
Robust Statistical Modeling for Quantifying Periodontal Disease: A
Single Index Mixed-Effects Approach with Skewed Random Effects

and Heavy-Tailed Residuals

Contents

1 Introduction 2

1.1 The ST-GP Model . 2

1.2 The Constrained GP Prior . 3

1.3 Variable Selection and Prior Elicitation . 4

2 First Simulation Study 5

2.1 Simulate Data . 6

2.2 Use the Gibbs Sampler . 6

2.3 Posterior Inference . 7

2.4 Plot the Estimated Single Index Function . 7

3 Second Simulation Study 9

3.1 Simulate Data . 10

3.2 Use the Gibbs Sampler . 10

3.3 Posterior Inference . 11

3.4 Variable Selection Plot . 11

4 Third Simulation Study 13

4.1 Simulate Data . 14

4.2 Use the Gibbs Sampler and the WFPBB() Function . 14

4.3 Posterior Inference . 16

A Skewed Distributions 16

B The Hierarchical Representation 17

C The Gibbs Sampler 18

1

1 Introduction

1.1 The ST-GP Model

We propose a single index model with skewed random effects and heavy-tailed residuals. We refer to this
model as the ST-GP model because the random effects and residuals jointly follow the ST distribution, and
we apply the constrained Gaussian process (GP) prior from Maatouk and Bay (2017) on the index function.

Let YP
i =

(
Y P

i,1, Y
P

i,2, . . . , Y
P

i,ni

)⊤ and YC
i =

(
Y C

i,1, Y
C

i,2, . . . , Y
C

i,ni

)⊤ be the measurements of PD and CAL (in
millimeter) for subject i = 1, . . . , N . Here ni denotes the number of teeth accounted for within the mouth
for i-th subject. At the subject level, we propose a single index model with skewed random effects and
heavy-tailed residuals as:

Yi =
(

YP
i

YC
i

)
=
(

g (Xiβ)
a× g (Xiβ)

)
+
(

1ni

1ni

)
bi +

(
ϵP

i

ϵC
i

)
, (1)

with

g (Xiβ) =

g⋆
(

X(1)
i β

)

...
g⋆
(

X(ni)
i β

)

 ,

where X(1)
i and X(ni)

i represent the first and last row of Xi, respectively. The slope parameter a ∈ (−∞,∞)
differentiates the fixed effects between PD and CAL, motivated by their observed correlation. The function
g⋆(·) is assumed to be a continuous monotonic increasing function on its support [−1, 1], with the constraint
that g⋆(−1) = 0. For the identifiability concern, the L2 norm of β must be 1. As the support of g⋆(·) is
defined [−1, 1], one need to scale Xi such that each row of Xi has L2 norm no larger than 1.
The distributional assumption for the random effects and errors is expressed as follows:

(
bi

ϵi

)
∼ ST2ni+1

[(
h(ν)δ
02ni

)
,

(
d2 0⊤

2ni

02ni
σ2I2ni

)
,

(
δ

02ni

)
, ν

]
, (2)

where
ϵi =

(
ϵP

i

ϵC
i

)
,

h(ν) = −
√
ν/πΓ (0.5ν − 0.5) /Γ (0.5ν) ,

Γ (·) represents the Gamma function, d2 and σ2 represent the conditional variance of the random effects and
residuals, respectively, δ ∈ (−∞,∞) is the skewness parameter, and ν is the degree of freedom. Definitions
and properties of the ST distribution are discussed in Appendix A. If one applies the constrained GP prior
on the index function g, then the model described in (1) and (2) is referred to as the ST-GP model.
Additionally, using Proposition 5 of Schumacher et al. (2021), we have

Yi ∼ ST2ni
(θi + h(ν)δ12ni

,Ψi, δ12ni
, ν) , (3)

where
θi =

(
g (Xiβ)

a× g (Xiβ)

)

and
Ψi = d212ni

1⊤
2ni

+ σ2I2ni×2ni

represents a covariance matrix characterized by a compound symmetry structure, with readily available
closed-form expressions for its inverse and determinant.
Last, the model in (1) and (2) has a hierarchical representation that facilities an associated Gibbs sampler.
The details of the hierarchical representation and the associated Gibbs sampler can be found in Appendix B
and C, respectively.

2

1.2 The Constrained GP Prior

To apply the constrained GP prior, we need to add one more assumption on g⋆(·). The support of g⋆(·) is
restricted to [−1, 1]. Furthermore, grounded in our observation that utilizing a random intercept alone is
adequate for the analysis of the real data, we add one more condition: g⋆(−1) = 0. This condition aligns with
the reality of periodontal disease research, where the readings of PD and CAL must be non-negative. Therefore,
assuming that the single index function is non-negative is reasonable. We summarize the assumption imposed
on g⋆(x) as follows: g⋆(x) is defined as a continuous, monotonic increasing function on its support [−1, 1],
with the minimal value defined as g⋆(−1) = 0.

