Package 'MGLM'

Title: Multivariate Response Generalized Linear Models
Description: Provides functions that (1) fit multivariate discrete distributions, (2) generate random numbers from multivariate discrete distributions, and (3) run regression and penalized regression on the multivariate categorical response data. Implemented models include: multinomial logit model, Dirichlet multinomial model, generalized Dirichlet multinomial model, and negative multinomial model. Making the best of the minorization-maximization (MM) algorithm and Newton-Raphson method, we derive and implement stable and efficient algorithms to find the maximum likelihood estimates. On a multi-core machine, multi-threading is supported.
Authors: Yiwen Zhang <[email protected]> and Hua Zhou <[email protected]>
Maintainer: Juhyun Kim <[email protected]>
License: GPL (>= 2)
Version: 0.2.1
Built: 2025-01-03 07:16:58 UTC
Source: CRAN

Help Index


MGLM: A package for multivariate response generalized linear models

Description

The package provides functions that (1) fit multivariate discrete distributions, (2) generate random numbers from multivariate discrete distributions, and (3) run regression and penalized regression on the multivariate categorical response data. Implemented models include: multinomial logit model, Dirichlet multinomial model, generalized Dirichlet multinomial model, and negative multinomial model. Making the best of the minorization-maximization (MM) algorithm and Newton-Raphson method, we derive and implement stable and efficient algorithms to find the maximum likelihood estimates. On a multi-core machine, multi-threading is supported.

Details

Package: MGLM
Type: Package
Version: 0.0.9
Date: 2017-12-14
License: GPL (>= 2)
Depends: R (>= 3.0.0), methods, stats, parallel

Author(s)

Yiwen Zhang and Hua Zhou


Akaike's Information Criterion (AIC)

Description

Calculates the Akaike's information criterion (AIC) for a fitted model object.

Usage

## S4 method for signature 'MGLMfit'
AIC(object)

## S4 method for signature 'MGLMreg'
AIC(object)

## S4 method for signature 'MGLMsparsereg'
AIC(object)

## S4 method for signature 'MGLMtune'
AIC(object)

Arguments

object

MGLM object. "MGLMfit", "MGLMreg", "MGLMsparsereg", or "MGLMtune"

Value

Returns a numeric value with the corresponding AIC.

For the class "MGLMtune", the function returns AIC based on the optimal tuning parameter.

Examples

set.seed(124)
n <- 200
d <- 4
alpha <- rep(1, d-1)
beta <- rep(1, d-1)
m <- 50
Y <- rgdirmn(n, m, alpha, beta)
gdmFit <- MGLMfit(Y, dist="GDM")
AIC(gdmFit)

Bayesian information criterion (BIC)

Description

Calculates the Bayesian information criterion (BIC) for a fitted model object.

Usage

## S4 method for signature 'MGLMfit'
BIC(object)

## S4 method for signature 'MGLMreg'
BIC(object)

## S4 method for signature 'MGLMsparsereg'
BIC(object)

## S4 method for signature 'MGLMtune'
BIC(object)

Arguments

object

MGLM object. "MGLMfit", "MGLMreg", "MGLMsparsereg", or "MGLMtune"

Value

Returns a numeric value with the corresponding BIC.

For the class "MGLMtune", the function returns BIC based on the optimal tuning parameter.

Examples

set.seed(124)
n <- 200
d <- 4
alpha <- rep(1, d-1)
beta <- rep(1, d-1)
m <- 50
Y <- rgdirmn(n, m, alpha, beta)
gdmFit <- MGLMfit(Y, dist="GDM")
BIC(gdmFit)

Extract Model Coefficients

Description

coef extracts estimated model coefficients of class. coefficients is an alias for it.

Usage

## S4 method for signature 'MGLMfit'
coef(object)

## S4 method for signature 'MGLMreg'
coef(object)

## S4 method for signature 'MGLMsparsereg'
coef(object)

## S4 method for signature 'MGLMtune'
coef(object)

Arguments

object

an object for which the extraction of model coefficients is meaningful. One of the following classes "MGLMfit", "MGLMreg", "MGLMsparsereg", "MGLMtune"

Details

Method coef.

Value

Coefficients extracted from the model object object.

For the class "MGLMtune", the function returns model coefficients based on the optimal tuning parameter.

Examples

library("MGLM")
data("rnaseq")
data <- rnaseq[, 1:6]
mnreg <- MGLMreg(formula = cbind(X1, X2, X3, X4, X5, X6) ~ log(totalReads) + 
treatment + age + gender, data = rnaseq, dist = "MN")
coef(mnreg)

Details of the distributions

Description

An object that specifies the distribution to be fitted by the MGLMfit function, or the regression model to be fitted by the MGLMreg or MGLMsparsereg functions. Can be chosen from "MN", "DM", "NegMN", or "GDM".

Details

"MN": Multinomial distribution

A multinomial distribution models the counts of dd possible outcomes. The counts of categories are negatively correlated. The density of a dd category count vector yy with parameter p=(p1,,pd)p=(p_1, \ldots, p_d) is

P(yp)=Cy1,,ydmj=1dpjyj,P(y|p) = C_{y_1, \ldots, y_d}^{m} \prod_{j=1}^{d} p_j^{y_j},

where m=j=1dyjm = \sum_{j=1}^d y_j, 0<pj<10 < p_j < 1, and j=1dpj=1\sum_{j=1}^d p_j = 1. Here, CknC_k^n, often read as "nn choose kk", refers the number of kk combinations from a set of nn elements.

The MGLMreg function with dist="MN" calculates the MLE of regression coefficients βj\beta_j of the multinomial logit model, which has link function pj=exp(Xβj)/(1+j=1d1exp(Xβj))p_j = exp(X\beta_j)/(1 + \sum_{j=1}^{d-1} exp(X\beta_j)), j=1,,d1j=1,\ldots,d-1. The MGLMsparsereg function with dist="MN" fits regularized multinomial logit model.

"DM": Dirichlet multinomial distribution

When the multivariate count data exhibits over-dispersion, the traditional multinomial model is insufficient. Dirichlet multinomial distribution models the probabilities of the categories by a Dirichlet distribution. The density of a dd category count vector yy, with parameter α=(α1,,αd)\alpha = (\alpha_1, \ldots, \alpha_d), αj>0\alpha_j > 0, is

P(yα)=Cy1,,ydmj=1dΓ(αj+yj)Γ(αj)Γ(j=1dαj)Γ(j=1dαj+j=1dyj),P(y|\alpha) = C_{y_1, \ldots, y_d}^{m} \prod_{j=1}^{d} \frac{\Gamma(\alpha_j+y_j)}{\Gamma(\alpha_j)} \frac{\Gamma(\sum_{j'=1}^d \alpha_{j'})}{\Gamma(\sum_{j'=1}^d \alpha_{j'} + \sum_{j'=1}^d y_{j'})},

where m=j=1dyjm=\sum_{j=1}^d y_j. Here, CknC_k^n, often read as "nn choose kk", refers the number of kk combinations from a set of nn elements.

