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NetworkMotif Estimating the uncertainty of a specified network

Description

The NetworkMotif function facilitates uncertainty quantification. Specifically, it determines the
proportion of posterior samples that contains the given network structure. To use this function,
users may use the GammaPst output obtained from the RGM function.

Usage

NetworkMotif(Gamma, GammaPst)

Arguments

Gamma A matrix of dimension p * p that signifies a specific network structure among the
response variables, where p represents the number of response variables. This
matrix is the focus of uncertainty quantification.

GammaPst An array of dimension p * p * n_pst, where n_pst is the number of posterior
samples and p denotes the number of response variables. It comprises the pos-
terior samples of the causal network among the response variables. This input
might be obtained from the RGM function. Initially, execute the RGM function
and save the resulting GammaPst. Subsequently, utilize this stored GammaPst
as input for this function.

Value

The NetworkMotif function calculates the uncertainty quantification for the provided network struc-
ture. A value close to 1 indicates that the given network structure is frequently observed in the pos-
terior samples, while a value close to 0 suggests that the given network structure is rarely observed
in the posterior samples.

References

Ni, Y., Ji, Y., & Müller, P. (2018). Reciprocal graphical models for integrative gene regulatory
network analysis. Bayesian Analysis, 13(4), 1095-1110. doi:10.1214/17BA1087.

https://doi.org/10.1214/17-BA1087
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Examples

#' # ---------------------------------------------------------

# Example 1:
# Run NetworkMotif to do uncertainty quantification for a given network among the response variable

# Data Generation
set.seed(9154)

# Number of data points
n = 10000

# Number of response variables and number of instrument variables
p = 3
k = 4

# Initialize causal interaction matrix between response variables
A = matrix(sample(c(-0.1, 0.1), p^2, replace = TRUE), p, p)

# Diagonal entries of A matrix will always be 0
diag(A) = 0

# Make the network sparse
A[sample(which(A!=0), length(which(A!=0))/2)] = 0

# Create D matrix (Indicator matrix where each row corresponds to a response variable
# and each column corresponds to an instrument variable)
D = matrix(0, nrow = p, ncol = k)

# Manually assign values to D matrix
D[1, 1:2] = 1 # First response variable is influenced by the first 2 instruments
D[2, 3] = 1 # Second response variable is influenced by the 3rd instrument
D[3, 4] = 1 # Third response variable is influenced by the 4th instrument

# Initialize B matrix
B = matrix(0, p, k) # Initialize B matrix with zeros

# Calculate B matrix based on D matrix
for (i in 1:p) {

for (j in 1:k) {
if (D[i, j] == 1) {

B[i, j] = 1 # Set B[i, j] to 1 if D[i, j] is 1
}

}
}

Sigma = diag(p)

Mult_Mat = solve(diag(p) - A)
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Variance = Mult_Mat %*% Sigma %*% t(Mult_Mat)

# Generate instrument data matrix
X = matrix(rnorm(n * k, 0, 1), nrow = n, ncol = k)

# Initialize response data matrix
Y = matrix(0, nrow = n, ncol = p)

# Generate response data matrix based on instrument data matrix
for (i in 1:n) {

Y[i, ] = MASS::mvrnorm(n = 1, Mult_Mat %*% B %*% X[i, ], Variance)

}

# Apply RGM on individual level data with Spike and Slab Prior
Output = RGM(X = X, Y = Y, D = D, prior = "Spike and Slab")

# Store GammaPst
GammaPst = Output$GammaPst

# Define a function to create smaller arrowheads
smaller_arrowheads = function(graph) {

igraph::E(graph)$arrow.size = 1 # Adjust the arrow size value as needed
return(graph)

}

# Plot the true graph structure between response variables
plot(smaller_arrowheads(igraph::graph_from_adjacency_matrix((A != 0) * 1,

mode = "directed")), layout = igraph::layout_in_circle, main = "True Graph")

# Start with a random subgraph
Gamma = matrix(0, nrow = p, ncol = p)
Gamma[2, 1] = 1

# Plot the subgraph to get an idea about the causal network
plot(smaller_arrowheads(igraph::graph_from_adjacency_matrix(Gamma,

mode = "directed")), layout = igraph::layout_in_circle,
main = "Subgraph")

