Introduction to Logic Forest

library(LogicForest)
library(data.table)
library(LogicReg)
#> Loading required package: survival

load(system.file("data", "LF.data.rda", package="LogicForest"))
data(LF.data)

#Set using annealing parameters using the logreg.anneal.control 
#function from LogicReg package

newanneal<-logreg.anneal.control(start=1, end=-2, iter=2500)

#typically more than 2500 iterations (iter>25000) would be used for 
#the annealing algorithm.  A typical forest also contains at 
#least 100 trees.  These parameters were set to allow for faster
#run times

#The data set LF.data contains 50 binary predictors and a binary
#response Ybin
LF.fit1<-logforest(resp=LF.data$Ybin, Xs=LF.data[,1:50], nBS=20, anneal.params=newanneal)
print(LF.fit1)
#> Number of logic regression trees = 20
#> Out of Bag Misclassification = 0.115
#> 
#> 5 most important predictors 
#> 
#>     Top 5 Predictors   Normalized Predictor Importance   Frequency
#> 1   X4                 1                                 20       
#> 2   X5                 0.7257                            18       
#> 3   X36                0.0078                            2        
#> 4   X50                0.006                             1        
#> 5   X38                0.003                             2        
#> 
#> 5 most important interactions 
#> 
#>     Top 5 Interactions   Normalized Interaction Importance   Frequency
#> 1   X4 & X5              1                                   17       
#> 2   X4                   0.0373                              1        
#> 3   X4 & X24             0.0236                              1        
#> 4   X4 & X5 & !X38       0.0207                              1        
#> 5   X4 & X5 & X50        0.0187                              1
predict(LF.fit1)
#> OOB Predicted values
#> 
#>   [1] 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 0
#>  [38] 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0
#>  [75] 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0
#> [112] 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0
#> [149] 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0
#> [186] 0 0 0 1 1 1 0 1 1 0 0 1 1 0 0
#> 
#> Proportion of OOB trees that predict 1
#>   [1] 1.00000000 1.00000000 0.00000000 0.00000000 0.00000000 1.00000000
#>   [7] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 1.00000000
#>  [13] 1.00000000 0.00000000 0.16666667 1.00000000 0.00000000 1.00000000
#>  [19] 0.00000000 1.00000000 0.14285714 0.16666667 0.00000000 0.00000000
#>  [25] 0.00000000 1.00000000 1.00000000 1.00000000 1.00000000 0.00000000
#>  [31] 0.14285714 0.00000000 1.00000000 0.00000000 0.00000000 0.90000000
#>  [37] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#>  [43] 0.09090909 0.90000000 0.00000000 0.00000000 1.00000000 0.00000000
#>  [49] 1.00000000 1.00000000 1.00000000 1.00000000 0.00000000 0.87500000
#>  [55] 0.00000000 1.00000000 0.00000000 1.00000000 1.00000000 0.00000000
#>  [61] 1.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.16666667
#>  [67] 1.00000000 1.00000000 0.87500000 1.00000000 1.00000000 1.00000000
#>  [73] 1.00000000 0.00000000 1.00000000 0.00000000 0.08333333 1.00000000
#>  [79] 0.00000000 0.00000000 1.00000000 1.00000000 0.00000000 1.00000000
#>  [85] 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
#>  [91] 1.00000000 0.00000000 1.00000000 1.00000000 1.00000000 0.88888889
#>  [97] 0.00000000 1.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [103] 0.00000000 0.00000000 1.00000000 0.00000000 1.00000000 1.00000000
#> [109] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [115] 0.00000000 1.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [121] 0.00000000 1.00000000 0.00000000 1.00000000 0.11111111 1.00000000
#> [127] 1.00000000 1.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [133] 0.33333333 1.00000000 1.00000000 1.00000000 0.00000000 1.00000000
#> [139] 1.00000000 1.00000000 0.00000000 0.10000000 1.00000000 1.00000000
#> [145] 1.00000000 1.00000000 0.00000000 0.00000000 1.00000000 0.00000000
#> [151] 1.00000000 0.00000000 1.00000000 1.00000000 1.00000000 0.00000000
#> [157] 0.00000000 0.00000000 1.00000000 0.00000000 1.00000000 0.00000000
#> [163] 0.00000000 0.00000000 0.12500000 0.00000000 0.25000000 1.00000000
#> [169] 1.00000000 1.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> [175] 0.00000000 0.20000000 1.00000000 0.00000000 0.00000000 0.00000000
#> [181] 0.00000000 1.00000000 0.00000000 0.87500000 0.00000000 0.00000000
#> [187] 0.00000000 0.00000000 1.00000000 1.00000000 1.00000000 0.00000000
#> [193] 1.00000000 1.00000000 0.16666667 0.00000000 1.00000000 1.00000000
#> [199] 0.00000000 0.00000000

#Changing print parameters
LF.fit2<-logforest(resp=LF.data$Ybin, Xs=LF.data[,1:50], nBS=20,
anneal.params=newanneal, norm=TRUE, numout=10)
print(LF.fit2)
#> Number of logic regression trees = 20
#> Out of Bag Misclassification = 0.115
#> 
#> 10 most important predictors 
#> 
#>      Top 10 Predictors   Normalized Predictor Importance   Frequency
#> 1    X5                  1                                 20       
#> 2    X4                  0.8949                            19       
#> 3    X9                  0.0276                            1        
#> 4    X10                 0.0123                            1        
#> 5    X2                  0.0032                            1        
#> 6    X1                  0                                 <NA>     
#> 7    X3                  0                                 <NA>     
#> 8    X6                  0                                 <NA>     
#> 9    X7                  0                                 <NA>     
#> 10   X8                  0                                 <NA>     
#> 
#> 10 most important interactions 
#> 
#>      Top 10 Interactions   Normalized Interaction Importance   Frequency
#> 1    X4 & X5               1                                   19       
#> 2    X5                    0.039                               1        
#> 3    !X2 & X4 & X15        0.007                               1        
#> 4    X9 & X10              0.0017                              1        
#> 5    <NA>                  <NA>                                <NA>     
#> 6    <NA>                  <NA>                                <NA>     
#> 7    <NA>                  <NA>                                <NA>     
#> 8    <NA>                  <NA>                                <NA>     
#> 9    <NA>                  <NA>                                <NA>     
#> 10   <NA>                  <NA>                                <NA>