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Abstract

The LocalControl R package implements novel approaches to address biases and con-
founding when comparing treatments or exposures in observational studies of outcomes.
While designed and appropriate for use in comparative safety and effectiveness research
involving medicine and the life sciences, the package can be used in other situations in-
volving outcomes with multiple confounders. LocalControl is an open-source tool for
researchers whose aim is to generate high quality evidence using observational data. The
package implements a family of methods for non-parametric bias correction when compar-
ing treatments in observational studies, including survival analysis settings, where com-
peting risks and/or censoring may be present. The approach extends to bias-corrected
personalized predictions of treatment outcome differences, and analysis of heterogeneity
of treatment effect-sizes across patient subgroups.
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1. Introduction
Envision a day when high-quality comparative safety and effectiveness research (CSER) is
performed, scrutinized, and updated within a culture of reproducibility, then deployed at
point-of-care to improve patient outcomes. While the gold standard of evidence is considered
to be randomized controlled trials (RCTs), such trials have limitations. RCTs can approach
many questions, using randomization and subject selection criteria to reduce the likelihood of
confounders affecting study results, but such studies are expensive, limited in generalizability
by their exclusions, and provide little information about long-term outcomes due to short
duration. The advent of large observational data sets has created new opportunities to gener-
ate comparative safety and effectiveness evidence that would not be feasible with randomized
trials. While biases and confounders can create major challenges in making robust treatment
comparisons with observational data, we sugguest ways to mitigate these issues.
The traditional approach to addressing biases in observational studies is to model confounder
effects as covariates in linear models. While widely accepted and useful, regression methods
have difficulty modeling nonlinearity, have convergence problems when analyzing correlated
covariates, and are problematic when multiple mechanisms drive the outcome. Propensity
scoring approaches have gained wide use in correcting treatment biases (Rosenbaum and
Rubin 1983, 1985). On average, they outperform alternative methods, including regression
in large scale patient records analyses (Stang et al. 2010; Ryan et al. 2012). A weakness of
propensity scoring is that there is no assurance of patient similarity on confounders. Patients
being compared simply have similar probability of treatment (Iacus et al. 2012). Thus, if an
elderly female has the same propensity for treatment as young male, they might be grouped
for comparison, even though this makes very little biological sense.
Often it is more appropriate in observational studies to employ survival analysis to model time
to events of interest (Kaplan and Meier 1958). While visually intuitive, Kaplan-Meier curves
do not address biases. Methods that do, include linear survival models like Cox regression
(Cox 1972), and competing risks regression (Gray 1988; Fine and Gray 1999). In recent years,
propensity scoring has also been extended to a survival framework and evaluated (Gayat et al.
2012; Austin 2014; Austin and Schuster 2016). However, parametric methods such as Cox
and competing risk regression suffer from the limitations of linear models, as well as making
the assumption of proportional hazards; propensity scoring has the same weakness in survival
settings as those described earlier.
The Local Control (LC) method (Obenchain 2005, 2010; Obenchain and Young 2013; Lop-
iano et al. 2014) provides a powerful and conceptually intuitive approach to adjustment for
biases and confounders in large-scale observational data. LC can overcome the limitations
above. It enables the non-parametric estimation of overall treatment effects and provides a
framework for investigating heterogeneity of treatment effects across subpopulations. LC has
been successfully used to compare treatments for major depressive disorder (Obenchain and
Young 2013; Faries et al. 2013), and to evaluate the effect of air quality on mortality (Young
et al. 2015, 2016). However, until this publication, LC methodology did not support survival
analysis.
This article introduces the R (R Core Team 2017) package LocalControl which implements
novel approaches to address biases and confounding when comparing treatments or exposures
in observational studies. The key idea behind Local Control is to form many homogeneous
clusters of observations within which one can compare alternate treatments, statistically cor-
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recting for measured biases and confounders, analogous to a randomized block design within
an RCT (Student 1911; Fisher 1926; Addelman 1969). The LocalControl package implements:

• LocalControlClassic(): The Local Control approach was originally introduced by
Robert Obenchain. LocalControlClassic compares treatment outcomes in observa-
tional data, employing hierarchical clustering on confounders to reveal and correct for
treatment selection bias. Local treatment effect-size estimates from individual clus-
ters are bias-corrected estimates of the difference in expected outcomes between two
treatments. This function provides no support for survival analysis.