# Do uncertainty quantification for the subgraph
NetworkMotif(Gamma = Gamma, GammaPst = GammaPst)
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RGM Fitting Bayesian Multivariate Bidirectional Mendelian Randomization
Networks

Description

The RGM function transforms causal inference by merging Mendelian randomization and network-
based methods, enabling the creation of comprehensive causal graphs within complex biological
systems. RGM accommodates varied data contexts with three input options: individual-level data
(X, Y matrices), summary-level data including Syy, Syx, and Sxx matrices, and intricate data with
challenging cross-correlations, utilizing Sxx, Beta, and SigmaHat matrices. For the latter input,
data centralization is necessary. Users can select any of these data formats to suit their needs and
don’t have to specify all of them, allowing flexibility based on data availability. Crucial inputs en-
compass "D" (a matrix indicating which IV is affecting which response) and "n" (total observations,
only required for summary level data), amplified by customizable parameters that refine analysis.
Additionally, users can tailor the analysis by setting parameters such as "nIter" (number of MCMC
iterations), "nBurnin" (number of discarded samples during burn-in for convergence), and "Thin"
(thinning of posterior samples). These customizable parameters enhance the precision and relevance
of the analysis. RGM provides essential causal effect/strength estimates between response variables
and between response and instrument variables. Moreover, it furnishes adjacency matrices, visu-
ally mapping causal graph structures. These outputs empower researchers to untangle intricate
relationships within biological networks, fostering a holistic understanding of complex systems.
AEst, BEst, A0Est, B0Est, GammaEst, TauEst, PhiEst, EtaEst, tAEst, tBEst, SigmaEst, RhoEst,
and PsiEst represent the posterior means of the corresponding quantities. LLPst and GammaPst
represent posterior samples. zAEst and zBEst are obtained by thresholding GammaEst and TauEst,
respectively.

Usage

RGM(
X = NULL,
Y = NULL,
Syy = NULL,
Syx = NULL,
Sxx = NULL,
Beta = NULL,
SigmaHat = NULL,
D,
n,
nIter = 10000,
nBurnin = 2000,
Thin = 1,
prior = c("Threshold", "Spike and Slab"),
aRho = 3,
bRho = 1,
nu1 = 0.001,
aPsi = 0.5,
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bPsi = 0.5,
nu2 = 1e-04,
aSigma = 0.01,
bSigma = 0.01,
PropVarA = 0.01,
PropVarB = 0.01

)

Arguments

X A matrix of dimension n * k. Each row represents a distinct observation, and
each column corresponds to a specific instrumental variable. The default value
is set to NULL.

Y A matrix of dimension n * p. Each row represents a specific observation, and
each column corresponds to a particular response variable. The default value is
set to NULL.

Syy A matrix of dimension p * p, where "p" is the number of response variables. It
is calculated as t(Y) %*% Y / n, where "Y" represents the response data matrix
and "n" is the number of observations.

Syx A matrix of dimension p * k, where "p" is the number of response variables, and
"k" is the number of instrumental variables. It is calculated as t(Y) %*% X / n,
where "Y" represents the response data matrix, "X" represents the instrumental
data matrix, and "n" is the number of observations.

Sxx A matrix of dimension k * k, where "k" is the number of instrumental variables.
It is derived as t(X) %*% X / n, where "X" represents the instrumental data
matrix and "n" is the number of observations.

Beta A matrix of dimension p * k, where each row corresponds to a specific response
variable and each column pertains to an instrumental variable. Each entry rep-
resents the regression coefficient of the response variable on the instrumental
variable. When using Beta as input, ensure that both Y (response data) and X
(instrument data) are centered before calculating Beta, Sxx, and SigmaHat.

SigmaHat A matrix of dimension p * k. Each row corresponds to a specific response vari-
able, and each column pertains to an instrumental variable. Each entry repre-
sents the mean square error of the regression between the response and the in-
strumental variable. As with Beta, ensure that both Y and X are centered before
calculating SigmaHat.