With these assumptions in place, we can now proceed to introduce the associated basis functions, hk (·) and
ϕk (·), associated with the constrained GP prior. For given knots −1 = u0 < u1 < · · · < uL = 1, continuous
piecewise linear functions are defined as, for k = 1, . . . , L,

hk(x) =

0 if x > uk+1 or x < uk−1

1 if x = uk

linear otherwise
.

Taking integration of hk (x) on (−1, x), we define ψk (·) as

ψk(x) =
∫ x

−1
hk(t)dt.

Next, we define ϕk (Xiβ) as a vector-valued function consisting of ni continuous piecewise linear functions:

ϕk (Xiβ) =

ψk

(
X(1)

i β
)

...
ψk

(
X(ni)

i β
)

 .

Finally, we can define the constrained GP prior and the index function as follows:

g (Xiβ) = Φξ, (4)

where Φ is a ni × (L+ 1) matrix:

Φ =
(
ϕ0 (Xiβ) · · · ϕL (Xiβ)

)

=

ψ0

(
X(1)

i β
)

· · · ψL

(
X(1)

i β
)

...
ψ0

(
X(ni)

i β
)

· · · ψL

(
X(ni)

i β
)

 ,

and the random vector ξ = [ξ0, . . . , ξL]⊤ is positive and follows a truncated multivariate normal distribution:

ξ ∼ N +
L+1 (0L+1,K) ,

representing the constrained GP prior on ξ.

With the vector-valued input, Xiβ, the index function g (·) is a function with vector-valued output. It is a
collection of scalar-valued monotonic increasing functions:

g (Xiβ) =

g⋆
(

X(1)
i β

)

...
g⋆
(

X(ni)
i β

)

 =

Φ(1)ξ
...

Φ(ni)ξ

 ,

3

where g⋆ (·) is a function with both scalar-valued input and output, and Φ(1) and Φ(ni) represent the first
and last row of Φ, respectively.
By Proposition 2 of Maatouk and Bay (2017), setting ξ as a positive random vector is both a necessary and
sufficient condition for g⋆ (·) to be a monotonic increasing function and for the index function g(·) in (4) to
be coordinate-wise monotonic increasing.
The covariance matrix K is characterized by the Matérn kernel (Rasmussen and Williams, 2005), consisting
of a scale parameter ρ1, a range parameter ρ2, and a smoothness parameter ρ3, defined as follows:

C(r) = ρ2
1

21−ρ3

Γ(ρ3)

(√
2ρ3

r

ρ2

)ρ3

Bρ3

(√
2ρ3

r

ρ2

)
,

where r represents the distance between two measurements, Γ (·) denotes the gamma function, and Bρ3 (·) is
the modified Bessel function of the second kind. Inference about the smoothness parameter ρ3 is challenging
both theoretically and empirically (Zhang, 2004). Additionally, ρ3 is set to 3/2 due to the simplified analytic
form of the modified Bessel function of the second kind(Chen et al., 2024). Furthermore, following the
suggestion by Ray et al. (2020), we assume that the covariance matrix K is obtained from a regular grid in
the interval [−1, 1], which matches the support of the index function. This results in K having a Toeplitz
structure, for which there exists an associated efficient sampling algorithm.

1.3 Variable Selection and Prior Elicitation

In this section, we aim to address one challenging aspect in analyzing the NHANES data: the rela-
tively high number of risk factors. We also want to discuss the prior elicitation for unknown parameters(
a,β, δ, d2, σ2, ν, ρ2

1, ρ2
)

in the ST-GP model. We suggest the following list of priors:

1. We put a non-informative prior, a normal distribution with mean 0 and variance 1000, on the slope
parameter a:

a ∼ N (0, 1000) .

2. Recall that there is an identifiability restriction such that ||β|| = 1. To satisfy this restriction, the
following transformation can be applied:

β = β̃

||β̃||
.

This transformation addresses the identifiability concern and allows for the use of the elliptical slice
sampler (Murray et al., 2010), which is a tuning-free sampler. Traditional samplers used in existing
Bayesian single index models often require careful tuning. In contrast, a tuning-free sampler simplifies
the tuning process and enhances computational stability compared to samplers that require careful
tuning.
When the number of covariates is small, we suggest placing independent normal priors with mean 0
and variance 10 on each of β̃. Because, for any c > 0, β̃/||β̃|| = cβ̃/||cβ̃||, scaling the variance of the
prior on β̃ does not alter the prior distribution of β.

3. We put the grouped horseshoe prior on β̃
⋆ =

{
β̃⋆

j,k : j ≥ 1, k ≥ 1
}

, such that for the j-th group and
the k-th level,

β̃⋆
j,k | λj , τ ∼ N

(
0, λ2

jτ
2) ,

λj ∼ C0,∞ (0, 1) ,
τ ∼ C0,1 (0, 1) ,

(5)

where C0,∞ (0, 1) and C0,1 (0, 1) represent the standard Cauchy distribution truncated to (0,∞) and
the standard Cauchy distribution truncated to (0, 1) respectively.
Last, for other data sets or for researchers who want to investigate different questions, it is advisable
for researchers to determine the usage of the normal prior and the (grouped) horseshoe prior based on
the specific requirements and characteristics of their data and research objectives.

