
Multiscale Inference for Nonparametric Time

Trends

Marina Khismatullina Michael Vogt

August 22, 2024

Abstract

We present the R package ‘MSinference’, which performs multiscale
tests for nonparametric time trends.

Contents

1 Introduction 1

2 Multiscale Inference for a Single Nonparametric Regression
with Time Series Errors 2

3 Multiscale Inference for Multiple Nonparametric Regressions 8

4 Long-run variance estimator 17

1 Introduction

The main functions of the MSinference package are given in the following list:

� compute_quantiles(): Computes the quantiles of the Gaussian version
of the statistics that are used to approximate the critical values for the
multiscale test; see Sections 2 and 3.

� compute_statistics(): Computes the value of the test statistics based
on a single time series or multiple time series supplied; see Sections 2 and
3.

� multiscale_test(): Performs the test; see Sections 2 and 3.

� estimate_lrv(): Computes the estimator for the long-run variance of
the errors in a nonparametric regression model; see Section 4.

To demonstrate the use of our functions, we analyse two datasets. In order
to illustrate the method from Khismatullina and Vogt (2020), we examine
the Central England temperature record, which is the longest instrumental
temperature time series in the world. The data are publicly available on
the webpage of the UK Met Office. A detailed description of the data can
be found in Parker et al. (1992). In order to illustrate the method from

1

Khismatullina and Vogt (2023), we examine the daily number of infections
of COVID-19 across different countries. The data are freely available on
the homepage of the European Center for Disease Prevention and Control
(https://www.ecdc.europa.eu) and were downloaded on 20 July 2020.

The temperature dataset can be obtained from themultiscale package us-
ing the function data(temperature, package = "MSinference"). The
COVID-19 dataset can be obtained from themultiscale package using the
function
data(covid, package = "MSinference").

This vignette is organized as follows. Section 2 presents our mutliscale
test for analysing a single time trend as inKhismatullina and Vogt (2020)
and the results of applying it to the temperature data. Section 3 de-
scribes the multiscale procedure for comparing different time trends as in
Khismatullina and Vogt (2023) and displays the results of analysing the
COVID-19 data with the help of our test. Section 4 introduces the estima-
tor of the long-run variance which is needed for analyzing a nonparametric
regression with errors of class AR(p).

2 Multiscale Inference for a Single Nonpara-
metric Regression with Time Series Errors

As an illustration for the multiscale testing procedure proposed in Khis-
matullina and Vogt (2020), we analyse the CET dataset, which is the
longest instrumental record of temperature in the world. It contains the
mean monthly surface air temperatures (in degrees Celsius) from the year
1659 to the present. CET datasets are freely available for use under Open
Government License and can be downloaded from https://www.metoffice.gov.uk/hadobs/hadcet/.
You can load the data using the function data(temperature, package = "MSinference").

require(MSinference)

Loading required package: MSinference

data(temperature, package = "MSinference")

str(temperature)

num [1:359] 8.87 9.1 9.78 9.52 8.63 9.34 8.29 9.86 8.52 9.51 ...

As you can see, this is an array of length T = 359 where each element
denotes the mean yearly temperature starting from year 1659 and ending
with year 2017.

t_len <- length(temperature)

t_len

[1] 359

ts_start <- 1659

2

We assume that the temperature data Yt follow the nonparametric trend
model

Yt = m(t/T) + εt for t = 1, . . . , T,

where m is the unknown time trend of interest. We are interested in
identifying local increases/decreases of the trend function m. We assume
throughout that m is continuously differentiable on [0, 1]. The test prob-
lem then can be formulated as follows: Let H0(u, h) be the hypothesis
that m is constant on the interval [u− h, u+ h] ∈ [0, 1], or, equivalently,

H0(u, h) : m
′(w) = 0 for all w ∈ [u− h, u+ h].

We want to test the hypothesis H0(u, h) simultaneously for many different
intervals [u− h, u+ h]. The overall null hypothesis is thus given by

H0 : The hypothesis H0(u, h) holds true for all (u, h) ∈ GT ,

where GT is some set of points (u, h). Specifically, for this application we
take into account the default set of points, i.e. all locations u on an equidis-
tant grid
u = 5/T, 10/T, . . . , 355/T and all bandwidths h = 5/T, 10/T, 15/T, . . . , 85/T .
More on the construction of GT you can find in Khismatullina and Vogt
(2020) and in the package documentation.

grid <- construct_grid(t_len)

str(grid$gset, max.level = 1, vec.len = 4)

'data.frame': 1136 obs. of 2 variables:

$ u: num 0.0139 0.0279 0.0418 0.0557 0.0696 ...