D A binary indicator matrix of dimension p * k, where each row corresponds to
a response variable, and each column corresponds to an instrumental variable.
The entry D[i, j] is 1 if instrumental variable j affects response variable i, and
0 otherwise. For each response variable, there must be at least one instrumental
variable that affects only that response (i.e., for each row in D, there must be at
least one column with 1, and that column must have zeros in all other rows). If
you use Syy, Beta, and SigmaHat as inputs, this condition must be satisfied to
run this algorithm. If this condition is not met, an error will be thrown. However,
if using X, Y or Syy, Syx, Sxx as inputs, a warning will be issued if the condition
is violated, but the method will still proceed.
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n A positive integer input representing the count of data points or observations
in the dataset. This input is only required when summary level data is used as
input.

nIter A positive integer input representing the number of MCMC (Markov Chain
Monte Carlo) sampling iterations. The default value is set to 10,000.

nBurnin A non-negative integer input representing the number of samples to be discarded
during the burn-in phase of MCMC sampling. It’s important that nBurnin is less
than nIter. The default value is set to 2000.

Thin A positive integer input denoting the thinning factor applied to posterior sam-
ples. Thinning reduces the number of samples retained from the MCMC process
for efficiency. Thin should not exceed (nIter - nBurnin). The default value is set
to 1.

prior A parameter representing the prior assumption on the graph structure. It offers
two options: "Threshold" or "Spike and Slab". The default value is "Spike and
Slab".

aRho A positive scalar input representing the first parameter of a Beta distribution.
The default value is set to 3.

bRho A positive scalar input representing the second parameter of a Beta distribution.
The default value is set to 1.

nu1 A positive scalar input representing the multiplication factor in the variance of
the spike part in the spike and slab distribution of matrix A. The default value is
set to 0.001.

aPsi A positive scalar input corresponding to the first parameter of a Beta distribution.
The default value is set to 0.5.

bPsi A positive scalar input corresponding to the second parameter of a Beta distri-
bution. The default value is set to 0.5.

nu2 A positive scalar input corresponding to the multiplication factor in the variance
of the spike part in the spike and slab distribution of matrix B. The default value
is set to 0.0001.

aSigma A positive scalar input corresponding to the first parameter of an Inverse Gamma
distribution, which is associated with the variance of the model. The default
value is set to 0.01.

bSigma A positive scalar input corresponding to the second parameter of an Inverse
Gamma distribution, which is associated with the variance of the model. The
default value is set to 0.01.

PropVarA A positive scalar input representing the variance of the normal distribution used
for proposing terms within the A matrix. The default value is set to 0.01.

PropVarB A positive scalar input representing the variance of the normal distribution used
for proposing terms within the B matrix. The default value is set to 0.01.

Value

AEst A matrix of dimensions p * p, representing the estimated causal effects or strengths
between the response variables.
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BEst A matrix of dimensions p * k, representing the estimated causal effects or strengths
of the instrument variables on the response variables. Each row corresponds to
a specific response variable, and each column corresponds to a particular instru-
ment variable.

zAEst A binary adjacency matrix of dimensions p * p, indicating the graph structure
between the response variables. Each entry in the matrix represents the presence
(1) or absence (0) of a causal link between the corresponding response variables.

zBEst A binary adjacency matrix of dimensions p * k, illustrating the graph structure
between the response variables and the instrument variables. Each row corre-
sponds to a specific response variable, and each column corresponds to a partic-
ular instrument variable. The presence of a causal link is denoted by 1, while
the absence is denoted by 0.

A0Est A matrix of dimensions p * p, representing the estimated causal effects or strengths
between response variables before thresholding. This output is particularly rel-
evant for cases where the "Threshold" prior assumption is utilized.

B0Est A matrix of dimensions p * k, representing the estimated causal effects or strengths
of the instrument variables on the response variables before thresholding. This
output is particularly relevant for cases where the "Threshold" prior assump-
tion is utilized. Each row corresponds to a specific response variable, and each
column corresponds to a particular instrument variable.

GammaEst A matrix of dimensions p * p, representing the estimated probabilities of edges
between response variables in the graph structure. Each entry in the matrix
indicates the probability of a causal link between the corresponding response
variables.

TauEst A matrix of dimensions p * p, representing the estimated variances of causal
interactions between response variables. Each entry in the matrix corresponds to
the variance of the causal effect between the corresponding response variables.

PhiEst A matrix of dimensions p * k, representing the estimated probabilities of edges
between response and instrument variables in the graph structure. Each row
corresponds to a specific response variable, and each column corresponds to a
particular instrument variable.