4

4. We assign a non-informative prior to the skewness parameter δ, allowing the data to fully determine
both the direction and magnitude of the skewness of the random effects:

δ ∼ N (0, 1000).

5. We assign a commonly used non-informative and conjugate prior, a inverse Gamma distribution, on the
variance of random effects, d2:

d2 ∼ IG (5, 5) ,
where IG(5, 5) denotes the inverse Gamma distribution with shape and scale parameters set to 5,
characterized by the probability density function proportional to x−5−1 exp(−5/x).

6. We assign the same non-informative and conjugate prior, IG(5, 5), on the variance of the residual term,
σ2:

σ2 ∼ IG (5, 5) .

7. To utilize the elliptical slice sampler, we place a log-normal prior on the degree of freedom:

log(ν − 2) ∼ N (0, 1).

This prior implies a lower bound such that ν > 2, ensuring the existence of the first and second moments
of the random effects and residuals.

8. Similarly, for convenient use of the elliptical slice sampler, we assign the same log-normal prior on ρ2
1

and ρ2, two hyperparameters of the Matérn kernel:

log
(
ρ2

1
)

∼ N (0, 1),

and
log (ρ2) ∼ N (0, 1).

2 First Simulation Study

In this simulation study, we aim to demonstrate the data generation function reg_simulation1 and the
Gibbs sampling function Gibbs_Sampler.
The data generation stage of the simulation study involves several key steps. The function reg_simulation1
iterates over N subjects to generate design matrices Xi and outcomes Yi. For each subject, we replicate the
non-uniform number of measurements observed in real data by setting ni = T + 2, where T follows a Poisson
distribution with a mean of 8. Each subject’s data includes an associated ni × 10 design matrix Xi. It then
creates the design matrix Xi with two continuous predictors (X1 and X2) and one binary predictor (Zi).
To generate X1, it draws values from a standard normal distribution. For X2, it first determines the value
of the binary predictor Zi by drawing from a binomial distribution with a probability of 0.5. If Zi is 1, it
draws values for X2 from a normal distribution with a mean of 1; if Zi is 0, it draws values from a normal
distribution with a mean of -1. The resulting design matrix Xi is standardized and scaled.
Next, the function calculates the linear predictor etai using the standardized Xi. Then, it transforms etai
using the true.g function, which is defined mathematically as:

g(x) = 5
(

Φ
(
x+ 1

2 ; 0.5, 0.1
)

− Φ (0; 0.5, 0.1)
)
.

where Φ(·;µ, σ) is the cumulative distribution function of the normal distribution with mean µ and standard
deviation σ. This transformation provides the outcome gi.
Finally, the function generates the outcome Yi from (3). The standardized design matrices and outcomes are
then stored.

5

2.1 Simulate Data

load the package
library(MSIMST)

set.seed(100)

simulated_data <- reg_simulation1(N = 50,
ni_lambda = 8,
beta = c(0.5,0.5,0.5),
beta_b = 1.5,
dsq = 0.1,
sigmasq = 0.5,
delta = 0.6,
nu = 5.89)

y <- simulated_data$y
X <- simulated_data$X

2.2 Use the Gibbs Sampler

Users can use the Gibbs_Sampler function to draw samples from the posterior distribution.

group_info <- c(0,0,0)
L <- 50
N <- length(y)

GP_MCMC_output <- Gibbs_Sampler(X = X,
y = y,
group_info = group_info,
beta_value = c(0.5,0.5,0.5),
beta_prior_variance = 10,
beta_b_value = 1.5,
beta_lambdasq_value = 1,
beta_tausq_value = 1,
xi_value = abs(rnorm(n = L + 1)),
xi_lengthscale_value = 1.0,
xi_tausq_value = 1.0,
g_func_type = "GP",
dsq_value = 1,
sigmasq_value = 1,
delta_value = 0.6,
nu_value = 5.89,
U_value = abs(rnorm(N)),
S_value = abs(rnorm(N)),
loglik_type = "skewT",
gof_K = 10,
gof_L = 5,
iter_warmup = 2000,
iter_sampling = 5000,
verbatim = TRUE,

6

update = 1000,
incremental_output = FALSE,
incremental_output_filename = NULL,
incremental_output_update = 1e6,
n_core = 1)

#> [1] "i:1000"
#> [1] "i:2000"
#> [1] "i:3000"
#> [1] "i:4000"
#> [1] "i:5000"
#> [1] "i:6000"
#> [1] "i:7000"

2.3 Posterior Inference

if (require(posterior)) {
require(posterior)
df_beta_GP <- GP_MCMC_output$beta_output
colnames(df_beta_GP) <- c("beta1","beta2","beta3")
summary(as_draws(df_beta_GP))

}
#> # A tibble: 3 x 10
#> variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 beta1 0.597 0.597 0.0129 0.0134 0.576 0.618 1.00 907. 1601.
#> 2 beta2 0.577 0.577 0.0205 0.0202 0.543 0.610 1.00 693. 1033.
#> 3 beta3 0.556 0.557 0.0247 0.0239 0.515 0.597 1.00 513. 824.