$ h: num 0.0279 0.0279 0.0279 0.0279 0.0279 ...

- attr(*, "out.attrs")=List of 2

Furthermore, the test statistic requires an estimator of the long-run vari-
ance
σ2 =

∑∞
ℓ=−∞ Cov(ε0, εℓ) of the error process {εt}. Here we assume that

the error process {εt} has the AR(2) structure

εt =

2∑
j=1

ajεt−j + ηt,

where ηt are i.i.d. innovations with mean 0 and variance ν2. We estimate
the the long-run error variance σ2 by the procedure from Khismatullina
and Vogt (2020) (with tuning parameters q = 25 and r = 10), which
produces the following value:

parameters <- estimate_lrv(data = temperature,

q = 25, r_bar = 10, p = 2)

cat("Long-run variance is equal to ", parameters$lrv, "\n")

Long-run variance is equal to 0.7576827

sigmahat <- sqrt(parameters$lrv)

3

Details of the estimation procedure together with the description of the
tuning parameters are deferred to Section 4.

Throughout the section, we set the significance level to α = 0.05 and the
number of the simulations for producing critical values to 5000:

alpha <- 0.05

sim_runs <- 5000

Since we consider increases and decreases of the function, we are interested
in the first derivative of the function:

deriv_order = 1

The package currently supports only deriv_order = 0 for testing m = 0
and deriv_order = 1 for testing m′ = 0.

Now we are ready to perform the test.

Step 1. Compute the quantile qT,Gauss(α) by Monte Carlo simulations.
Specifically, draw a large number sim_runs = 5000 samples of in-

dependent standard normal random variables {Z(ℓ)
t : 1 ≤ t ≤ T}

for 1 ≤ ℓ ≤ sim_runs. Compute the value Φ
(ℓ)
T of the Gaussian

statistic ΦT for each sample ℓ by the following formula:

ΦT = max
(u,h)∈GT

{∣∣∣ T∑
t=1

wt,TZt

∣∣∣− λ(h)

}
,

where wt,T (u, h) are local linear kernel weights with the Epanech-

nikov kernel, and λ(h) =
√

2 log{1/(2h)} is an additive correc-
tion term.

Then calculate the empirical (1 − α)-quantile q̂T,Gauss(α) from

the values {Φ(ℓ)
T : 1 ≤ ℓ ≤ sim_runs}. Use q̂T,Gauss(α) as an

approximation of the quantile qT,Gauss(α). This step is done
with these lines of code (running this can take a while):

quantiles <- compute_quantiles(t_len = t_len, grid = grid,

sim_runs = 10)

probs <- as.vector(quantiles$quant[1,])

pos <- which.min(abs(probs - (1 - alpha)))

quant <- quantiles$quant[2, pos]

quant

[1] 2.199058

Step 2. Compute the kernel averages ψ̂T (u, h) as

ψ̂T (u, h) :=
∑T

t=1
wt,T (u, h)Yt,

4

where, as before, wt,T (u, h) are local linear kernel weights based
on the Epanechnikov kernel. Based on these kernel averages,
calculate the test statistic

Ψ̂T = max
(u,h)∈GT

{∣∣∣ ψ̂T (u, h)
σ̂

∣∣∣− λ(h)

}
.

This step is done with these lines of code:

result <- compute_statistics(data = temperature,

sigma = sigmahat,

grid = grid,

deriv_order = deriv_order)

result$testing_result

NULL

We get the list with the following elements as the result:

– stat denotes Ψ̂T ;

– gset_with_vals is a dataframe that contains the normalised
kernel average. The dataframe is coded in the following way.
Columns u and h determine the element (u, h) ∈ GT for
which we calculate the kernel average. Column vals con-

sists of the values of ψ̂T (u,h)
σ̂ , and column vals_cor contains

the values of
∣∣∣ ψ̂T (u,h)

σ̂

∣∣∣− λ(h) for the given pair (u, h).