The MGLMfit function with dist="DM" calculates the maximum likelihood estimate (MLE) of (α1,,αd)(\alpha_1, \ldots, \alpha_d). The MGLMreg function with dist="DM" calculates the MLE of regression coefficients βj\beta_j of the Dirichlet multinomial regression model, which has link function αj=exp(Xβj)\alpha_j = exp(X\beta_j), j=1,,dj=1,\ldots,d. The MGLMsparsereg function with dist="DM" fits regularized Dirichlet multinomial regression model.

"GDM": Generalized Dirichlet multinomial distribution

The more flexible Generalized Dirichlet multinomial model can be used when the counts of categories have both positive and negative correlations. The probability mass of a count vector yy over mm trials with parameter (α,β)=(α1,,αd1,β1,,βd1)(\alpha, \beta)=(\alpha_1, \ldots, \alpha_{d-1}, \beta_1, \ldots, \beta_{d-1}), αj,βj>0\alpha_j, \beta_j > 0, is

P(yα,β)=Cy1,,ydmj=1d1Γ(αj+yj)Γ(αj)Γ(βj+zj+1)Γ(βj)Γ(αj+βj)Γ(αj+βj+zj),P(y|\alpha,\beta) =C_{y_1, \ldots, y_d}^{m} \prod_{j=1}^{d-1} \frac{\Gamma(\alpha_j+y_j)}{\Gamma(\alpha_j)} \frac{\Gamma(\beta_j+z_{j+1})}{\Gamma(\beta_j)} \frac{\Gamma(\alpha_j+\beta_j)}{\Gamma(\alpha_j+\beta_j+z_j)} ,

where zj=k=jdykz_j = \sum_{k=j}^d y_k and m=j=1dyjm=\sum_{j=1}^d y_j. Here, CknC_k^n, often read as "nn choose kk", #' refers the number of kk combinations from a set of nn elements.

The MGLMfit with dist="GDM" calculates the MLE of (α,β)=(α1,,αd1,β1,,βd1)(\alpha, \beta)=(\alpha_1, \ldots, \alpha_{d-1}, \beta_1, \ldots, \beta_{d-1}). The MGLMreg function with dist="GDM" calculates the MLE of regression coefficients αj,βj\alpha_j, \beta_j of the generalized Dirichlet multinomial regression model, which has link functions αj=exp(Xαj)\alpha_j=exp(X\alpha_j) and βj=exp(Xβj)\beta_j=exp(X\beta_j), j=1,,d1j=1, \ldots, d-1. The MGLMsparsereg function with dist="GDM" fits regularized generalized Dirichlet multinomial regression model.

"NegMN": Negative multinomial distribution

Both the multinomial distribution and Dirichlet multinomial distribution are good for negatively correlated counts. When the counts of categories are positively correlated, the negative multinomial distribution is preferred. The probability mass function of a dd category count vector yy with parameter (p1,,pd+1,β)(p_1, \ldots, p_{d+1}, \beta), j=1d+1pj=1\sum_{j=1}^{d+1} p_j=1, pj>0p_j > 0, β>0\beta > 0, is

P(yp,β)=Cmβ+m1Cy1,,ydmj=1dpjyjpd+1β=βmm!Cy1,,ydmj=1dpjyjpd+1β,P(y|p,\beta) = C_{m}^{\beta+m-1} C_{y_1, \ldots, y_d}^{m} \prod_{j=1}^d p_j^{y_j} p_{d+1}^\beta \\ = \frac{\beta_m}{m!} C_{y_1, \ldots, y_d}^{m} \prod_{j=1}^d p_j^{y_j} p_{d+1}^\beta,

where m=j=1dyjm = \sum_{j=1}^d y_j. Here, CknC_k^n, often read as "nn choose kk", refers the number of kk combinations from a set of nn elements.

The MGLMfit function with dist="NegMN" calculates the MLE of (p1,,pd+1,β)(p_1, \ldots, p_{d+1}, \beta). The MGLMreg function with dist="NegMN" and regBeta=FALSE calculates the MLE of regression coefficients (α1,,αd,β)(\alpha_1,\ldots,\alpha_d, \beta) of the negative multinomial regression model, which has link function pd+1=1/(1+j=1dexp(Xαj))p_{d+1} = 1/(1 + \sum_{j=1}^d exp(X\alpha_j)), pj=exp(Xαj)pd+1p_j = exp(X\alpha_j) p_{d+1}, j=1,,dj=1, \ldots, d. When dist="NegMN" and regBeta=TRUE, the overdispersion parameter is linked to covariates via β=exp(Xαd+1)\beta=exp(X\alpha_{d+1}), and the function MGLMreg outputs an estimated matrix of (α1,,αd+1)(\alpha_1, \ldots, \alpha_{d+1}). The MGLMsparsereg function with dist="NegMN" fits regularized negative multinomial regression model.

Author(s)

Yiwen Zhang and Hua Zhou

See Also

MGLMfit, MGLMreg, MGLMsparsereg, dmn, ddirmn, dgdirmn, dnegmn


Fit multivariate discrete distributions

Description

Fit the specified multivariate discrete distribution.

Usage

DMD.DM.fit(
  data,
  init,
  weight,
  epsilon = 1e-08,
  maxiters = 150,
  display = FALSE
)

DMD.GDM.fit(
  data,
  init,
  weight,
  epsilon = 1e-08,
  maxiters = 150,
  display = FALSE
)

DMD.NegMN.fit(
  data,
  init,
  weight,
  epsilon = 1e-08,
  maxiters = 150,
  display = FALSE
)

MGLMfit(
  data,
  dist,
  init,
  weight,
  epsilon = 1e-08,
  maxiters = 150,
  display = FALSE
)

Arguments

data

a data frame or matrix containing the count data. Rows of the matrix represent observations and columns are the categories. Rows and columns of all zeros are automatically removed.

init

an optional vector of initial value of the parameter estimates. Should have the same dimension as the estimated parameters. See dist for details.

weight

an optional vector of weights assigned to each row of the data. Should be Null or a numeric vector with the length equal to the number of rows of data. If weight=NULL, equal weights of all ones will be assigned.

epsilon

an optional numeric controlling the stopping criterion. The algorithm terminates when the relative change in the log-likelihoods of two successive iterates is less than epsilon. The default value is epsilon=1e-8.

maxiters

an optional number controlling the maximum number of iterations. The default value is maxiters=150.

display

an optional logical variable controlling the display of iterations. The default value is FALSE.

dist

a description of the distribution to fit. Choose from "MN", "DM", "GDM", "NegMN". See dist for details.