2.4 Plot the Estimated Single Index Function

L <- ncol(GP_MCMC_output$xi_output) - 1
u <- seq(-1,1,length.out = L + 1)
x.grid <- seq(-1,1,length.out = 1000)
df_g_GP <- data.frame(x = x.grid,

ymean = 0,
ylb = 0,
yub = 0)

true index values
true_beta <- c(0.5,0.5,0.5) / norm(c(0.5,0.5,0.5), "2")
index_values <- unlist(lapply(X, function(x){as.numeric(x %*% true_beta)}))

the true link function used in the simulation study
true.g <- function(x){

y <- (x+1)/2
5*(pnorm(y, mean=0.5, sd=0.1) - pnorm(0, mean = 0.5, sd = 0.1))

}

true values of the g function

7

df_g_GP$true_y <- true.g(x.grid)

GP_MSE <- mean((df_g_GP$ymean - df_g_GP$true_y)ˆ2)

if (require(lattice) & require(HDInterval) & require(latex2exp)) {
require(lattice)
require(HDInterval)
require(latex2exp)

the estimated g function - GP
for (i in 1:length(x.grid)) {

use phiX_c function to generate the Phi matrix defined in Equation (3)
phiX <- phiX_c(x.grid[i],u,L)
value <- as.numeric(phiX%*%t(GP_MCMC_output$xi_output))
value.mean <- mean(value)
value.ci <- hdi(value)
value.ub <- value.ci[2]
value.lb <- value.ci[1]
df_g_GP[i,"ymean"] <- value.mean
df_g_GP[i,"ylb"] <- value.lb
df_g_GP[i,"yub"] <- value.ub

}

p1 <- xyplot(ymean + true_y ~ x, data = df_g_GP,
type = "l",
lty = c(1,2),
lwd = c(3,3),
col = c("#0072B2","red"),
panel = function(...){

panel.xyplot(...)
panel.xyplot(x = index_values,

y = rep(0,length(index_values)),
col = rgb(0,158,115,255*0.1,maxColorValue = 255))

panel.polygon(c(df_g_GP$x, rev(df_g_GP$x)),
c(df_g_GP$yub, rev(df_g_GP$ylb)),
col = rgb(0,114,178,255*0.3,maxColorValue = 255),
border = FALSE)

},
ylab = TeX("$g(U)$"),
xlab = TeX("U"),
key = list(space = "bottom",

lines = list(lty=1:2,
lwd=3,
col=c("#0072B2","red"),
points = FALSE),

text = list(c(TeX("estimated $g(U)$ function"),
TeX("true $g(U)$ function")))

),
main = TeX(paste0("GP prior on $g(U)$ function || ",

"MSE = ",
round(GP_MSE,2))),

ylim = c(-0.5,10))
plot(p1)

8

}

GP prior on g(U) function || MSE = 11.09

U

g(
U

)

0

2

4

6

8

−1.0 −0.5 0.0 0.5 1.0

estimated g(U) function
true g(U) function

3 Second Simulation Study

In the second simulation study, we aim to show that the grouped horseshoe prior in (5) efficiently separates
noise from signals. We increase the number of covariates, with first covariate conforms to a categorical
distribution with two levels, designated as A and B, each assigned a probability of 0.5. To emulate the
prevalence of diabetes observed in actual datasets, the second covariate follows a categorical distribution with
two levels: diabetes and non-diabetes, assigned probabilities of 0.13 and 0.87, respectively. To investigate
the performance of the grouped horseshoe prior, it is essential to include a categorical covariate with more
than two levels. Thus, the third covariate is generated from a categorical distribution with three levels, each
having an equal probability of 1/3. The fourth covariate also adheres to a categorical distribution with two
levels, C and D, each with a probability of 0.5. In mirroring potential correlations present in real data, if
the fourth covariate assumes level C, the fifth covariate follows a normal distribution with a mean of 1 and
a variance of 1; otherwise, it follows a normal distribution with a mean of -1 and the same variance. The
first five covariates are associated with non-zero coefficients, whereas the remaining three covariates have
coefficients assigned values of zero. The sixth covariate follows a categorical distribution with three levels,
each with an equal probability of 1/3. Similarly, the seventh covariate follows a categorical distribution with
two levels, each with an equal probability of 0.5. Analogous to the fifth covariate, the eighth covariate follows
a normal distribution with a mean of 1 if the seventh covariate assumes the first level and a mean of -1 if it
assumes the second level, both with a variance of 1. Lastly, we standardized the design matrix to ensure that
the L2 norm of each row of all Xi is less than 1.