Step 3. Now we carry out the test itself, comparing the normalised values
of kernel averagess from Step 2 with the critical value from Step
1. It is done by the following lines of code:

gset <- result$gset_with_vals

test_results <- (gset$vals_cor > quant) * sign(gset$vals)

gset$test <- test_results

str(gset, max.level = 1, vec.len = 2)

'data.frame': 1136 obs. of 5 variables:

$ u : num 0.0139 0.0279 ...

$ h : num 0.0279 0.0279 ...

$ vals : num -0.263 -1.38 ...

$ vals_cor: num -2.14 -1.02 ...

$ test : num 0 0 0 0 0 ...

- attr(*, "out.attrs")=List of 2

Now the dataframe gset contains all the data from
result$gset_with_vals before and an additional column test.
The values in this column are calculated as follows. It is either
1 if we reject the respective null hypothesis H0(u, h) and detect
an increase in the trend, 0 if we do not reject H0(u, h). or −1 if
we reject the respective null hypothesis H0(u, h) and detect an
decrease in the trend. For example, in our application we do not
detect any decreases in the trend function m:

5

sum(gset$test == -1)

[1] 0

We can now use this dataframe to produce the plots for illus-
trating the results.

All these steps are not necessary for performing the test, they are already
incorporated in the function multiscale_test():

set.seed(1)

results <- multiscale_test(data = temperature,

sigma = sigmahat,

grid = grid,

alpha = alpha,

deriv_order = deriv_order,

sim_runs = 100)

results$testing_result

[1] "For the given time series we reject H_0 with probability 0.05. Psihat_statistic = 3.13600754377084. Gaussian quantile value = 1.89521677011441"

Now we are ready to present the results. First, we plot the the observed
time series.

plot(ts_start:(ts_start + t_len - 1), temperature, type = 'l',

lty = 1, xlab = 'year', ylab = 'temperature',

ylim = c(min(temperature) - 0.1, max(temperature) + 0.1))

title(main = "(a) observed yearly temperature", font.main = 1,

line = 0.5)

1650 1700 1750 1800 1850 1900 1950 2000

7
8

9
10

11

year

te
m

pe
ra

tu
re

(a) observed yearly temperature

6

Then we plot the smoothed versions of the time series from (a), that is,
the plot shows nonparametric kernel estimates of the trend function m,
where the bandwidth is set to 0.01, 0.05, 0.1, 0.15, 0.2 and a rectangular
kernel is used. This is not necessary but sometimes useful.

Epanechnikov kernel function, which is defined

as f(x) = 3/4(1-x^2) for |x|<1 and 0 elsewhere

epanechnikov <- function(x)

{
if (abs(x)<1)

{
result = 3/4 * (1 - x*x)

} else {
result = 0

}
return(result)

}

smoothing <- function(u, data_p, grid_p, bw){
res = 0

norm = 0

for (i in 1:length(data_p)){
res = res + epanechnikov((u - grid_p[i]) / bw) * data_p[i]

norm = norm + epanechnikov((u - grid_p[i]) / bw)

}
return(res/norm)

}

bws <- c(0.01, 0.05, 0.1, 0.15, 0.2)

grid_points <- seq(from = 1 / t_len, to = 1,

length.out = t_len)

plot(NA, xlim = c(1659, 2019), ylim = c(8, 10.5),

xlab = 'year', ylab = 'temperature',

yaxp = c(8, 10, 2), xaxp = c(1675, 2025, 7),

mgp = c(2,0.5,0))

for (i in 1:5){
smoothed <- mapply(smoothing, grid_points,

MoreArgs = list(temperature,

grid_points,

bws[i]))

lines(ts_start:(ts_start + t_len - 1), smoothed,

lty = i)

}
legend(1900, 8.5, legend=c("bw = 0.01", "bw = 0.05", "bw = 0.10",

"bw = 0.15", "bw = 0.2"),

lty = 1:5, cex = 0.95, ncol=1)

title(main = "(b) smoothed time series for different bandwidths",

font.main = 1, line = 0.5)