Details

See dist for details about model parameterization.

Value

Returns an object of S4 class "MGLMfit". An object of class "MGLMfit" is a list containing at least the following components:

  • estimate the vector of the distribution prameter estimates.

  • SE the vector of standard errors of the estimates.

  • vcov the variance-covariance matrix of the estimates.

  • logL the loglikelihood value.

  • iter the number of iterations used.

  • BIC Bayesian information criterion.

  • AIC Akaike information criterion.

  • distribution the distribution fitted.

  • LRT when dist="DM" or "GDM", it is the likelihood ratio test statistic for comparing the current model to the multinomial model. No LRT provided when dist="NegMN".

  • LRTpvalue the likelihood ratio test P value.

  • gradient the gradient at the estimated parameter values.

  • DoF the degrees of freedom of the model.

Author(s)

Yiwen Zhang and Hua Zhou

Examples

data(rnaseq)
Y <- as.matrix(rnaseq[, 1:6])
fit <- MGLMfit(data=Y, dist="GDM")

Extract degrees of freedom

Description

dof extracts the degrees of freedom of the estimated parameter from the object of class MGLMsparsereg.

Usage

## S4 method for signature 'MGLMsparsereg'
dof(object)

Arguments

object

an object of class MGLMsparsereg

Value

Returns degrees of freedom of object.

Examples

library("MGLM")
dist <- "DM"
n <- 100
p <- 10
d <- 5
set.seed(118)
m <- rbinom(n, 200, 0.8)
X <- matrix(rnorm(n * p), n, p)
alpha <- matrix(0, p, d)
alpha[c(1, 3, 5), ] <- 1
Alpha <- exp(X %*% alpha)
Y <- rdirmn(size = m, alpha = Alpha)
pen <- "group"
ngridpt <- 30
spmodelfit <- MGLMsparsereg(formula = Y ~ 0 + X, dist = dist, 
                            lambda = Inf, penalty = pen)
df <- dof(spmodelfit)

Khatri-Rao product of two matrices

Description

Return the Khatri-Rao product of two matrices, which is a column-wise Kronecker product.

Usage

kr(A, B, w, byrow = TRUE)

Arguments

A, B

matrices. The two matrices A and B should have the same number of columns. We also give the user an option to do row-wise Kronecker product, to avoid transpose. When doing row-wise Kronecker product, the number of rows of A and B should be the same.

w

the weights vector. The length of the vector should match with the dimension of the matrices. If performing column-wise Kronecker product, the length of w should be the same as the column number of A and B. If performing row-wise Kronecker prodoct, the length of w should be the same as the row number of A and B. The default is a vector of 1 if no value provided.

byrow

a logical variable controlling whether to perform row/column-wise Kronecker product. The default is byrow=TRUE.

Details

The column/row-wise Kronecker product.

Value

A matrix of the Khatri-Rao product.

Author(s)

Yiwen Zhang and Hua Zhou

Examples

X <- matrix(rnorm(30), 10, 3)
Y <- matrix(runif(50), 10, 5)
C <- kr(X, Y)

Extract log-likelihood

Description

logLik extracts log-likelihood for classes "MGLMfit", "MGLMreg", "MGLMsparsereg".

Usage

## S4 method for signature 'MGLMfit'
logLik(object)

## S4 method for signature 'MGLMreg'
logLik(object)

## S4 method for signature 'MGLMsparsereg'
logLik(object)

Arguments

object

an object from which a log-likelihood value can be extracted.

Value

Returns a log-likelihood value of object.

Examples

library("MGLM")
data("rnaseq")
data <- rnaseq[, 1:6]
dmFit <- MGLMfit(data, dist = "DM")
logLik(dmFit)

Extract maximum lambda

Description

maxlambda extracts the maximum tuning parameter that ensures the estimated regression coefficients are not all zero for the object of class MGLMsparsereg.

Usage

## S4 method for signature 'MGLMsparsereg'
maxlambda(object)

Arguments

object

an object of class MGLMsparsereg from which maximum lambda value can be extracted.

Value

Returns a maximum lambda value of object.

Examples

library("MGLM")
dist <- "DM"
n <- 100
p <- 10
d <- 5
set.seed(118)
m <- rbinom(n, 200, 0.8)
X <- matrix(rnorm(n * p), n, p)
alpha <- matrix(0, p, d)
alpha[c(1, 3, 5), ] <- 1
Alpha <- exp(X %*% alpha)
Y <- rdirmn(size = m, alpha = Alpha)
pen <- "group"
ngridpt <- 30
spmodelfit <- MGLMsparsereg(formula = Y ~ 0 + X, dist = dist, 
                            lambda = Inf, penalty = pen)
maxlambda <- maxlambda(spmodelfit)

Deprecated function(s) in the MGLM package

Description

These functions are provided for compatibility with older version of the yourPackageName package. They may eventually be completely removed.

Usage

ddirm(...)

rdirm(...)

dgdirm(...)

rgdirm(...)

dneg(Y, alpha, beta)

Arguments

...

parameters to be passed to the modern version of the function

Y, alpha, beta

for functions dnegmn, note the change in argument order. See Details.

Details

ddirm now a synonym for ddirmn
dgdirm now a synonym for dgdirmn
dneg now a synonym for dnegmn
rdirm now a synonym for rdirmn
rgdirm now a synonym for rgdirmn

The function dneg has been deprecated. Use dnegmn instead.

Note the change in argument order: dneg(Y, prob, beta) and dnegmn(Y, alpha, beta) from MGLM_0.0.8 have been deprecated; use dnegmn(Y, beta, prob = alpha/(rowSums(alpha)+1), alpha=NULL) instead.


Class "MGLMfit"

Description

A class containing the model fitting results from the MGLMfit.

Slots

estimate

object of class "vector", containing the parameter estimates.

SE

object of class "vector", containing the standard errors of the estimates.

vcov

object of class "matrix", the variance covariance matrix of the parameter estimates.

logL

object of class "numeric", the fitted log likelihood.

BIC

object of class "numeric", Bayesian information criterion.

AIC

object of class "numeric", Akaike information criterion.

LRTpvalue

object of class "numeric", likelihood ratio test p value.

gradient

object of class "numeric" or "matrix", containing the gradient.

iter

object of class "numeric", number of iteration used.

distribution

object of class "character", the distribution fitted.

fitted

object of class "vector", the fitted mean of each category.

LRT

object of class "numeric", the likelihood ratio test statistic.

Author(s)

Yiwen Zhang and Hua Zhou

Examples

showClass("MGLMfit")

Fit multivariate response GLM regression

Description

MGLMreg fits multivariate response generalized linear models, specified by a symbolic description of the linear predictor and a description of the error distribution.

