NEWS
MCMCprecision 0.4.0 (2019-12-05)
- Bug fixes for issues concerning class(matrix(...)) in R 4.0.0
MCMCprecision 0.3.9 (2018-08-10)
- Updated citation and vignette: Paper in Statistics & Computing (doi:10.1007/s11222-018-9828-0)
MCMCprecision 0.3.8 (2018-04-08)
- Code refactoring
- Renamed functions: table.mc -> transitions; sim.mc -> rmarkov; dirichlet.mle -> fit_dirichlet ; stationary.mle -> stationary_mle ; best.k -> best_models
- Added unit tests
- Fixed bugs for transitions() of multiple-chain sequences and multiple CPUs in stationary()
MCMCprecision 0.3.6 (2017-04-03)
- Fixed WARNING: Found ‘__assert_fail’, possibly from ‘assert’ (C)
MCMCprecision 0.3.5
- Registered C++ routines
- Improved Description file
MCMCprecision 0.3.3
- Alternative method to compute eigenvectors: RcppEigen package
- Improved starting values for Dirichlet estimation algorithm
- Maximum likelihood estimation of stationary distribution: stationary.mle()
- Changed default prior to epsilon=1/M (M= number of sampled models)
- Changed default method to compute eigenvalue decomposition to RcppArmadillo (method="arma")
MCMCprecision 0.3.0
- Improved estimation of Dirichlet parameters to get effective sample size (C++ version of fixed-point algorithm by Mink, 2000)
- New function best.k() to get summary for the k models with highest posterior model probability
- Exports function rdirichlet()
- Updated licence: GPL-3 (instead of GPL-2)
MCMCprecision 0.2.1
- New function best.k() to assess estimation uncertainty for the k models with the highest posterior model probabilities
MCMCprecision 0.2.0
- Implementations with RcppArmadillo::eig_gen and base::eigen