7

1675 1725 1775 1825 1875 1925 1975 2025

8
9

10

year

te
m

pe
ra

tu
re

bw = 0.01
bw = 0.05
bw = 0.10
bw = 0.15
bw = 0.2

(b) smoothed time series for different bandwidths

Finally, we present the results produced by our test. Specifically, we de-
pict in grey the set Π+

T which is the collection of time intervals I(u,h) =
[u − h, u + h] ∈ [0, 1] for which our test rejects H0(u, h) and indicates
an increase in the trend function. Furthermore, we depict in black the
set of minimal intervals Π+,min

T The definition of the minimal intervals
and some discussion on the topic are given in Khismatullina and Vogt
(2020). The function in the package that calculates the minimal intervals
is compute_minimal_intervals().

According to theoretical results in Khismatullina and Vogt (2020), we can
make the following simultaneous confidence statement about the intervals
plotted below: we can claim, with confidence of about 95%, that the trend
functionm increases on each of these intervals. In particular, we can claim
with this confidence that there has been some upward movement in the
trend both in the period from around 1680 to 1740 and in the period from
about 1870 onwards. Hence, our test in particular provides evidence that
there has been some warming trend in the period over approximately the
last 150 years. On the other hand, as the set Π−

T is empty, there is no
evidence of any downward movement of the trend.

3 Multiscale Inference for Multiple Nonpara-
metric Regressions

As an illustration for the multiscale method proposed in Khismatullina
and Vogt (2023), we analyse the dataset on the daily new cases of infections
of COVID-19. The data are freely available on the homepage of the Euro-
pean Center for Disease Prevention and Control (https://www.ecdc.europa.eu)
and were downloaded on 20 July 2020. You can load the data using the
function data(covid, package = ”MSinference”).

8

require(MSinference)

data(covid, package = "MSinference")

str(covid)

num [1:148, 1:42] 15 8 27 25 26 43 0 35 29 38 ...

- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:42] "AFG" "ARG" "BEL" "BGD" ...

Each entry in the dataset denotes the number of new cases of infection
per day and per country. In our dataset, we have data for 42 countries
and the longest time series consists of 148 observations.

We assume that the outbreak patterns in different countries follow quasi-
Poisson distribution with time-varying intensity parameters. Specifically,
we let Xit be the number of newly confirmed COVID-19 cases on day t in
country i and suppose Xit satisfy the following nonparametric regression
equation:

Xit = λi

(t
T

)
+ σ

√
λi

(t
T

)
ηit, (1)

for 1 ≤ t ≤ T and 1 ≤ i ≤ n, where σ is so-called overdispersion parameter
that controls the noise variance, and the noise residuals ηit have zero mean
and unit variance.

In model (1), the outbreak pattern of COVID-19 in country i is determined
by the intensity function λi. Hence, the question whether the outbreak
patterns are comparable across countries amounts to the question whether
the intensity functions λi have the same shape across countries i.

In order to make the data comparable across countries, we take the day
of the 100th confirmed case in each country as the starting date t = 1.
Obviously, for some countries we have longer time series than for the others
because the starting point of the outbreak varies across the countries. For
the sake of brevity, we present here the analysis only of the data from
five European countries: Germany, Italy, Spain, France and the United
Kingdom:

covid <- covid[, c("DEU", "GBR", "ESP", "FRA", "ITA")]

covid <- na.omit(covid)

As a result, we study n = 5 time series of the sample size T = 137:

n <- ncol(covid)

t_len <- nrow(covid)

n

[1] 5

t_len

[1] 137

9

Some of the time series contain negative values which we replaced by 0.
Overall, this resulted in 6 replacements:

sum(covid < 0)

[1] 6

covid[covid < 0] <- 0

Here are the plots of the time series:

matplot(1:t_len, covid, type = 'l', lty = 1, col = 1:t_len,

xlab = 'Number of days since 100th case', ylab = 'cases')

legend("topright", legend = c("DEU", "GBR", "ESP", "FRA", "ITA"),

inset = 0.02, lty = 1, col = 1:t_len, cex = 0.8)

0 20 40 60 80 100 120 140

0
20

00
40

00
60

00
80

00

Number of days since 100th case

ca
se

s

DEU
GBR
ESP
FRA
ITA

In order to be able to implement the test, we first estimate the overdis-
persion parameter σ. For or each country i, let