EtaEst A matrix of dimensions p * k, representing the estimated variances of causal
interactions between response and instrument variables. Each row corresponds
to a specific response variable, and each column corresponds to a particular
instrument variable.

tAEst A scalar value representing the estimated thresholding value of causal inter-
actions between response variables. This output is relevant when using the
"Threshold" prior assumption.

tBEst A scalar value representing the estimated thresholding value of causal interac-
tions between response and instrument variables. This output is applicable when
using the "Threshold" prior assumption.

SigmaEst A vector of length p, representing the estimated variances of each response vari-
able. Each element in the vector corresponds to the variance of a specific re-
sponse variable.
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AccptA The percentage of accepted entries in the A matrix, which represents the causal
interactions between response variables. This metric indicates the proportion of
proposed changes that were accepted during the sampling process.

AccptB The percentage of accepted entries in the B matrix, which represents the causal
interactions between response and instrument variables. This metric indicates
the proportion of proposed changes that were accepted during the sampling pro-
cess.

AccpttA The percentage of accepted thresholding values for causal interactions between
response variables when using the "Threshold" prior assumption. This metric in-
dicates the proportion of proposed thresholding values that were accepted during
the sampling process.

AccpttB The percentage of accepted thresholding values for causal interactions between
response and instrument variables when using the "Threshold" prior assumption.
This metric indicates the proportion of proposed thresholding values that were
accepted during the sampling process.

LLPst A vector containing the posterior log-likelihoods of the model. Each element
in the vector represents the log-likelihood of the model given the observed data
and the estimated parameters.

RhoEst A matrix of dimensions p * p, representing the estimated Bernoulli success prob-
abilities of causal interactions between response variables when using the "Spike
and Slab" prior assumption. Each entry in the matrix corresponds to the success
probability of a causal interaction between the corresponding response variables.

PsiEst A matrix of dimensions p * k, representing the estimated Bernoulli success prob-
abilities of causal interactions between response and instrument variables when
using the "Spike and Slab" prior assumption. Each row in the matrix corre-
sponds to a specific response variable, and each column corresponds to a partic-
ular instrument variable.

GammaPst An array containing the posterior samples of the network structure among the
response variables.

References

Ni, Y., Ji, Y., & Müller, P. (2018). Reciprocal graphical models for integrative gene regulatory
network analysis. Bayesian Analysis, 13(4), 1095-1110. doi:10.1214/17BA1087.

Examples

# ---------------------------------------------------------

# Example 1:
# Run RGM based on individual level data with Threshold prior based on the model Y = AY + BX + E

# Data Generation
set.seed(9154)

# Number of data points
n = 10000

https://doi.org/10.1214/17-BA1087
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# Number of response variables and number of instrument variables
p = 3
k = 4

# Initialize causal interaction matrix between response variables
A = matrix(sample(c(-0.1, 0.1), p^2, replace = TRUE), p, p)

# Diagonal entries of A matrix will always be 0
diag(A) = 0

# Make the network sparse
A[sample(which(A != 0), length(which(A != 0)) / 2)] = 0

# Create D matrix (Indicator matrix where each row corresponds to a response variable
# and each column corresponds to an instrument variable)
D = matrix(0, nrow = p, ncol = k)

# Manually assign values to D matrix
D[1, 1:2] = 1 # First response variable is influenced by the first 2 instruments
D[2, 3] = 1 # Second response variable is influenced by the 3rd instrument
D[3, 4] = 1 # Third response variable is influenced by the 4th instrument

# Initialize B matrix
B = matrix(0, p, k) # Initialize B matrix with zeros

# Calculate B matrix based on D matrix
for (i in 1:p) {

for (j in 1:k) {
if (D[i, j] == 1) {

B[i, j] = 1 # Set B[i, j] to 1 if D[i, j] is 1
}

}
}

# Define Sigma matrix
Sigma = diag(p)

# Compute Mult_Mat
Mult_Mat = solve(diag(p) - A)

# Calculate Variance
Variance = Mult_Mat %*% Sigma %*% t(Mult_Mat)

# Generate instrument data matrix
X = matrix(rnorm(n * k, 0, 1), nrow = n, ncol = k)

# Initialize response data matrix
Y = matrix(0, nrow = n, ncol = p)

# Generate response data matrix based on instrument data matrix
for (i in 1:n) {
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Y[i, ] = MASS::mvrnorm(n = 1, Mult_Mat %*% B %*% X[i, ], Variance)
}