Usage

MGLMreg(
  formula,
  data,
  dist,
  init = NULL,
  weight = NULL,
  epsilon = 1e-08,
  maxiters = 150,
  display = FALSE,
  LRT = FALSE,
  parallel = FALSE,
  cores = NULL,
  cl = NULL,
  sys = NULL,
  regBeta = FALSE
)

MGLMreg.fit(
  Y,
  init = NULL,
  X,
  dist,
  weight = NULL,
  epsilon = 1e-08,
  maxiters = 150,
  display = FALSE,
  LRT = FALSE,
  parallel = FALSE,
  cores = NULL,
  cl = NULL,
  sys = NULL,
  regBeta = FALSE
)

Arguments

formula

an object of class formula (or one that can be coerced to that class): a symbolic description of the model to be fitted. The response has to be on the left hand side of ~.

data

an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data when using function MGLMreg, the variables are taken from environment(formula), typically the environment from which MGLMreg is called.

dist

a description of the error distribution to fit. See dist for details.

init

an optional matrix of initial value of the parameter estimates. Should have the compatible dimension with data. See dist for details of the dimensions in each distribution.

weight

an optional vector of weights assigned to each row of the data. Should be NULL or a numeric vector. Could be a variable from data, or a variable from environment(formula) with the length equal to the number of rows of the data. If weight=NULL, equal weights of ones will be assigned. Default is NULL.

epsilon

an optional numeric controlling the stopping criterion. The algorithm terminates when the relative change in the loglikelihoods of two successive iterates is less than epsilon. The default value is epsilon=1e-8.

maxiters

an optional numeric controlling the maximum number of iterations. The default value is maxiters=150.

display

an optional logical variable controlling the display of iterations. The default value is display=FALSE.

LRT

an optional logical variable controlling whether to perform likelihood ratio test on each predictor. The default value is LRT=FALSE, in which case only the Wald test is performed.

parallel

an optional logical variable controlling whether to perform parallel computing. On a multi-core Windows machine, a cluster is created based on socket; on a multi-core Linux/Mac machine, a cluster is created based on forking. The default value is parallel=FALSE.

cores

an optional value specifying the number of cores to use. Default value is half of the logical cores.

cl

a cluster object, created by the package parallel or by package snow. If parallel=TRUE, use the registered default cluster; if parallel=FALSE, any given value to cl will be ignored.

sys

the operating system. Will be used when choosing parallel type.

regBeta

an optional logical variable. When dist="NegMN", the user can decide whether to run regression on the overdispersion parameter β\beta. The default is regBeta=FALSE.

Y, X

for MGLMreg.fit, X is a design matrix of dimension n*(p+1) and Y is the response matrix of dimension n*d.

Details

The formula should be in the form responses ~ covariates where the responses are the multivariate count matrix or a few columns from a data frame which is specified by data. The covariates are either matrices or from the data frame. The covariates can be numeric or character or factor. See dist for details about distributions.

Instead of using the formula, the user can directly input the design matrix and the response vector using MGLMreg.fit function.

Value

Returns an object of class "MGLMreg". An object of class "MGLMreg" is a list containing the following components:

  • coefficients the estimated regression coefficients.

  • SE the standard errors of the estimates.

  • Hessian the Hessian at the estimated parameter values.

  • gradient the gradient at the estimated parameter values.

  • wald.value the Wald statistics.

  • wald.p the p values of Wald test.

  • test test statistic and the corresponding p-value. If LRT=FALSE, only returns test resultsfrom Wald test; if LRT=TRUE, returns the test results from both Wald test and likelihood ratio test.

  • logL the final loglikelihood.

  • BIC Bayesian information criterion.

  • AIC Akaike information criterion.

  • fitted the fitted values from the regression model

  • iter the number of iterations used.

  • call the matched call.

  • distribution the distribution fitted.

  • data the data used to fit the model.

  • Dof degrees of freedom.

Author(s)

Yiwen Zhang and Hua Zhou

See Also

See also MGLMfit for distribution fitting.

Examples

##----------------------------------------##
## Generate data
n <- 2000
p <- 5
d <- 4
m <- rep(20, n)
set.seed(1234)
X <- 0.1* matrix(rnorm(n*p),n, p)
alpha <- matrix(1, p, d-1)
beta <- matrix(1, p, d-1)
Alpha <- exp(X %*% alpha)
Beta <- exp(X %*% beta)
gdm.Y <- rgdirmn(n, m, Alpha, Beta)

##----------------------------------------##
## Regression
gdm.reg <- MGLMreg(gdm.Y~X, dist="GDM", LRT=FALSE)

Class "MGLMreg"

Description

Objects can be created by calls of the form new("MGLMreg", ...).

Slots

call

object of class "call".

data

object of class "list" , consists of both the predictor matrix and the response matrix.

coefficients

object of class "list" or "matrix", the estimated parameters.

SE

object of class "list" or "matrix", the standard errors of the parameters.

test

object of class "matrix", the test statistics and p-values.

Hessian

object of class "matrix", the Hessian matrix.

logL

object of class "numeric", the loglikelihood.

BIC

object of class "numeric",

AIC

object of class "numeric", Akaike information criterion.

iter

object of class "numeric", the number of iteration used.

distribution

object of class "character", the distribution fitted.

fitted

object of class "vector", the fitted value.

gradient

object of class "numeric" or "matrix", the gradient at the estimated parameter values.

wald.value

object of class "numeric" or "logical", the Wald statistics.

wald.p

object of class "numeric" or "logical", the p values of Wald test.

Dof

object of class "numeric", the degrees of freedom.

Author(s)

Yiwen Zhang and Hua Zhou

Examples

showClass("MGLMreg")

Fit multivariate GLM sparse regression

Description

Fit sparse regression in multivariate generalized linear models.

Usage

MGLMsparsereg(
  formula,
  data,
  dist,
  lambda,
  penalty,
  weight,
  init,
  penidx,
  maxiters = 150,
  ridgedelta,
  epsilon = 1e-05,
  regBeta = FALSE,
  overdisp
)

MGLMsparsereg.fit(
  Y,
  X,
  dist,
  lambda,
  penalty,
  weight,
  init,
  penidx,
  maxiters = 150,
  ridgedelta,
  epsilon = 1e-05,
  regBeta = FALSE,
  overdisp
)

Arguments

formula

an object of class formula (or one that can be coerced to that class): a symbolic description of the model to be fitted. The response has to be on the left hand side of ~.

data

an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data when using function MGLMsparsereg, the variables are taken from environment(formula), typically the environment from which MGLMsparsereg is called.

dist

a description of the error distribution to fit. See dist for details.

lambda

penalty parameter.

penalty

penalty type for the regularization term. Can be chosen from "sweep", "group", or "nuclear". See Details for the description of each penalty type.