• LocalControl(): New forms of Local Control adjustment for observational studies,
including those modeled through survival analyses are introduced here. Rather than
using hierarchical clustering without replacement, these new adjustments match obser-
vations with all neighboring points that fall within a radius of similarity in covariate
space. Selecting neighbors with replacement means that some observations may reside
within multiple clusters. With LocalControl(), each observation becomes the centroid
of its own neighborhood of similar observations, maximizing informative samples. The
outcomeType parameter allows us to extend this methodology to enable bias-corrected
comparison of treatments in survival/time-to-event settings, including support for com-
peting risks analysis.

Local Control enables the comparison of outcomes for two different treatments. The variants
of Local Control included with this package can analyze both real-valued outcomes, as well as
time-to-event data. The survival-based Local Control can create bias-corrected Kaplan-Meier
curves, as well as competing risk estimates of cumulative incidence, along with corresponding
estimates of the confidence intervals. In the remainder of this paper, the methodology behind
the functions listed above is described, along with one or more examples for each. The classic
Local Control, developed by Obenchain is described in Section 2. In Section 3 extensions are
introduced which are necessary to make the transition from the classic implementation, to
the nearest-neighbor variant. Section 4 describes how Local Control is adapted to support
survival-based treatment comparisons. Section 5 contains a detailed case study using Local
Control to examine the effects of smoking on the competing risks of death and hypertension
in patients from the Framingham Heart Study. Section 6 discusses bias-corrected subgroup
analysis to address questions of heterogeneity of treatment effect. The data required to
perform all of the following examples, and case study, are included with the LocalControl
package. The package, along with further documentation and instruction, can be found on
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=
LocalControl.

https://CRAN.R-project.org/package=LocalControl
https://CRAN.R-project.org/package=LocalControl
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2. Classic Local Control

2.1. Methodology

Local Control (LC) analysis concepts were originally introduced to the R community in 2005,
as a suite of functions in the package, “Unsupervised and Supervised Propensity Scoring in
’R’ ”, or USPS (Obenchain 2005). LC is an unsupervised non-parametric approach to adjust
for bias in confounder space when comparing a pair of alternative treatments (Obenchain
2010; Obenchain and Young 2013). LC focuses on making “fair” comparisons (Lopiano et al.
2014) using experimental units with confounding characteristics that are as well-matched as
possible. Furthermore, LC does not restrict the attention to only treatment “main-effect”
comparisons; distributions of local effect-sizes are estimated and displayed. Rather than
estimating treatment main-effects, LC estimates local effect-sizes within subgroups (clusters)
of relatively well-matched observations.
Local Control uses clustering of observations in much the same way that Design-of-Experiments
uses blocking (Box et al. 2005). Clustering hierarchies are built using confounders believed
to be sources of treatment selection bias. localControlClassic() allows users to select
between different algorithms for clustering observations. Choice of clustering algorithm can
affect both runtime and the properties of the resulting clusters. After forming a similarity
hierarchy, the clustering tree is cut, dividing observations into small or large subgroups, de-
pending on the location of the cut. After cutting the tree, each of the resulting clusters is
tested for informativeness. Informative clusters contain at least one member of both treatment
groups. The local treatment difference (LTD) is the difference in average outcome between
the two treatment groups within a cluster.
One of the major exploratory features of Local Control is its interest in controlling the level
similarity within clusters. This is done within LocalControlClassic() by adjusting the
height at which the hierarchical clustering trees are cut. Cutting towards the top of a tree
results in a small number of large clusters, each containing a relatively broad distribution of
confounder values. Cutting toward the bottom of the tree results in more clusters that are
smaller in the sense of containing only patients with more similar confounder values. As the
number of clusters increases and the size of clusters is reduced, the probability that a cluster
will not contain observations from both treatment groups, and hence be uninformative, also
increases. This represents a variance-bias trade-off where variability definitely increases as
bias is possibly reduced. In the remainder of Section 2, LocalControlClassic() is applied
to the cardiology data set analyzed in Kereiakes et al. (2000).