9

3.1 Simulate Data

set.seed(200)
simulated_data <- reg_simulation2(N = 50,

ni_lambda = 8,
beta = c(rep(1,6),rep(0,4)),
beta_b = 1.5,
dsq = 0.1,
sigmasq = 0.5,
delta = 0.6,
nu = 5.89)

y <- simulated_data$y
X <- simulated_data$X

3.2 Use the Gibbs Sampler

group_info <- c(rep(0,2),
rep(1,2),
2,3,
rep(4,2),
5,6)

L <- 50
N <- length(y)

GP_MCMC_output <- Gibbs_Sampler(X = X,
y = y,
group_info = group_info,
beta_value = c(rep(1,6),rep(0,4)),
beta_prior_variance = 10,
beta_b_value = 1.5,
beta_lambdasq_value = rep(1.0,max(group_info)),
beta_tausq_value = 1,
xi_value = abs(rnorm(n = L + 1)),
xi_lengthscale_value = 1.0,
xi_tausq_value = 1.0,
g_func_type = "GP",
dsq_value = 0.1,
sigmasq_value = 0.5,
delta_value = 0.6,
nu_value = 5.89,
U_value = abs(rnorm(N)),
S_value = abs(rnorm(N)),
loglik_type = "skewT",
gof_K = 10,
gof_L = 5,
iter_warmup = 10000,
iter_sampling = 10000,
verbatim = TRUE,
update = 5000,
incremental_output = FALSE,

10

incremental_output_filename = NULL,
incremental_output_update = 1e6,
n_core = 1)

#> [1] "i:5000"
#> [1] "i:10000"
#> [1] "i:15000"
#> [1] "i:20000"

3.3 Posterior Inference

if (require(posterior)) {
df_beta_GP <- GP_MCMC_output$beta_output
colnames(df_beta_GP) <- paste0("beta",1:10)
summary(as_draws(df_beta_GP))

}
#> # A tibble: 10 x 10
#> variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 beta1 0.444 0.445 0.0358 0.0353 0.385 0.502 1.00 919. 1654.
#> 2 beta2 0.368 0.365 0.0567 0.0527 0.281 0.466 1.00 363. 750.
#> 3 beta3 0.421 0.422 0.0422 0.0415 0.349 0.490 1.00 308. 581.
#> 4 beta4 0.400 0.400 0.0365 0.0356 0.336 0.458 1.00 425. 694.
#> 5 beta5 0.396 0.396 0.0383 0.0389 0.335 0.460 1.00 362. 809.
#> 6 beta6 0.402 0.401 0.0228 0.0227 0.365 0.440 1.00 651. 1331.
#> 7 beta7 -0.00262 -0.000921 0.0209 0.0175 -0.0398 0.0327 1.01 31.0 140.
#> 8 beta8 -0.00755 -0.00461 0.0241 0.0200 -0.0522 0.0290 1.04 25.6 81.2
#> 9 beta9 0.00151 0.000291 0.0266 0.0174 -0.0435 0.0533 1.02 85.6 76.8
#> 10 beta10 0.00461 0.00409 0.0128 0.0113 -0.0167 0.0248 1.01 198. 297.

3.4 Variable Selection Plot

if (require(posterior)) {
beta_draws <- as_draws(df_beta_GP)
df_plot_vs <- summarise_draws(beta_draws,

mean,
~quantile(.x, probs = c(0.025, 1-0.025)))

df_plot_vs$variable <- factor(df_plot_vs$variable,
levels = paste0("beta",1:10))

}

if (require(lattice) & require(latex2exp)) {
true_beta <- c(rep(1,6),rep(0,4)) / norm(c(rep(1,6),rep(0,4)), "2")
beta_label <- TeX(paste0("$\\beta_{",1:10,"}$"))
VS_plot <- xyplot(mean ~ variable,

data = df_plot_vs,
panel = function(x,y,...) {

panel.xyplot(x = x, y = y,...)
panel.xyplot(x = 0:6,

y = rep(true_beta[1],7),

11

type = "l",
col = "red",
lty = 2,
lwd = 3)

panel.xyplot(x = 7:11,
y = rep(0,5),
type = "l",
col = "red",
lty = 2,
lwd = 3)

for (j in 1:10) {
panel.arrows(x0 = j,

y0 = df_plot_vs$`2.5%`[j],
x1 = j,
y1 = df_plot_vs$`97.5%`[j],
length = 0.05, unit = "native",
angle = 90,
code = 3,
lwd = 3,
col = "#0072B2")

}
},
col = "black",
pch = 19,
cex = 1.1,
ylab = NULL,
xlab = NULL,
scales = list(x = list(labels = beta_label),

y = list(at = seq(-0.1,0.6,0.1),
limits = c(-0.1,0.6))))

plot(VS_plot)
}

12

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

4 Third Simulation Study

The goal of the third simulation study is to demonstrate the effectiveness of the Bayesian method to adjust
the survey weights (Gunawan et al., 2020), implemented in the function WFPBB().
In this simulation study, we introduce a selection variable Z. When a sample is taken from the population,
the Z-value for a subject in the population determines the probability of selecting that subject into the
sample. Specifically, we assume that for each subject, the joint distribution of the selection variable Z and
the response variable Y is

(
Yi

Zi

)
∼ ST2ni+1

[(
θi + bδ12ni

µz

)
,

(
Ψi ρ× 12ni

ρ× 1⊤
2ni

σ2
z

)
,

(
δ12ni

0

)
, ν

]
, (6)

where
θi =

(
g (Xiβ)

a× g (Xiβ)

)
,

g(·) is the same index function introduced in the first simulation study, and

Ψi = d212ni1⊤
2ni

+ σ2I2ni .