# Define a function to create smaller arrowheads
smaller_arrowheads = function(graph) {

igraph::E(graph)$arrow.size = 1 # Adjust the arrow size value as needed
return(graph)

}

# Print true causal interaction matrices between response variables
# and between response and instrument variables
A
B

# Plot the true graph structure between response variables
plot(smaller_arrowheads(igraph::graph_from_adjacency_matrix((A != 0) * 1,

mode = "directed")), layout = igraph::layout_in_circle, main = "True Graph")

# Apply RGM on individual level data for Threshold Prior
Output = RGM(X = X, Y = Y, D = D, prior = "Threshold")

# Get the graph structure between response variables
Output$zAEst

# Plot the estimated graph structure between response variables
plot(smaller_arrowheads(igraph::graph_from_adjacency_matrix(Output$zAEst,

mode = "directed")), layout = igraph::layout_in_circle, main = "Estimated Graph")

# Get the estimated causal strength matrix between response variables
Output$AEst

# Get the graph structure between response and instrument variables
Output$zBEst

# Get the estimated causal strength matrix between response and instrument variables
Output$BEst

# Plot posterior log-likelihood
plot(Output$LLPst, type = 'l', xlab = "Number of Iterations", ylab = "Log-likelihood")

# -----------------------------------------------------------------
# Example 2:
# Run RGM based on Syy, Syx and Sxx with Spike and Slab prior based on the model Y = AY + BX + E

# Data Generation
set.seed(9154)

# Number of data points
n = 10000

# Number of response variables and number of instrument variables
p = 3
k = 4
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# Initialize causal interaction matrix between response variables
A = matrix(sample(c(-0.1, 0.1), p^2, replace = TRUE), p, p)

# Diagonal entries of A matrix will always be 0
diag(A) = 0

# Make the network sparse
A[sample(which(A!=0), length(which(A!=0))/2)] = 0

# Create D matrix (Indicator matrix where each row corresponds to a response variable
# and each column corresponds to an instrument variable)
D = matrix(0, nrow = p, ncol = k)

# Manually assign values to D matrix
D[1, 1:2] = 1 # First response variable is influenced by the first 2 instruments
D[2, 3] = 1 # Second response variable is influenced by the 3rd instrument
D[3, 4] = 1 # Third response variable is influenced by the 4th instrument

# Initialize B matrix
B = matrix(0, p, k) # Initialize B matrix with zeros

# Calculate B matrix based on D matrix
for (i in 1:p) {

for (j in 1:k) {
if (D[i, j] == 1) {

B[i, j] = 1 # Set B[i, j] to 1 if D[i, j] is 1
}

}
}

Sigma = diag(p)

Mult_Mat = solve(diag(p) - A)

Variance = Mult_Mat %*% Sigma %*% t(Mult_Mat)

# Generate instrument data matrix
X = matrix(rnorm(n * k, 0, 1), nrow = n, ncol = k)

# Initialize response data matrix
Y = matrix(0, nrow = n, ncol = p)

# Generate response data matrix based on instrument data matrix
for (i in 1:n) {

Y[i, ] = MASS::mvrnorm(n = 1, Mult_Mat %*% B %*% X[i, ], Variance)

}
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# Calculate summary level data
Syy = t(Y) %*% Y / n
Syx = t(Y) %*% X / n
Sxx = t(X) %*% X / n

# Print true causal interaction matrices between response variables
# and between response and instrument variables
A
B

# Plot the true graph structure between response variables
plot(smaller_arrowheads(igraph::graph_from_adjacency_matrix(((A != 0) * 1),
mode = "directed")), layout = igraph::layout_in_circle, main = "True Graph")

# Apply RGM on summary level data for Spike and Slab Prior
Output = RGM(Syy = Syy, Syx = Syx, Sxx = Sxx,

D = D, n = 10000, prior = "Spike and Slab")