2.2. Non-survival data format

Each of the Local Control functions described in this paper require that users provide valid
R data frames in order to execute. The data frames must exist in the user’s global R en-
vironment, prior to calling any of the Local Control functions. While the input require-
ments vary slightly between survival and non-survival analyses, both forms require data
frames where the rows contain individual records, while the columns correspond to various
patient attributes. The two non-survival analysis functions, LocalControlClassic(), and
LocalControl(outcomeType = "default"), require that the input data frame has column
vectors corresponding to the following variables:
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Outcome Treatment X1 X2 . . . Xk

9.6 A red 0 . . . 98.6
3.4 B green 1 . . . 99.2
...

...
...

... . . . ...
2.8 A blue 0 . . . 86.4

Table 1: Non-survival data format. A data frame where one column contains a numerical
observed outcome. The treatment column contains a discrete variable with two unique values.
At least one of the remaining columns contains pre-treatment covariates used for grouping
similar observations.

• Treatment - Factor column with two unique values indicating the treatment for each
observation.

• Outcome - Discrete or continuous outcome variable which will be compared between
treatment groups.

• Covariates - The baseline (pre-treatment) X-Confounder variables used to determine
patient similarity.

The Local Control functions require the outcome variable column name, outcomeColName,
the treatment variable column name, treatmentColName, and a list of one or more covariate
column names, clusterVars. The values of the covariates may be logical, categorical, or
continuous. Each of the covariate columns must have a standard deviation greater than zero
and cannot contain missing values. When missing values exist in a data frame, the base R
function, complete.cases, can be used to remove incomplete records entirely. If removal
is not an option, imputation of missing values would be required. An example dataset is
displayed in Table 1.
The LocalControl package includes two data sets which adhere to the to the format described
in Table 1, cardSim and lindner. These data sets are used throughout to demonstrate the ca-
pabilites of Local Control, starting with an analysis of lindner using LocalControlClassic.

2.3. Example: LocalControlClassic

The following example uses data from a study conducted at the Ohio Heart Health Center
in 1997, known as the Lindner study (Kereiakes et al. 2000). The study examines post-
procedure effects of the treatment, Abciximab, a glycoprotein IIb/IIIa receptor antagonist,
plus usual care compared with outcomes from patients who received usual care alone. The
data contain two possible outcome measures: a binary estimate of life years preserved, and
the total cardiac-related cost incurred in the twelve months following treatment.

Data: lindner

Variables in the lindner data:

• lifepres - Life years preserved post treatment: 0 (died within 1 year) vs. 11.6 (sur-
vived at least 1 year).

• cardbill - Cardiac related billing within 12 months.
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• abcix - Did the patient receive Abciximab augmentation of usual care? 1 = yes, 0 =
no.

• stent - Was a stent deployed? 1 = yes, 0 = no.

• height - Patient height in centimeters.

• female - Patient sex: 1 = female, 0 = male.

• diabetic - Was the patient diabetic? 1 = yes, 0 = no.

• acutemi - Had the patient suffered an acute myocardial infarction within the last seven
days? 1 = yes, 0 = no.

• ejecfrac - Left ventricular ejection fraction.

• ves1proc - Number of vessels involved in the first Percutaneous Coronary Intervention
(PCI) procedure. 1 = yes, 0 = no.