σ̂2
i =

∑T
t=2(Xit −Xit−1)

2

2
∑T
t=1Xit

and set σ̂2 = 1
n

∑n
i=1 σ̂

2
i . As shown in Khismatullina and Vogt (2023), σ̂2

is a consistent estimator of σ2 under some regularity conditions.

sigma_vec <- rep(0, n)

for (i in 1:n){
diffs <- (covid[2:t_len, i] - covid[1:(t_len - 1), i])

sigma_squared <- sum(diffs^2) / (2 * sum(covid[, i]))

10

sigma_vec[i] <- sqrt(sigma_squared)

}

sigmahat <- sqrt(mean(sigma_vec * sigma_vec))

sigmahat

[1] 14.43772

Throughout the section, we set the significance level to α = 0.05 and the
number of the simulations for producing critical values to 5000:

alpha <- 0.05

sim_runs <- 5000

Furthermore, we compare all pairs of countries (i, j) with i < j (hence, S =
{1 ≤ i < j ≤ n}), and we choose the family of intervals F for calculating
the test statistics as follows. We consider the intervals of lengths 7 days
(1 week), 14 days (2 weeks), 21 days (3 weeks), or 28 days (4 weeks).
For each length of the interval, we include all intervals that start at days
t = 1 + 7(j − 1) and t = 4 + 7(j − 1) for j = 1, 2,

ijset <- expand.grid(i = 1:n, j = 1:n)

ijset <- ijset[ijset$i < ijset$j,]

rownames(ijset) <- NULL

ijset

i j

1 1 2

2 1 3

3 2 3

4 1 4

5 2 4

6 3 4

7 1 5

8 2 5

9 3 5

10 4 5

grid <- construct_weekly_grid(t_len, min_len = 7, nmbr_of_wks = 4)

A graphical presentation of the family F for our sample size T = 137 (as
in the application) is given here:

intervals <- data.frame('left' = grid$gset$u - grid$gset$h,

'right' = grid$gset$u + grid$gset$h,

'v' = 0)

intervals$v <- (1:nrow(intervals)) / nrow(intervals)

11

plot(NA, xlim=c(0,t_len), ylim = c(0, 1 + 1/nrow(intervals)),

xlab="days", ylab = "", yaxt= "n", mgp=c(2,0.5,0))

title(main = expression(The ~ family ~ of ~ intervals ~ italic(F)),

line = 1)

segments(intervals$left * t_len, intervals$v,

intervals$right * t_len, intervals$v,

lwd = 2)

0 20 40 60 80 100 120 140

days

The family of intervals F

With the help of our multiscale method, we simultaneously test the null

hypothesis H
(i,j,k)
0 that λi(·) = λj(·) on the interval Ik ∈ F for each

(i, j, k). We denote the length of the intervals from the grid as hk.

Now we are ready to perform the test.

Step 1. Compute the quantile qT,Gauss(α) by Monte Carlo simulations.
Specifically, draw a large number sim_runs = 5000 samples of

independent standard normal random variables {Z(ℓ)
it : 1 ≤ i ≤

n, 1 ≤ t ≤ T} for 1 ≤ ℓ ≤ sim_runs. Compute the value Φ
(ℓ)
T

of the Gaussian statistic ΦT for each sample ℓ by the following
formula:

ΦT = max
(i,j,k)

ak
(
|ϕijk,T | − bk

)
,

where

ϕijk,T =
1√
2Thk

T∑
t=1

1
(t
T

∈ Ik
){
Zit − Zjt

}
,

ak = {log(e/hk)}1/2/ log log(ee/hk) and bk =
√
2 log(1/hk). Then

calculate the empirical (1−α)-quantile q̂T,Gauss(α) from the val-

ues {Φ(ℓ)
T : 1 ≤ ℓ ≤ sim_runs}. Use q̂T,Gauss(α) as an approxi-

mation of the quantile qT,Gauss(α).