weight

an optional vector of weights assigned to each row of the data. Should be NULL or a numeric vector. Could be a variable from data, or a variable from environment(formula) with the length equal to the number of rows of the data. If weight=NULL, equal weights of ones will be assigned.

init

an optional matrix of initial value of the parameter estimates. Should have the compatible dimension with the data. See dist for details of the dimensions in each distribution.

penidx

a logical vector indicating the variables to be penalized. The default value is rep(TRUE, p), which means all predictors are subject to regularization. If X contains intercept, use penidx=c(FALSE,rep(TRUE,p-1)).

maxiters

an optional numeric controlling the maximum number of iterations. The default value is maxiters=150.

ridgedelta

an optional numeric controlling the behavior of the Nesterov's accelerated proximal gradient method. The default value is 1pd\frac{1}{pd}.

epsilon

an optional numeric controlling the stopping criterion. The algorithm terminates when the relative change in the objective values of two successive iterates is less then epsilon. The default value is epsilon=1e-5.

regBeta

an optional logical variable used when running negative multinomial regression (dist="NegMN"). regBeta controls whether to run regression on the over-dispersion parameter. The default is regBeta=FALSE.

overdisp

an optional numerical variable used only when fitting sparse negative multinomial model dist="NegMN" and regBeta=FALSE. overdisp gives the over dispersion value for all the observations. The default value is estimated using negative-multinomial regression. When dist="MN", "DM", "GDM" or regBeta=TRUE, the value of overdisp is ignored.

Y

a matrix containing the multivariate categorical response data. Rows of the matrix represent observations, while columns are the different categories. Rows and columns of all zeros are automatically removed when dist="MN", "DM", or "GDM".

X

design matrix (including intercept). Number of rows of the matrix should match that of Y.

Details

In general, we consider regularization problem

minBh(B)=l(B)+J(B),\min_B h(B) = -l(B)+ J(B),

where l(B)l(B) is the loglikelihood function and J(B)J(B) is the regularization function.

Sparsity in the individual elements of the parameter matrix BB is achieved by the lasso penalty (dist="sweep")

J(B)=λkpenidxj=1dBkjJ(B) = \lambda \sum_{k\in penidx} \sum_{j=1}^d \|B_{kj}\|

Sparsity in the rows of the regression parameter matrix BB is achieved by the group penalty (dist="group")

J(B)=λkpenidxBk2,J(B) = \lambda \sum_{k \in penidx} \|B_{k \cdot}\|_2,

where v2\|v\|_2 is the l2l_2 norm of a vector vv. In other words, Bk2\|B_{k\cdot}\|_2 is the l2l_2 norm of the kk-th row of the parameter matrix BB.

Sparsity in the rank of the parameter matrix BB is achieved by the nuclear norm penalty (dist="nuclear")

J(B)=λB=λi=1min(p,d)σi(B),J(B) = \lambda \|B\|_*= \lambda \sum_{i=1}^{min(p, d)} \sigma_i(B),

where σi(B)\sigma_i(B) are the singular values of the parameter matrix BB. The nuclear norm B\|B\|_* is a convex relaxation of rank(B)=σ(B)0rank(B)=\|\sigma(B)\|_0.

See dist for details about distributions.

Value

Returns an object of class "MGLMsparsereg". An object of class "MGLMsparsereg" is a list containing at least the following components:

  • coefficients the estimated matrix of regression coefficients.

  • logL the final loglikelihood value.

  • AIC Akaike information criterion.

  • BIC Bayesian information criterion.

  • Dof degrees of freedom of the estimated parameter.

  • iter number of iterations used.

  • maxlambda the maxmum tuning parameter such that the estimated coefficients are not all zero. This value is returned only when the tuning parameter lambda given to the function is large enough such that all the parameter estimates are zero; otherwise, maxlambda is not computed.

  • call a matched call.

  • data the data used to fit the model: a list of the predictor matrix and the response matrix.

  • penalty the penalty chosen when running the penalized regression.

Author(s)

Yiwen Zhang and Hua Zhou

Examples

## Generate Dirichlet Multinomial data
dist <- "DM"
n <- 100
p <- 15
d <- 5
m <- runif(n, min=0, max=25) + 25
set.seed(134)
X <- matrix(rnorm(n*p),n, p)
alpha <- matrix(0, p, d)
alpha[c(1,3, 5), ] <- 1
Alpha <- exp(X%*%alpha)
Y <- rdirmn(size=m, alpha=Alpha)

## Tuning
ngridpt <- 10
p <- ncol(X)
d <- ncol(Y)
pen <- 'nuclear'
spfit <- MGLMsparsereg(formula=Y~0+X, dist=dist, lambda=Inf, penalty=pen)

Class "MGLMsparsereg"

Description

A class containing the results from the MGLMsparsereg.

Slots

call

object of class "call".

data

object of class "list" , consists of both the predictor matrix and the response matrix.

coefficients

object of class "matrix", the estimated parameters.

logL

object of class "numeric", the loglikelihood.

BIC

object of class "numeric",

AIC

object of class "numeric", Akaike information criterion.

Dof

object of class "numeric", the degrees of freedom.

iter

object of class "numeric", the number of iteration used.

maxlambda

object of class "numeric", the maximum tuning parameter that ensures the estimated regression coefficients are not all zero.

lambda

object of class "numeric", the tuning parameter used.

distribution

object of class "character", the distribution fitted.

penalty

Object of class "character", the chosen penalty when running penalized regression.

Author(s)

Yiwen Zhang and Hua Zhou

Examples

showClass("MGLMsparsereg")

Choose the tuning parameter value in sparse regression

Description

Finds the tuning parameter value that yields the smallest BIC.

Usage

MGLMtune(
  formula,
  data,
  dist,
  penalty,
  lambdas,
  ngridpt,
  warm.start = TRUE,
  keep.path = FALSE,
  display = FALSE,
  init,
  weight,
  penidx,
  ridgedelta,
  maxiters = 150,
  epsilon = 1e-05,
  regBeta = FALSE,
  overdisp
)

Arguments

formula

an object of class formula (or one that can be coerced to that class): a symbolic description of the model to be fitted. The response has to be on the left hand side of ~.

data

an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data when using function MGLMtune, the variables are taken from environment(formula), typically the environment from which MGLMtune is called.

dist

a description of the distribution to fit. See dist for the details.

penalty

penalty type for the regularization term. Can be chosen from "sweep", "group", or "nuclear". See MGLMsparsereg for the description of each penalty type.

lambdas

an optional vector of the penalty values to tune. If missing, the vector of penalty values will be set inside the function. ngridpt must be provided if lambdas is missing.

ngridpt

an optional numeric variable specifying the number of grid points to tune. If lambdas is given, ngridpt will be ignored. Otherwise, the maximum λ\lambda is determined from the data. The smallest λ\lambdais set to 1/n1/n, where nn is the sample size.