Walkthrough

From within R, LocalControl can be installed and loaded with the following commands:

R> install.packages("LocalControl")
R> library("LocalControl")
R> data("lindner")

When calling LocalControl functions, users must specify relevant columns in the given data
frame. The treatmentColName, and outcomeColName parameters each take a single string
which is the name of their respective column in the data frame. The clusterVars parameter
takes a list of strings where each element corresponds to the name of a column containing
a clustering variable. Note that clustering high-dimensional data is problematic because in
high dimensions, every point is likely different from every other point, the curse of high di-
mensions. Selection of a relatively low dimensional space is important. Researchers should
explore the possibility of using only a subset of the available X-covariates in clustering. This
can have a substantial effect when a large variety of partially redundant covariates are avail-
able. In Section 6, a method is described for identifying critical clustering variables. The
clusterCounts parameter takes a list of integers representing the desired numbers of clusters
to form. For each unique element in this list, a different set of clusters is generated, analyzed,
and returned.
In the example considered here, a list of variable names is passed via the clusterVars param-
eter which comprises seven of the lindner covariates that may drive treatment bias. Eleven
different cluster sizes are specified in a second list, ranging from 1 to 50.

R> all7Vars = c("stent", "height", "female", "diabetic",
+ "acutemi", "ejecfrac", "ves1proc")
R> numClusters = c(1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50)
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For some parameters, LocalControlClassic only accepts columns with a specific data type.
For example, the column containing the outcome variable must be a numeric type. The
treatment column can be of any type, however, it must have exactly two levels ("treated" and
"control") when converted to a factor.

R> linResults = LocalControlClassic( data = lindner,
+ clusterVars = all7Vars, treatmentColName = "abcix",
+ outcomeColName = "cardbill", clusterCounts = numClusters)

Calling LocalControlClassic returns an R environment containing one UPSnnltd object for
each value in the list passed as an argument to clusterCounts, as well a summary of the
entire analysis. In this example, the linResults object is an environment containing eleven
UPSnnltd objects. Each UPSnnltd object is a list containing 34 unique elements, each of which
are described on the LocalControlClassic help page. After calling LocalControlClassic,
a useful first impression of the output can be created by plotting statistics describing the
distribution of local outcome differences as a function of the number of clusters and fraction
of informative patients (Figure 1). This plot is created by passing the returned environment
to the LocalControlClassic plotting function:

R> UPSLTDdist(linResults, ylim = c(-2500, 5000))
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Figure 1: LocalControlClassic() analysis describing the distribution of LTD estimates for
the Lindner data set. As the number of clusters is increased, within-cluster patient similarity
increases, and the estimated treatment outcomes trend towards the results found in the
Kereiakes et al. study. The green line shows the percentage of the patients that fall within
informative clusters, which decreases as much smaller clusters are created. Along the spectrum
of cluster counts from 15 to 50, the average treatment difference across all clusters is lower
than the $1512 uncorrected estimate.

In the original analysis of Kereiakes et al., the uncorrected $1,512 treatment difference between
the patients with and without Abciximab is reduced to $950 after accounting for biases. In
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Figure 1, the estimated local treatment difference main-effect drops beneath the global average
as the number of clusters exceeds 10. Classic Local Control provides a host of other features
which are not mentioned in this article. Further information about the USPS package and
Obenchain’s classic method can be found in the R help pages, or the package documentation
(Obenchain 2005).
Figure 2 provides an additional diagnostic for confirming that adjustment for treatment se-
lection bias has occurred. The observed distribution of LTDs is compared with an artificial
NULL distribution based upon the assumption that the available X-confounders are ignor-
able. In this case, the observed clusters were formed randomly. Thus, when there is strong
evidence that the observed and NULL distributions are different, adjustment for treatment
selection bias has been confirmed. The ecdf function from stats (R Core Team 2017) is used
to generate the curves for both distributions. A Kolmogorov-Smirnoff test comparing the
two distributions results in a D statistic = 0.42208, with an approximate p < 2.2 × 10−16.
Because the test expects a continuous distribution, but the artificial and observed distribu-
tions contain many exact ties in LTD estimates, resampling without replacement is again
employed to generate an empirical p value. To accomplish this, NULL D statistics are cal-
culated which compare the artificial distribution to another 10,000 random permutations of
cluster assignments. Of the 10,000 NULL D statistics computed, only 21 exceed 0.42208
(p value=0.0021). The significant difference between the observed and artificial distributions
indicates that X-confounders are not ignorable and that LTDs with reduced bias are adjusting
for local imbalances. In Section 6 this dataset will be revisited in the context of subgroup
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Figure 2: Observed (red) vs. artificial (green) LTD empirical Cumulative Distribution Func-
tions (eCDFs) generated using 30 clusters.