Marginally, Yi comes from the ST-GP model defined in (1) and (2). Additionally, to replicate the intrinsic
sampling mechanism in real data, we introduce a sampling mechanism here. We assume that Yi is selected
into the sample if and only if Ii = 1, where

P (Ii = 1 | Yi, Zi) = P (Ii = 1 | Zi) = πi = logistic (ζ0 + ζ1Zi) , (7)

with logistic (·) denoting the standard logistic function.

13

4.1 Simulate Data

set.seed(100)
set the population size
population_N <- 1000
group information and the number of nodes

group_info <- c(rep(0,2),
rep(1,2),
2,3,
rep(4,2),
5,6)

L <- 50
output_data <- reg_simulation3(N = population_N,

ni_lambda= 8,
beta = c(rep(1,6),rep(0,4)),
beta_b = 1.5,
dsq = 0.1,
sigmasq = 0.5,
delta = 0.6,
nu = 5.89,
muz = 0,
rho = 36.0,
sigmasq_z = 0.6,
zeta0 = -1.8,
zeta1 = 0.1)

4.2 Use the Gibbs Sampler and the WFPBB() Function

Calling WFPBB() and Gibbs_Sampler() takes around 12 hours in a personal laptop. Users can test the
following codes by themselves.

N <- length(output_data$y)
survey_weight <- output_data$survey_weight

the size of bootstrap is 50
size_bootstrap <- 50
output_MCMC <- list(beta = vector("list",size_bootstrap),

beta_b = vector("list",size_bootstrap),
delta = vector("list",size_bootstrap),
dsq = vector("list",size_bootstrap),
sigmasq = vector("list",size_bootstrap),
nu = vector("list",size_bootstrap))

for (j in 1:size_bootstrap) {

print(paste0("bootstrap iteration: ", j, "of ", size_bootstrap, "."))

condition <- TRUE
while (condition) {

index_WFPBB <- WFPBB(y = 1:N,

14

w = survey_weight,
N = population_N,
n = N)

y <- output_data$y
y <- y[index_WFPBB]
X <- output_data$X
X <- X[index_WFPBB]

check full rank condition
X_merged <- do.call("rbind",X)
X_rank <- Matrix::rankMatrix(X_merged)[1]
if (ncol(X_merged) == X_rank) {

print("WFPBB procedure is successful.")
condition <- FALSE

} else {
print("WFPBB procedure is unsuccessful (design matrix is not full ranked). Will try again.")

}
rm(X_merged)
rm(X_rank)

}

GP_MCMC_output <- Gibbs_Sampler(X = X,
y = y,
group_info = group_info,
beta_value = c(rep(1,6),rep(0,4)),
beta_prior_variance = 10,
beta_b_value = 1.5,
beta_lambdasq_value = rep(1.0,max(group_info)),
beta_tausq_value = 1,
xi_value = abs(rnorm(n = L + 1)),
xi_lengthscale_value = 1.0,
xi_tausq_value = 1.0,
g_func_type = "GP",
dsq_value = 0.1,
sigmasq_value = 0.5,
delta_value = 0.6,
nu_value = 5.89,
U_value = abs(rnorm(N)),
S_value = abs(rnorm(N)),
loglik_type = "skewT",
gof_K = 10,
gof_L = 5,
iter_warmup = 5000,
iter_sampling = 10000,
verbatim = TRUE,
update = 5000,
incremental_output = FALSE,
incremental_output_filename = NULL,
incremental_output_update = 1e6,
n_core = 1)

output_MCMC$beta[[j]] <- GP_MCMC_output$beta_output

15

output_MCMC$beta_b[[j]] <- GP_MCMC_output$beta_b_output
output_MCMC$delta[[j]] <- GP_MCMC_output$delta_output
output_MCMC$dsq[[j]] <- GP_MCMC_output$dsq_output
output_MCMC$sigmasq[[j]] <- GP_MCMC_output$sigmasq_output
output_MCMC$nu[[j]] <- GP_MCMC_output$nu_output

}

4.3 Posterior Inference

chunk not evaluated.
if (require(posterior)) {

df_beta <- do.call("rbind",output_MCMC$beta)
colnames(df_beta) <- paste0("beta",1:10)
df_beta_summary <- summarise_draws(as_draws(df_beta),

mean,
~quantile(.x, probs = c(0.025, 1-0.025)))

print(df_beta_summary)
}

A Skewed Distributions

We introduce the definition of the ST distribution by first explaining the construction of the SN distribution.
The construction of the SN distribution begins with a linear combination of two independent normal
distributions. A random vector Y follows a skew-normal (SN) distribution with a p× 1 location vector µ, a
p× p scale matrix Ω, and a p× 1 skewness vector δ, denoted as Y ∼ SNp (µ,Ω, δ), if it can be expressed as:

Y = µ + δ|X0| + X1, (8)

where X0 follows a univariate standard normal distribution, and X1 follows a multivariate normal distribution
with zero mean and a covariance matrix Ω. The random variable that follows the truncated normal distribution,
|X0|, along with the skewness vector δ, brings skewness into the SN distribution.