# Get the graph structure between response variables
Output$zAEst

# Plot the estimated graph structure between response variables
plot(smaller_arrowheads(igraph::graph_from_adjacency_matrix(Output$zAEst,
mode = "directed")), layout = igraph::layout_in_circle, main = "Estimated Graph")

# Get the estimated causal strength matrix between response variables
Output$AEst

# Get the graph structure between response and instrument variables
Output$zBEst

# Get the estimated causal strength matrix between response and instrument variables
Output$BEst

# Plot posterior log-likelihood
plot(Output$LLPst, type = 'l', xlab = "Number of Iterations", ylab = "Log-likelihood")

# -----------------------------------------------------------------
# Example 3:
# Run RGM based on Sxx, Beta and SigmaHat with Spike and Slab prior
# based on the model Y = AY + BX + E

# Data Generation
set.seed(9154)

# Number of datapoints
n = 10000
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# Number of response variables and number of instrument variables
p = 3
k = 4

# Initialize causal interaction matrix between response variables
A = matrix(sample(c(-0.1, 0.1), p^2, replace = TRUE), p, p)

# Diagonal entries of A matrix will always be 0
diag(A) = 0

# Make the network sparse
A[sample(which(A!=0), length(which(A!=0))/2)] = 0

# Create D matrix (Indicator matrix where each row corresponds to a response variable
# and each column corresponds to an instrument variable)
D = matrix(0, nrow = p, ncol = k)

# Manually assign values to D matrix
D[1, 1:2] = 1 # First response variable is influenced by the first 2 instruments
D[2, 3] = 1 # Second response variable is influenced by the 3rd instrument
D[3, 4] = 1 # Third response variable is influenced by the 4th instrument

# Initialize B matrix
B = matrix(0, p, k) # Initialize B matrix with zeros

# Calculate B matrix based on D matrix
for (i in 1:p) {

for (j in 1:k) {
if (D[i, j] == 1) {

B[i, j] = 1 # Set B[i, j] to 1 if D[i, j] is 1
}

}
}

Sigma = diag(p)

Mult_Mat = solve(diag(p) - A)

Variance = Mult_Mat %*% Sigma %*% t(Mult_Mat)

# Generate DNA expressions
X = matrix(rnorm(n * k, 0, 1), nrow = n, ncol = k)

# Initialize response data matrix
Y = matrix(0, nrow = n, ncol = p)

# Generate response data matrix based on instrument data matrix
for (i in 1:n) {
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Y[i, ] = MASS::mvrnorm(n = 1, Mult_Mat %*% B %*% X[i, ], Variance)

}

# Centralize Data
Y = t(t(Y) - colMeans(Y))
X = t(t(X) - colMeans(X))

# Calculate Sxx
Sxx = t(X) %*% X / n

# Generate Beta matrix and SigmaHat
Beta = matrix(0, nrow = p, ncol = k)
SigmaHat = matrix(0, nrow = p, ncol = k)

for (i in 1:p) {

for (j in 1:k) {

fit = lm(Y[, i] ~ X[, j])

Beta[i, j] = fit$coefficients[2]

SigmaHat[i, j] = sum(fit$residuals^2) / n

}

}

# Print true causal interaction matrices between response variables
# and between response and instrument variables
A
B

# Plot the true graph structure between response variables
plot(smaller_arrowheads(igraph::graph_from_adjacency_matrix(((A != 0) * 1),
mode = "directed")), layout = igraph::layout_in_circle, main = "True Graph")

# Apply RGM based on Sxx, Beta and SigmaHat for Spike and Slab Prior
Output = RGM(Sxx = Sxx, Beta = Beta, SigmaHat = SigmaHat,

D = D, n = 10000, prior = "Spike and Slab")

# Get the graph structure between response variables
Output$zAEst

# Plot the estimated graph structure between response variables
plot(smaller_arrowheads(igraph::graph_from_adjacency_matrix(Output$zAEst,
mode = "directed")), layout = igraph::layout_in_circle, main = "Estimated Graph")
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# Get the estimated causal strength matrix between response variables
Output$AEst

# Get the graph structure between response and instrument variables
Output$zBEst

# Get the estimated causal strength matrix between response and instrument variables
Output$BEst

# Plot posterior log-likelihood
plot(Output$LLPst, type = 'l', xlab = "Number of Iterations", ylab = "Log-likelihood")
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