analysis, where a patient subgroup accounts for a large portion of bias in the global estimate
of treatment difference.
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3. Nearest neighbors Local Control

3.1. Methodology

Nearest neighbors clustering
Independently two methods have been developed that share some similarities in addressing
how to match patients with covariates in observational studies to correct for biases and con-
founders: (1) coarsened exact matching, developed by Iacus et al. (2011, 2012), and (2) the
approach developed by members of our team, namely, Local Control (Obenchain 2005, 2010;
Obenchain and Young 2013; Lopiano et al. 2014; Faries et al. 2013; Young et al. 2015). Ia-
cus et al. made a key observation: if one has perfectly comparable patients with respect to
the variables that matter for a given question, then one can make a model-free treatment
comparison. But as the patients compared become more dissimilar, the (often unarticulated)
assumptions behind the implied model that assigns a relative importance to different vari-
ables become ever more influential on the estimation process. For instance, is the difference
between being male or female as important as a difference of 50 years in age, or a difference in
genotype, when grouping patients for comparison? A pharmacogenomic genotype might have
a huge bearing on a drug comparison question, but little impact on a surgical comparative ef-
fectiveness question. Selecting the correct variables for measurement and decisions about the
relative importance of different dimensions creates a need for subject matter experts and leads
to uncertainty when trying to defend assumptions that may not be knowable. An innovation
of Iacus et al. was to explicitly divide the analysis between perfect or near-perfect matches
where no assumptions are required, and imperfect matches where one makes assumptions
that the patients are "close enough" for the question at hand.
Rather than assessing patient similarity as perfect vs. imperfect matches, Local Control
matches along a continuum. Patients are clustered for similarity on variables that are thought
to be sources of bias and confounding. An easily interpretable graph can be created to illus-
trate how the estimated difference in outcome between two treatments change, on average,
across all clusters, as a function of using smaller and more homogenous clusters (Figures 5, 6,
and 10). This is analogous to combining a host of smaller studies that are each homogeneous
within themselves, but represent the spectrum of variability of people across diverse subpop-
ulations. As the clusters get smaller, some of them can become noninformative, whereby all
cluster members contain only one treatment, and there is no basis for comparison. This is
actually a feature of the method: for example, if treatment A is given to people of all ages,
and treatment B is only given to adults, there is no basis for comparing the drugs for pedi-
atric use. The power of these methods becomes apparent as the sample size increases. For
example, treatment A might be commonly used, whereas treatment B is rarely performed on
people with the same characteristics. However, when larger sample sizes become available for
analysis, it is possible to find close matches for the two treatment groups, with dependence
on model assumptions diminishing.
An open issue with classic Local Control is how the choice of clustering methodology affects
treatment comparisons. Because optimal clustering is NP-hard (Dasgupta 2008), numerous
"greedy" algorithms exist to create clusters according to different criteria. Even with opti-
mal clustering, a patient that may be quite close to another one, and useful for treatment
comparison, could end up in a different cluster. Outlier patients that may still have a few
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near neighbors with both treatments are frequently separated when one clusters without
replacement, preventing their inclusion in comparing treatment outcomes.
To address this limitation of hierarchical clustering, the nearest neighbors to a given patient
are used to estimate treatment differences, instead of clustering without replacement, where
patients reside in only a single cluster. Each patient has a unique set of near-neighbors, and
the approach becomes more akin to a non-parametric density estimate using similar patients
within a covariate hypersphere of a given radius. The local treatment difference is taken as
the average of the treatment differences from the neighborhood around each point.
While LocalControlClassic uses the number of clusters as a varying parameter to visualize
treatment differences as a function of patient similarity, this function uses a varying radius.
The maximum radius enclosing all patients corresponds to the biased estimate which compares
the outcome of all patients with treatment A versus all patients with treatment B. It is useful
to plot both the treatment difference and the fraction of the patients who have an informative
neighborhood as a function of decreasing radius, delineating a zone bounded by the smallest
radius that includes 100% of the data, along with the radius that retains 80% of the data.
While these boundaries fit the behavior in our example, it is not always the case that these
are critical points in a dataset.
One of the largest differences to consider with the new Local Control functions is that the
observations are now sampled with replacement. As a result, the outcome of an individual
observation can potentially contribute to the local treatment difference in multiple clusters.
With the new method of clustering, each observation becomes the centroid of a cluster,
meaning that the number of clusters created is always N. The number of neighbors in clusters,
along with the "level" of patient similarity, becomes a function of the clustering radius, r. This
is to say, for all N patients, a cluster Ci centered around patient i, has ki nearest neighbors
where ki is the number of patients that are within r units of X-space distance to patient i.
By default, Local Control generates a set of radii whose lengths range inclusively from 0, to
the largest distance between any two points in the provided data. The maximum distance
is calculated using an open-source implementation (https://github.com/hbf/miniball) of
the fast smallest-enclosing-ball algorithm (Fischer et al. 2003). It is important to consider
the significance of the minimal and maximal enclosing radius. At the maximal radius which
encloses all samples, every cluster is identical. This means that the within-cluster treatment
difference, as well as the average across all clusters, will always be equal to the uncorrected
global treatment difference. Conversely, when the radius has length 0, the clusters are formed
using only patients whose covariates match perfectly. This opens several avenues, such as
the coarsening of variables (Iacus et al. 2011, 2012), which can be used in conjunction with
Local Control to embed model assumptions about ranges of variables within which treatment
outcomes are not expected to vary.