12

This step is done with these lines of code:

quantiles <- compute_quantiles(t_len = t_len, grid = grid,

n_ts = n, ijset = ijset,

sigma = sigmahat,

sim_runs = sim_runs,

epidem = TRUE)

probs <- as.vector(quantiles$quant[1,])

pos <- which.min(abs(probs - (1 - alpha)))

quant <- quantiles$quant[2, pos]

quant

[1] 2.189614

Step 2. Compute the kernel averages ψ̂ijk,T as

ψ̂ijk,T :=

∑T
t=1 1(

t
T ∈ Ik)(Xit −Xjt)

σ̂{
∑T
t=1 1(

t
T ∈ Ik)(Xit +Xjt)}1/2

together with the scale-adjusted values of individual test statis-

tics for testing the hypothesis H
(i,j,k)
0 that λi = λj on an interval

Ik, ak
(
|ψ̂ijk,T | − bk

)
, where, as before, ak = {log(e/hk)}1/2/ log log(ee/hk)

and bk =
√
2 log(1/hk). Based on these values, we can calculate

the pairwise test statistics

Ψ̂ij,T = max
Ik∈F

ak

(
|ψ̂ijk,T | − bk

)
for testing that λi and λj are different at least on one of the
intervals Ik ∈ F , as well as the value of the overall test statistics
for testing that at least two of the mean functions are different
somewhere:

Ψ̂T = max
(i,j)∈S

Ψ̂ij,T .

This step is done with these lines of code:

result <- compute_statistics(data = covid, sigma = sigmahat,

n_ts = n, grid = grid,

epidem = TRUE)

result$testing_result

NULL

As a result, we get the list with the following elements:

– stat denotes Ψ̂T ;

– stat_pairwise is a matrix that consists of the values of the
pairwise statistics Ψ̂ij,T ;

– ijset denotes the set ∫ and lists all pairwise comparisons
that have been performed;

13

– gset_with_values is a list with dataframes that contains
the individual test statistics. The order of the dataframes
corresponds to the order of the elements in ijset, i.e. the
results of the first comparison is in the first dataframe, etc.
Each dataframe is coded in the following way. Columns u

and h determine the interval Ik with u-h and u+h being the
left and the right end of the interval respectively. Column
vals consists of the scale-adjusted values of individual test

statistics for testing H
(i,j,k)
0 for the respective interval Ik.

Step 3. Now we carry out the test itself, comparing the scale-adjusted
values of individual test statistics from Step 2with the critical
value from Step 1. It is done by the following lines of code:

gset_with_values <- result$gset_with_values

for (i in seq_len(nrow(ijset))) {
test_results <- gset_with_values[[i]]$vals > quant

gset_with_values[[i]]$test <- test_results

}

str(gset_with_values, max.level = 2, vec.len = 2, list.len = 2)

List of 10

$:'data.frame': 140 obs. of 5 variables:

..$ u : num [1:140] 0.0292 0.0511 ...

..$ h : num [1:140] 0.0255 0.0255 ...

.. [list output truncated]

$:'data.frame': 140 obs. of 5 variables:

..$ u : num [1:140] 0.0292 0.0511 ...

..$ h : num [1:140] 0.0255 0.0255 ...

.. [list output truncated]

[list output truncated]

Now each dataframe from gset_with_values contains additional
column that is either TRUE if we reject the respective null hy-

pothesis H
(i,j,k)
0 or FALSE if we do not reject. We can use these

dataframes to produce the plots for illustrating the results.

You do not have to perform these steps yourself, the function multiscale_test()
carries them out automatically for you:

results <- multiscale_test(data = covid, sigma = sigmahat,

n_ts = n, grid = grid, ijset = ijset,

alpha = alpha,

sim_runs = sim_runs,

epidem = TRUE)

results$testing_result

[1] "We reject H_0 with probability 0.05. Psihat_statistic = 15.4568736847961. Number of pairwise rejections = 10 out of 10. Gaussian quantile value = 2.19224738285813"

14

Now we are ready to present the results. For the sake of brevity, we only
show the results for the pairwise comparisons of Germany (i = 1) with the
United Kingdom (j = 2). This is coded as the first comparison in ijset.
The remaining figures can be found in Khismatullina and Vogt (2023).