By introducing one more latent variable, denoted as U , which is independent of X0 and X1 and follows a
Gamma distribution with shape and rate parameters both equal to ν/2, i.e., U ∼ Gamma (ν/2, ν/2), where
its density function is proportional to u0.5ν−1 exp (−0.5νu), we can construct the ST distribution as follows:

Y = µ + U−1/2 (δ|X0| + X1) , (9)

which is denoted as Y ∼ STp (µ,Ω, δ, ν). Adding the new latent variable U introduces heavy tail and high
kurtosis features into the ST distribution.

The stochastic representations of the ST and SN distributions in (8) and (9) are not only useful for sampling
from the ST/SN distributions but also imply the relationship between the ST distribution and the SN
distribution. As the degree of freedom parameter ν approaches infinity, U converges to 1 in probability,
and therefore, the ST distribution converges to the SN distribution. Additionally, (8) and (9) imply that
the normal distribution is a special case of the SN distribution, and that both the normal distribution and
the Student-t distribution are special cases of the ST distribution. With the shape vector δ set as a vector
of zeros, the random vector defined in (9) follows a multivariate Student-t distribution with the degree of
freedom parameter ν, while the random vector defined in (8) follows a multivariate normal distribution.

16

Finally, the stochastic representation of the ST distribution in (9) also implies an equivalent hierarchical
representation:

Y | S,U ∼ Np

(
µ + u−1/2sδ, u−1Ω

)
,

S ∼ N + (0, 1) ,
U ∼ Gamma (ν/2, ν/2) .

(10)

Integrating out two latent variables, S and U , we obtain the density function of the ST distribution as:

fY(Y) = 2tp(Y | µ,Σ, ν)T
(

δ⊤Σ−1(Y − µ)
√

ν + p

ν + d(Y) | 0,Λ, ν + p

)
, (11)

where tp represents the density function of a p-dimensional multivariate Student-t distribution, T represents
the cumulative distribution function of a univariate Student-t distribution. Additional Σ and Λ are given as
follows:

Σ = Ω + δδ⊤,

Λ = 1 − δ⊤Σ−1δ.

Furthermore, d(Y) is defined as:
d(Y) = (Y − µ)⊤Σ−1(Y − µ).

Both representations of the ST distribution in (9) and (10), along with its density function in (11), are
utilized in the tailored Gibbs sampler.

A notable feature of the ST distribution is its closure under linear transformation, as demonstrated in
Proposition 5 of Schumacher et al. (2021). That is, if Y ∼ STp (µ,Ω, δ, ν) then

AY + b ∼ STm

(
Aµ + b,AΩA⊤,Aδ, ν

)
, (12)

where A is a m× p matrix and b is a vector of length m.

B The Hierarchical Representation

Using Proposition 5 of Schumacher et al. (2021), we have

Yi ∼ ST2ni
(θi + h(ν)δ12ni

,Ψi, δ12ni
, ν) , (13)

where
θi =

(
g (Xiβ)

a× g (Xiβ)

)

and
Ψi = d212ni1⊤

2ni
+ σ2I2ni×2ni

represents a covariance matrix characterized by a compound symmetry structure, with readily available
closed-form expressions for its inverse and determinant.

From Proposition 6 of Schumacher et al. (2021), we have the following stochastic representation,

Yi | · ∼ N2ni

(
θi + h(ν)δ12ni + δsi12ni , u

−1
i Ψi

)

Si | · ∼ N + (0, u−1
i

)

Ui ∼ Gamma (ν/2, ν/2) , i = 1, . . . , N.
(14)

Here, N + (0, u−1
i

)
represents the half-normal distribution with a location parameter of 0 and a scale parameter

of
√
u−1

i .

17

Last, (14) can also be represented in the following way.

Yi | · ∼ N2ni

(
θi + 12ni

bi, u
−1
i σ2I2ni

)

bi | · ∼ N
(
δ (h(ν) + si) , u−1

i d2)

Si | · ∼ N + (0, u−1
i

)

Ui ∼ Gamma (ν/2, ν/2) , i = 1, . . . , N.

(15)

With conjugate priors in Section 1.3, utilizing (14), we can derive the updating equations for β0, δ, Si, and
Ui. To update ξ, we can employ the exact Hamiltonian algorithm, as described by Pakman and Paninski
(2014). Leveraging Equation (15), we can establish the updating equations for bi, σ2, and d2. The remaining
parameters, which include β, ν, as well as the hyperparameters associated with the constrained GP prior,
will be updated using the elliptical slice sampler algorithm.

C The Gibbs Sampler

To simplify notation, let
g (Xiβ) = gi.

Update a

The prior for a is
a ∼ N

(
0, σ2

a

)
.

Let
Ωi,a = u−1

i σ2Ini ,

Y⋆
i,a = YC

i − 1ni
bi. (16)

After simple algebra,

a | · ∼ N
(∑N

i=1 g
⊤
i Ω−1

i,a Y⋆
i,a

σ−2
a +

∑N
i=1 g

⊤
i Ω−1

i,agi

,
1

σ−2
a +

∑N
i=1 g

⊤
i Ω−1

i,agi

)
. (17)

Update ξ

Given hyperparameters ρ2
1 and ρ2, the distribution for ξ = (ξ0, . . . , ξL)⊤ is

ξ | · ∼ N +
L+1 (0L+1,K) .