warm.start

an optional logical variable to specify whether to give warm start at each tuning grid point. If warm.start=TRUE, the fitted sparse regression coefficients will be used as the initial value when fitting the sparseregression with the next tuning grid.

keep.path

an optional logical variable controling whether to output the whole solution path. The default is keep.path=FALSE. If keep.path=TRUE, the sparse regression result at each grid point will be kept, and saved in the output object select.list.

display

an optional logical variable to specify whether to show each tuning step.

init

an optional matrix of initial value of the parameter estimates. Should have the compatible dimension with the data. See dist for details of dimensions in each distribution.

weight

an optional vector of weights assigned to each row of the data. Should be NULL or a numeric vector. Could be a variable from the data, or a variable from environment(formula) with the length equal to the number of rows of the data. If weight=NULL, equal weights of ones will be assigned.

penidx

a logical vector indicating the variables to be penalized. The default value is rep(TRUE, p), which means all predictors are subject to regularization. If X contains intercept, use penidx=c(FALSE,rep(TRUE,p-1)).

ridgedelta

an optional numeric controlling the behavior of the Nesterov's accelerated proximal gradient method. The default value is 1pd\frac{1}{pd}.

maxiters

an optional numeric controlling the maximum number of iterations. The default value is maxiters=150.

epsilon

an optional numeric controlling the stopping criterion. The algorithm terminates when the relative change in the objective values of two successive iterates is less then epsilon. The default value is epsilon=1e-5.

regBeta

an optional logical variable used when running negative multinomial regression (dist="NegMN"). regBeta controls whether to run regression on the over-dispersion parameter. The default is regBeta=FALSE.

overdisp

an optional numerical variable used only when fitting sparse negative multinomial model and regBeta=FALSE. overdisp gives the over-dispersion value for all the observations. The default value is estimated using negative-multinomial regression. When dist="MN", "DM", "GDM" or regBeta=TRUE, the value of overdisp is ignored.

Value

  • select the final sparse regression result, using the optimal tuning parameter.

  • path a data frame with degrees of freedom and BICs at each lambda.

Author(s)

Yiwen Zhang and Hua Zhou

See Also

MGLMsparsereg

Examples

set.seed(118)
n <- 50
p <- 10
d <- 5
m <- rbinom(n, 100, 0.8)
X <- matrix(rnorm(n * p), n, p)
alpha <- matrix(0, p, d)
alpha[c(1, 3, 5), ] <- 1
Alpha <- exp(X %*% alpha)
Y <- rdirmn(size=m, alpha=Alpha)
sweep <- MGLMtune(Y ~ 0 + X, dist="DM", penalty="sweep", ngridpt=10)
show(sweep)

Class "MGLMtune"

Description

A class containing the results from the MGLMtune.

Slots

call

object of class "call".

select

object of class "MGLMsparsereg", regularized regression results given by the optimal tuning parameter.

path

object of class "data.frame", the BIC, AIC, log-likelihood and degrees of freedom given each tuning parameter.

select.list

object of class "list", the regularized regression results at each tuning grid point.

Author(s)

Yiwen Zhang and Hua Zhou

Examples

showClass("MGLMtune")

Extract path

Description

path extracts from object of the class MGLMtune the path of BIC, AIC, log-likelihood and degrees of freedom given each tuning parameter.

Usage

## S4 method for signature 'MGLMtune'
path(object)

Arguments

object

an object of class MGLMtune from which path can be extracted.

Value

Returns a path of object.

Examples

library("MGLM")
dist <- "DM"
n <- 100
p <- 10
d <- 5
set.seed(118)
m <- rbinom(n, 200, 0.8)
X <- matrix(rnorm(n * p), n, p)
alpha <- matrix(0, p, d)
alpha[c(1, 3, 5), ] <- 1
Alpha <- exp(X %*% alpha)
Y <- rdirmn(size = m, alpha = Alpha)
select <- MGLMtune(Y ~ 0 + X, dist = "DM", penalty = "nuclear", 
ngridpt = 10, display = FALSE)
select_path <- path(select)

Predict method for MGLM Fits

Description

Predict using the fitted model from MGLMreg when given a new set of covariates.

Usage

## S4 method for signature 'MGLMreg'
predict(object, newdata)

Arguments

object

model object.

newdata

new covariates data matrix.

Value

Outputs the probabilities of each category.

This helps answer questions such as whether certain features increase the probability of observing category j.

Examples

n <- 200
p <- 5
d <- 4
X <- matrix(runif(p * n), n, p)
alpha <- matrix(c(0.6, 0.8, 1), p, d - 1, byrow=TRUE)
alpha[c(1, 2),] <- 0
Alpha <- exp(X %*% alpha) 
beta <- matrix(c(1.2, 1, 0.6), p, d - 1, byrow=TRUE)
beta[c(1, 2),] <- 0
Beta <- exp(X %*% beta)
m <- runif(n, min=0, max=25) + 25
Y <- rgdirmn(n, m, Alpha, Beta)
gdmReg <- MGLMreg(Y~0+X, dist="GDM")
newX <- matrix(runif(1*p), 1, p)
pred <- predict(gdmReg, newX)

The Dirichlet Multinomial Distribution

Description

ddirmn computes the log of the Dirichlet multinomial probability mass function. rdirmn generates Dirichlet multinomially distributed random number vectors.

Usage

rdirmn(n, size, alpha)

ddirmn(Y, alpha)

Arguments

n

number of random vectors to generate. When size is a scalar and alpha is a vector, must specify n. When size is a vector and alpha is a matrix, n is optional. The default value of n is the length of size. If given, n should be equal to the length of size.

size

a number or vector specifying the total number of objects that are put into d categories in the Dirichlet multinomial distribution.

alpha

the parameter of the Dirichlet multinomial distribution. Can be a numerical positive vector or matrix. For ddirmn, alpha has to match the size of Y. If alpha is a vector, it will be replicated nn times to match the dimension of Y.

For rdirmn, if alpha is a vector, size must be a scalar, and all the random vectors will be drawn from the same alpha and size. If alpha is a matrix, the number of rows should match the length of size, and each random vector will be drawn from the corresponding row of alpha and the corresponding element in the size vector. See Details below.

Y

The multivariate count matrix with dimensions n×dn \times d, where n=1,2,n = 1,2, \ldots is the number of observations and d=2,3,d=2,3, \ldots is the number of categories.