Nearest neighbors confidence estimates

Nearest neighbors Local Control uses bootstrapping to generate confidence estimates for
treatment comparisons. The LocalControlNearestNeighborsConfidence function repeat-
edly resamples rows of the provided data frame with replacement to generate an empirical
distribution of the treatment difference. The 50% and 95% quantiles are drawn from the dis-
tribution of results to produce confidence intervals for the LTD at each radius. The number
of bootstrapping iterations can be set using the nBootstrap parameter.

https://github.com/hbf/miniball
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3.2. Simulated example

Data: Case-control simulation
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Figure 3: ADR as a function of weight and dosage. The ideal treatment for the simulated data
should lie on diagonal where weight (kg) = dosage (mg). The blue treatment has a higher
variance than the red treatment. The pale points indicate patients with a greater adverse
reaction to the treatment, while the dark points represent those with smaller reactions.

T1+T0 T0 T1 p value
n (patients) 10000 5000 5000
weight(kg) µ 74.76 74.72 74.8 0.804

σ 14.97 14.99 14.94 0.8
dosage(mg) µ 74.77 74.7 74.84 0.701

σ 18.69 15.82 21.18 2.20E-16
ADR(mg) µ 8.03 4.01 12.06 2.20E-16

σ 7.86 2.99 9.07 2.20E-16

Table 2: Case-control simulation cohort summary. A t-test shows that there is no statistically
significant difference in weight or dosage between the two treatment groups. However, with
an F-Test, there is a highly significant difference in dosage variance between treatments.

