinv.sqrt = tcrossprod(tcrossprod(eoV$vec, diag(eoV$val^(1/2))),eoV$vec)

## generate N.total realizations of matrix-variate normal data
set.seed(1)
dat.array = array(0, dim=c(r,p,N.total))
class.total = numeric(length=N.total)
for(jj in 1:N.total){
	class.total[jj] = sample(1:C, 1, prob=pi.list)
	dat.array[,,jj] = tcrossprod(crossprod(Uinv.sqrt, matrix(rnorm(r*p), nrow=r)),
	Vinv.sqrt) + M.array[,,class.total[jj]]
}

## store generated data 
X = dat.array[,,1:N]
X.test = dat.array[,,(N+1):N.total]

class = class.total[1:N]
class.test = class.total[(N+1):N.total]

## fit matrix-normal model using maximum likelihood
out = MN_MLE(X = X, class = class)

## use output to classify test set
check = PredictMN(out, newdata = X.test, newclass = class.test)

## print misclassification proportion
check$misclass