Details

When the multivariate count data exhibits over-dispersion, the traditional multinomial model is insufficient. Dirichlet multinomial distribution models the probabilities of the categories by a Dirichlet distribution. Given the parameter vector α=(α1,,αd),αj>0\alpha = (\alpha_1, \ldots, \alpha_d), \alpha_j>0, the probability mass of dd-category count vector Y=(y1,,yd)Y=(y_1, \ldots, y_d), d2d \ge 2 under Dirichlet multinomial distribution is

P(yα)=Cy1,,ydmj=1dΓ(αj+yj)Γ(αj)Γ(j=1dαj)Γ(j=1dαj+j=1dyj),P(y|\alpha) = C_{y_1, \ldots, y_d}^{m} \prod_{j=1}^{d} \frac{\Gamma(\alpha_j+y_j)}{\Gamma(\alpha_j)} \frac{\Gamma(\sum_{j'=1}^d \alpha_{j'})}{\Gamma(\sum_{j'=1}^d \alpha_{j'} + \sum_{j'=1}^d y_{j'})},

where m=j=1dyjm=\sum_{j=1}^d y_j. Here, CknC_k^n, often read as "nn choose kk", refers the number of kk combinations from a set of nn elements.

The parameter α\alpha can be a vector of length dd, such as the results from the distribution fitting. α\alpha can also be a matrix with nn rows, such as the inverse link calculated from the regression parameter estimate exp(Xβ)exp(X\beta).

Value

For each count vector and each corresponding parameter vector α\alpha, the function ddirmn returns the value log(P(yα))\log(P(y|\alpha)). When Y is a matrix of nn rows, ddirmn returns a vector of length nn.

rdirmn returns a n×dn\times d matrix of the generated random observations.

Examples

m <- 20
alpha <- c(0.1, 0.2)
dm.Y <- rdirmn(n=10, m, alpha)	
pdfln <- ddirmn(dm.Y, alpha)

The Generalized Dirichlet Multinomial Distribution

Description

rgdirmn generates random observations from the generalized Dirichlet multinomial distribution. dgdirmn computes the log of the generalized Dirichlet multinomial probability mass function.

Usage

rgdirmn(n, size, alpha, beta)

dgdirmn(Y, alpha, beta)

Arguments

n

the number of random vectors to generate. When size is a scalar and alpha is a vector, must specify n. When size is a vector and alpha is a matrix, n is optional. The default value of n is the length of size. If given, n should be equal to the length of size.

size

a number or vector specifying the total number of objects that are put into d categories in the generalized Dirichlet multinomial distribution.

alpha

the parameter of the generalized Dirichlet multinomial distribution. alpha is a numerical positive vector or matrix.

For gdirmn, alpha should match the size of Y. If alpha is a vector, it will be replicated nn times to match the dimension of Y.

For rdirmn, if alpha is a vector, size must be a scalar. All the random vectors will be drawn from the same alpha and size. If alpha is a matrix, the number of rows should match the length of size. Each random vector will be drawn from the corresponding row of alpha and the corresponding element of size.

beta

the parameter of the generalized Dirichlet multinomial distribution. beta should have the same dimension as alpha.

For rdirm, if beta is a vector, size must be a scalar. All the random samples will be drawn from the same beta and size. If beta is a matrix, the number of rows should match the length of size. Each random vector will be drawn from the corresponding row of beta and the corresponding element of size.

Y

the multivariate count matrix with dimensions n×dn \times d, where n=1,2,n = 1,2, \ldots is the number of observations and d=3,4,d=3,4,\ldots is the number of categories.

Details

Y=(y1,,yd)Y=(y_1, \ldots, y_d) are the dd category count vectors. Given the parameter vector α=(α1,,αd1),αj>0\alpha = (\alpha_1, \ldots, \alpha_{d-1}), \alpha_j>0, and β=(β1,,βd1),βj>0\beta=(\beta_1, \ldots, \beta_{d-1}), \beta_j>0, the generalized Dirichlet multinomial probability mass function is

P(yα,β)=Cy1,,ydmj=1d1Γ(αj+yj)Γ(αj)Γ(βj+zj+1)Γ(βj)Γ(αj+βj)Γ(αj+βj+zj),P(y|\alpha,\beta) =C_{y_1, \ldots, y_d}^{m} \prod_{j=1}^{d-1} \frac{\Gamma(\alpha_j+y_j)}{\Gamma(\alpha_j)} \frac{\Gamma(\beta_j+z_{j+1})}{\Gamma(\beta_j)} \frac{\Gamma(\alpha_j+\beta_j)}{\Gamma(\alpha_j+\beta_j+z_j)} ,

where zj=k=jdykz_j = \sum_{k=j}^d y_k and m=j=1dyjm = \sum_{j=1}^d y_j. Here, CknC_k^n, often read as "nn choose kk", refers the number of kk combinations from a set of nn elements.

The α\alpha and β\beta parameters can be vectors, like the results from the distribution fitting function, or they can be matrices with nn rows, like the estimate from the regression function multiplied by the covariate matrix exp(Xα)exp(X\alpha) and exp(Xβ)exp(X\beta)

Value

dgdirmn returns the value of log(P(yα,β))\log(P(y|\alpha, \beta)). When Y is a matrix of nn rows, the function dgdirmn returns a vector of length nn.

rgdirmn returns a n×dn\times d matrix of the generated random observations.

Examples

# example 1
m <- 20
alpha <- c(0.2, 0.5)
beta <- c(0.7, 0.4)
Y <- rgdirmn(10, m, alpha, beta)
dgdirmn(Y, alpha, beta)

# example 2 
set.seed(100)
alpha <- matrix(abs(rnorm(40)), 10, 4)
beta <- matrix(abs(rnorm(40)), 10, 4)
size <- rbinom(10, 10, 0.5)
GDM.rdm <- rgdirmn(size=size, alpha=alpha, beta=beta)
GDM.rdm1 <- rgdirmn(n=20, size=10, alpha=abs(rnorm(4)), beta=abs(rnorm(4)))

The Multinomial Distribution

Description

rmn generates random number vectors given alpha. The function rmn(n, size, alpha) calls rmultinom(n, size, prob) after converting alpha to probability. dmn computes the log of multinomial probability mass function.

Usage

rmn(n, size, alpha)

dmn(Y, prob)

Arguments

n

number of random vectors to generate.

size

a scalar or a vector.

alpha

a vector or a matrix.

Y

the multivariate count matrix with dimension n×dn \times d, where n=1,2,n = 1,2,\ldots is number of observations and d=2,d=2,\ldots is number of categories.

prob

the probability parameter of the multinomial distribution. prob can be either a vector of length dd or a matrix with matching size of Y. If prob is a vector, it will be replicated nn times to match the dimension of Y. If the sum(s) of prob is not 1, it will be automatically scaled to have sum 1.