Let
Y⋆

i,ξ =
(

YP
i − 1ni×1 (h(ν)δ + siδ)(

YC
i − 1ni×1 (h(ν)δ + siδ)

)
/a

)
,

Ωi,ξ =
(

Ini
0ni

0ni
a−1Ini

)
u−1

i Ψi

(
Ini

0ni

0ni
a−1Ini

)
,

and
Φi =

(
ϕ0 (Xiβ) , . . . , ϕL (Xiβ)
ϕ0 (Xiβ) , . . . , ϕL (Xiβ)

)
.

After simple algebra,

ξ | · ∼ N +
L+1

(

K−1 +
N∑

i=1
Φ⊤

i Ω−1
i,ξ Φi

)−1(N∑

i=1
Φ⊤

i Ω−1
i,ξ Y⋆

i,ξ

)
,

(
K−1 +

N∑

i=1
Φ⊤

i Ω−1
i,ξ Φi

)−1
 .

18

Update δ

The prior for δ is
δ ∼ N

(
0, σ2

δ

)
.

Let
Y⋆

i,δ =
(

YP
i

YC
i

)
−
(

gi

agi

)
,

and
Ωi,δ = u−1

i Ψi.

After simple algebra,

δ | · ∼ N
(∑N

i=1 (h(ν) + si) 1⊤
2ni

Ω−1
i,δ Y⋆

i,δ

σ−2
δ +

∑N
i=1 (h(ν) + si)2 1⊤

2ni
Ω−1

i,δ 12ni

,
1

σ−2
δ +

∑N
i=1 (h(ν) + si)2 1⊤

2ni
Ω−1

i,δ 12ni

)
.

Update Si

Let
Y⋆

i,Si
= Yi − θi − h(ν)δ12ni

,

and
Ωi,Si

= u−1
i Ψi.

After simple algebra,

Si | · ∼ N +

(
δ11×2ni

Ω−1
i Y⋆

i

ui + δ211×2ni
Ω−1

i,δ 12ni×1
,

1
ui + δ211×2ni

Ω−1
i,δ 12ni×1

)
.

Update Ui

Let
Y⋆

i,Ui
= Yi − θi − h(ν)δ12ni×1 − δsi12ni×1.

Ui | · ∼ Gamma
(

0.5 (2ni + ν + 1) , 0.5
(

Y⋆
i,Ui

⊤Ψ−1
i Y⋆

i,Ui
+ s2

i + ν
))

.

Update bi

Let
Y⋆

i,bi
= Yi − θi.

bi | · ∼ N

σ−2

(
1⊤

ni
Y⋆

i,bi

)
+ δ (h(ν) + si) d−2

2niσ−2 + d−2 ,
1

2niuiσ−2 + uid−2

 .

Update σ2

The prior for σ2 is
σ2 ∼ Inverse Gamma (aσ2 , bσ2) .

Let
Y⋆

i,σ2 = Yi − θi − 12ni
bi.

σ2 | · ∼ Inverse Gamma
(
aσ2 +

N∑

i=1
ni, bσ2 + 0.5

N∑

i=1
ui

(
Y⋆

i,σ2
⊤Y⋆

i,σ2

))
.

19

Update d2

The prior for d2 is
d2 ∼ Inverse Gamma (ad2 , bd2) .

d2 | · ∼ Inverse Gamma
(

0.5N + ad2 , bd2 + 0.5
N∑

i=1
ui (bi − δ (h(ν) + si))2

)
.

20

References
Chen, J., Mu, W., Li, Y., and Li, D. (2024). On the identifiability and interpretability of gaussian process

models. Advances in Neural Information Processing Systems, 36.

Gunawan, D., Panagiotelis, A., Griffiths, W., and Chotikapanich, D. (2020). Bayesian weighted inference
from surveys. Australian & New Zealand Journal of Statistics, 62(1):71–94.

Maatouk, H. and Bay, X. (2017). Gaussian process emulators for computer experiments with inequality
constraints. Mathematical Geosciences, 49(5):557–582.

Murray, I., Adams, R., and MacKay, D. (2010). Elliptical slice sampling. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pages 541–548. JMLR Workshop and
Conference Proceedings.

Pakman, A. and Paninski, L. (2014). Exact hamiltonian monte carlo for truncated multivariate gaussians.
Journal of Computational and Graphical Statistics, 23(2):518–542.

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine Learning. The MIT Press.

Ray, P., Pati, D., and Bhattacharya, A. (2020). Efficient bayesian shape-restricted function estimation with
constrained gaussian process priors. Statistics and Computing, 30:839–853.

Schumacher, F. L., Matos, L. A., and Cabral, C. R. (2021). Canonical fundamental skew-t linear mixed
models. arXiv preprint arXiv:2109.12152.

Zhang, H. (2004). Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics.
Journal of the American Statistical Association, 99(465):250–261.

21