This data demonstrates the effects of Local Control on correcting a treatment dosage bias.
In this simulation, a cohort of N patients is generated with weights drawn from a normal
distribution. The population is divided into two treatment groups, 1 and 0, and a bias is
introduced where treatment 1 is dosed with a higher variance, σ2, than treatment 0. The
outcome variable, adverse drug reaction (ADR), for both treatments is assigned using the same
function: ADR = |target_dose - actual_dose|mg. In this simulation, the optimal dosage is
equal to one mg per kg of the patient’s weight. Using an absolute value function to generate
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the outcome makes the data difficult to fit linearly. Glancing at this data without correction
makes it appear as though the adverse drug reaction is greater among those who received
the first treatment. Table 2 shows the distribution of observations in this dataset, Figure 3
graphs the ADR, weight, and dosage, and Figure 4 displays a histogram of the ADR colored
by treatment group before and after correction. The simulated data can be created using the
R code below:

R> set.seed(253748)
R> N = 10000
R> weight = c(rnorm(N/2, 75, 15), rnorm(N/2, 75, 15))
R> dosage = weight + c(rnorm(N/2, 0, 15), rnorm(N/2, 0, 5))
R> trmt = c(rep(1, N/2), rep(0, N/2))
R> ADR = abs(weight - dosage)
R> noise1 = rnorm(n = N, 0, 1)
R> noise2 = rnorm(n = N, 0, 1)
R> xSim = data.frame(weight, trmt, dosage, ADR, noise1, noise2)
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Figure 4: (Left) Histogram of adverse drug reaction outcome in the simulated data. The
simulated data has the two drugs affect patients equally, however, it appears that the patients
in the ’Treatment 0’ group have a much better average outcome due to the lower variance in
dosing. (Right) Corrected histogram of adverse drug reaction outcome in the simulated data.
In this histogram, the estimated outcomes of T0 and T1 are not appreciably different after
accounting for the bias of T1 having a higher variance in dosages. That is, when patients
are clustered to have similar weight and dosage, the treatment difference approaches the true
value of zero on average across all clusters.

Due to the differences in the two clustering schemes, the parameters for calling the nearest
neighbors function differ slightly from the classic method. This function does not require users
to supply the clusterCounts parameter. Instead, it automatically generates a set of radii
to fit the covariates if one is not provided. Additionally, these are three optional parameters
which control the generation of cluster radii. radStepType determines if the rate of decay
between radii will be uniform or exponential. radDecayRate determines the stepsize between
radii, which can be a fixed value removed each iteration if radStepType is uniform, or a
fraction of the previous radius if step type is exponential. Last, users can specify the size of
the second smallest radius (after zero) as a fraction of the maximum radius with radMinFract.
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By default, the radii generated by LocalControl decay exponentially by 80% each iteration,
with a minimum of 1% the length of the maximum. As with the classic method, the column
containing the outcome variable must be a numeric type. The treatment column can be
of any type, however, if the treatment variable contains more than two values, users must
provide the treatmentCode parameter to specify the "primary" treatment group, T1. All
remaining values are considered the alternate group, T0. The following code chunk performs
the LocalControl analysis on the simulated data, saving the resulting object to a variable in
the global environment:

R> xSults = LocalControl(data = xSim,
+ treatmentColName = "trmt",
+ treatmentCode = 1,
+ outcomeColName = "ADR",
+ clusterVars = c("weight", "dosage"),
+ radMinFract = .01,
+ radDecayRate = 0.95,
+ numThreads = 4)

When working with a large set of data, or a large number of covariates, it may be beneficial
to increase the number of threads used in the Local Control calculations. This can be done
by assigning the numThreads parameter a value greater than one. A performance increase is
only possible if the running computer is capable of multicore processing.
After calling the function, a histogram is produced using the corrected outcome data pro-
duced from Local Control (Figure 4 (Right)). In the corrected histogram, the two treatment
outcomes are nearly identical.