Details

A multinomial distribution models the counts of dd possible outcomes. The counts of categories are negatively correlated. y=(y1,,yd)y=(y_1, \ldots, y_d) is a dd category count vector. Given the parameter vector p=(p1,,pd)p = (p_1, \ldots, p_d), 0<pj<10 < p_j < 1, j=1dpj=1\sum_{j=1}^d p_j = 1, the function calculates the log of the multinomial pmf

P(yp)=Cy1,,ydmj=1dpjyj,P(y|p) = C_{y_1, \ldots, y_d}^{m} \prod_{j=1}^{d} p_j^{y_j},

where m=j=1dyjm=\sum_{j=1}^d y_j. Here, CknC_k^n, often read as "nn choose kk", refers the number of kk combinations from a set of nn elements.

The parameter pp can be one vector, like the result from the distribution fitting function; or, pp can be a matrix with nn rows, like the estimate from the regression function,

pj=exp(Xβj)1+sumj=1d1exp(Xβj),p_j = \frac{exp(X \beta_j)}{1 + sum_{j'=1}^{d-1} exp(X\beta_{j'})},

where j=1,,d1j=1,\ldots,d-1 and pd=11+j=1d1exp(Xβj)p_d = \frac{1}{1 + \sum_{j'=1}^{d-1} exp(X\beta_{j'})}. The dd-th column of the coefficient matrix β\beta is set to 00 to avoid the identifiability issue.

Value

The function dmn returns the value of log(P(yp))\log(P(y|p)). When Y is a matrix of nn rows, the function returns a vector of length nn.

The function rmn returns multinomially distributed random number vectors

Author(s)

Yiwen Zhang and Hua Zhou

Examples

m <- 20
prob <- c(0.1, 0.2)
dm.Y <- rdirmn(n=10, m, prob)	
pdfln <- dmn(dm.Y, prob)

RNA-seq count data

Description

RNA-seq data simulated following the standard procedures (provided by Dr. Wei Sun, [email protected]).

Usage

rnaseq

Format

A data frame containing 10 columns and 100 rows. The first 6 columns are the expression counts of 6 exons of a gene; the last four columns are the covariates: age, gender, treatment, and total number of reads.

Source

Dr. Sun Wei, [email protected]


The Negative Multinomial Distribution

Description

dnegmn calculates the log of the negative multinomial probability mass function. rnegmn generates random observations from the negative multinomial distribution.

Usage

rnegmn(n, beta, prob)

dnegmn(Y, beta, prob = alpha/(rowSums(alpha) + 1), alpha = NULL)

Arguments

n

number of random vectors to generate. When beta is a scalar and prob is a vector, must specify n. When beta is a vector and prob is a matrix, n is optional. The default value of n is the length of beta. If given, n should be equal to the length of beta.

beta

the over dispersion parameter of the negative multinomial distribution. beta can be either a scalar or a vector of length nn.

prob

the probability parameter of the negative multinomial distribution. Should be a numerical non-negative vector or matrix.

For dnegmn, prob can be either a vector of length dd (d2)(d \ge 2) or a matrix with matching size of Y. If prob is a vector, it will be replicated nn times to match the dimension of Y. The sum of each row of prob should be smaller than 1.

For rnegmn, If prob is a vector, beta must be a scalar. All the n random vectors will be drawn from the same prob and beta. If prob is a matrix, the number of rows should match the length of beta. Each random vector will be drawn from the corresponding row of prob and the corresponding element of beta. Each row of prob should have sum less than 1.

Y

the multivariate response matrix of dimension n×dn \times d, where n=1,2,n = 1, 2, \ldots is number of observations and d=2,3,d=2,3,\ldots is number of categories.

alpha

an alternative way to specify the probability. Default value is NULL. See details.

Details

y=(y1,,yd)y=(y_1, \ldots, y_d) is a dd category vector. Given the parameter vector p=(p1,,pd)p= (p_1, \ldots, p_d), pd+1=1/(1+j=1dpj)p_{d+1} = 1/(1 + \sum_{j'=1}^d p_{j'}), and β\beta, β>0\beta>0, the negative multinomial probability mass function is

P(yp,β)=Cmβ+m1Cy1,,ydmj=1dpjyjpd+1β=βmm!(my1,,yd)j=1dpjyjpd+1β,P(y|p,\beta) = C_{m}^{\beta+m-1} C_{y_1, \ldots, y_d}^{m} \prod_{j=1}^d p_j^{y_j} p_{d+1}^\beta = \frac{\beta_m}{m!} {m \choose y_1, \ldots, y_d} \prod_{j=1}^d p_j^{y_j} p_{d+1}^\beta,

where m=j=1dyjm = \sum_{j=1}^d y_j. Here, CknC_k^n, often read as "nn choose kk", refers the number of kk combinations from a set of nn elements.

alpha is an alternative way to specify the probability:

pj=αj(1+k=1dαk)p_j = \frac{\alpha_j}{(1+\sum_{k=1}^{d} \alpha_k)}

for j=1,,dj=1,\ldots,d and pd+1=1(1+k=1dαk)p_{d+1} = \frac{1}{(1+\sum_{k=1}^{d} \alpha_k)}.

The parameter prob can be a vector and beta is a scalar; prob can also be a matrix with nn rows, and beta is a vector of length nn like the estimate from the regression function multiplied by the covariate matrix.

Value

dnegmn returns the value of log(P(yp,β))\log(P(y|p, \beta) ). When Y is a matrix of nn rows, the function returns a vector of length nn.

rnegmn returns a n×dn\times d matrix of the generated random observations.

Author(s)

Yiwen Zhang and Hua Zhou

Examples

###-----------------------###
set.seed(128)
n <- 100
d <- 4
p <- 5
a <- -matrix(1,p,d)
X <- matrix(runif(n*p), n, p )
alpha <- exp(X%*%a)
prob <- alpha/(rowSums(alpha)+1)
beta <- exp(X%*%matrix(1,p)) 
Y <- rnegmn(n, beta, prob)

###-----------------------###
m <- 20
n <- 10
p <- 5
d <- 6
a <- -matrix(1,p,d)
X <- matrix(runif(n*p), n, p )
alpha <- exp(X%*%a)
prob <- alpha/(rowSums(alpha)+1)
b <- exp(X%*%rep(0.3,p)) 
Y <- rnegmn(prob=prob, beta=rep(10, n))
dnegmn(Y, b, prob)

Show an object

Description

Display the object by printing its class.

Usage

## S4 method for signature 'MGLMfit'
show(object)

## S4 method for signature 'MGLMreg'
show(object)

## S4 method for signature 'MGLMsparsereg'
show(object)

## S4 method for signature 'MGLMtune'
show(object)

Arguments

object

an object to be printed. Should be of class "MGLMfit", "MGLMreg", "MGLMsparsereg" or "MGLMtune".

Examples

library("MGLM")
data("rnaseq")
data <- rnaseq[, 1:6]
gdmFit <- MGLMfit(data, dist = "GDM")
show(gdmFit)