First, we plot the the observed time series for the two countries.

plot(covid[, 1], ylim=c(min(covid[, 1], covid[, 2]),

max(covid[, 1], covid[, 2])),

type="l", col="blue", ylab="", xlab="", mgp=c(1, 0.5, 0))

lines(covid[, 2], col="red")

title(main = "(a) observed new cases per day", font.main = 1,

line = 0.5)

legend("topright", inset = 0.02, legend=c("Germany", "UK"),

col = c("blue", "red"), lty = 1, cex = 0.95, ncol = 1)

0 20 40 60 80 100 120 140

0
20

00
40

00
60

00
80

00

(a) observed new cases per day

Germany
UK

Now we plot the smoothed versions of the time series from (a), that is,
the plot shows nonparametric kernel estimates of the two trend functions
λ1 and λ2, where the bandwidth is set to 7 days and a rectangular kernel
is used. This is not necessary but sometimes useful.

smoothing <- function(u, data_p, grid_p, bw){
result = 0

norm = 0

T_size = length(data_p)

result = sum((abs((grid_p - u) / bw) <= 1) * data_p)

norm = sum((abs((grid_p - u) / bw) <= 1))

return(result/norm)

}

grid_points <- seq(from = 1 / t_len, to = 1, length.out = t_len)

15

smoothed_1 <- mapply(smoothing, grid_points,

MoreArgs = list(covid[, 1], grid_points,

bw = 3.5 / t_len))

smoothed_2 <- mapply(smoothing, grid_points,

MoreArgs = list(covid[, 2], grid_points,

bw = 3.5 / t_len))

plot(smoothed_1, ylim=c(min(covid[, 1], covid[, 2]),

max(covid[, 1], covid[, 2])),

type="l", col="blue", ylab="", xlab = "", mgp=c(1,0.5,0))

title(main = "(b) smoothed curves from (a)", font.main = 1,

line = 0.5)

lines(smoothed_2, col="red")

0 20 40 60 80 100 120 140

0
20

00
40

00
60

00
80

00

(b) smoothed curves from (a)

Finally, we present the results produced by our test. Specifically, we depict
in grey the set Freject(1, 2) of all the intervals Ik for which the test rejects

the null H
(1,2,k)
0 . The minimal intervals in the subset Fmin

reject(1, 2) are de-
picted in black. The definition of the minimal intervals and some dicsus-
sion on the topic are given in Khismatullina and Vogt (2023). The function
that computes minimal intervals can be accessed as compute_minimal_intervals().

According to theoretical results in this paper, we can make the following
simultaneous confidence statement about the intervals plotted below: we
can claim, with confidence of about 95%, that there is a difference between
the functions λ1 and λ2 on each of these intervals.

l <- 1 #First comparison in ijset

gset <- results$gset_with_values[[l]]

reject <- subset(gset, test == TRUE, select = c(u, h))

16

reject_set <- data.frame('startpoint' = (reject$u - reject$h) *

t_len,

'endpoint' = (reject$u + reject$h) *

t_len, 'values' = 0)

reject_set$values <- (1:nrow(reject_set)) / nrow(reject_set)

reject_min <- compute_minimal_intervals(reject_set)

plot(NA, xlim=c(0, t_len), ylim = c(0, 1 + 1 / nrow(reject_set)),

xlab="", mgp=c(2, 0.5, 0), yaxt = "n", ylab = "")

title(main = "(c) minimal intervals produced by our test",

font.main = 1, line = 0.5)

title(xlab = "days since the hundredth case", line = 1.7,

cex.lab = 0.9)

segments(reject_min$startpoint, reject_min$values,

reject_min$endpoint, reject_min$values, lwd = 2)

segments(reject_set$startpoint, reject_set$values,

reject_set$endpoint, reject_set$values,

col = "gray")

0 20 40 60 80 100 120 140

(c) minimal intervals produced by our test

days since the hundredth case

4 Long-run variance estimator

In development.

References

Khismatullina, M. and Vogt, M. (2020). Multiscale inference and
long-run variance estimation in nonparametric regression with time se-

17

ries errors. Journal of the Royal Statistical Society: Series B (Statistical
Methodology).

Khismatullina, M. and Vogt, M. (2023). Nonparametric comparison
of epidemic time trends: The case of COVID-19. Journal of Economet-
rics, 232 87–108.

Parker, D. E., Legg, T. P. and Folland, C. K. (1992). A new daily
central england temperature series, 1772-1991. International Journal of
Climatology, 12 317–342.

18