3.3. Choice of clustering variables (feature selection)

One of the open areas for research in Local Control is how to choose the relevant covariates
for bias correction. One approach that is viable for a modest number of covariates is a full
factorial regression analysis of how significant each covariate is in modeling the treatment
difference. The full factorial approach is illustrated, but note that for more variables, a
fractional factorial approach could be employed for greater efficiency (Box et al. 2005). A
full factorial design of experiments approach first runs all 2k combinations of including or
excluding each of the k covariates in the Local Control model. One can then model with linear
regression the outcomes as a function of the binary variables (main effects and interactions)
that designate which cluster variables were employed in the Local Control runs. To account
for the change in dimensionality during the factorial analysis, the radius length is scaled
according to the number of variables in use. Two dummy ’noise’ variables are included
to show the effects of using uncorrelated variables with LocalControl. These outcomes are
compared by calculating the average difference from the global estimate for each of the curves.
Table 3 shows the 16 combinations of cluster variables, along with their average differences.
Positive values in the difs column indicate that the combination of variables used in bias
correction leads to an increase over the global biased estimate, and negative values show the
opposite. In this case, inclusion of weight and dosage leads to a large negative change in the
estimate, indicating that the global estimate without covariate correction is high relative to
the ground truth of zero embedded in the simulation.
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weight dosage noise1 noise2 difs
-1 -1 -1 -1 0.00
1 -1 -1 -1 -0.01

-1 1 -1 -1 0.78
1 1 -1 -1 3.83

-1 -1 1 -1 -0.01
1 -1 1 -1 -0.01

-1 1 1 -1 0.81
1 1 1 -1 3.72

-1 -1 -1 1 0.01
1 -1 -1 1 -0.01

-1 1 -1 1 0.82
1 1 -1 1 3.74

-1 -1 1 1 0.02
1 -1 1 1 0.01

-1 1 1 1 0.95
1 1 1 1 3.72

Table 3: Regression input for full factorial analysis. The difs column shows the average
difference in the corrected LTD from the global treatment difference for each of the 16 com-
binations. A value of -1 for a clustering variable means that it is excluded, while a value of 1
represents including it in the model.

This analysis begins with a call to LocalControl():

R> noisyVars = c("weight", "dosage", "noise1", "noise2")
R> noisySults = LocalControl( xSim,
+ treatmentColName = "trmt",
+ outcomeColName = "ADR",
+ clusterVars = noisyVars,
+ radMinFract = .01,
+ radDecayRate = 0.95 )
R> fixedRads = summary(noisySults)$limits

The radius lengths are saved to be scaled and reused in the coming step. A matrix is created
to store all of the different combinations of clustering variables, followed by a call to Local
Control with each combination.
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R> varCombinations = expand.grid(0:1, 0:1, 0:1, 0:1)
R> ltext = apply(X = varCombinations, MARGIN = 1,
+ FUN = function(x) paste0(x, collapse = ''))
R> ltdVecs = list()
R> ltdVecs[[1]] = rep(summary(noisySults)$ltd[1], nrow(summary(noisySults)))
R> for(i in 2:16){
+ varSS = noisyVars[which(varCombinations[i, ] == 1)]
+ scaleFactor = sqrt(length(varSS)) / sqrt(length(noisyVars))
+ scaleRads = fixedRads * scaleFactor
+ sults = LocalControl( xSim,
+ treatmentColName = "trmt",
+ outcomeColName = "ADR",
+ clusterVars = varSS,
+ radiusLevels = scaleRads )
+ ltdVecs[[i]] = summary(sults)$ltd
+ }
R> ltdFrame = data.frame(ltdVecs)
R> names(ltdFrame) = ltext
The avgDif function compares the LTD vectors to the global average. Using the results
from the previous steps, the average difference is calculated for each combination to produce
Table 3.

R> avgDif = function(uncorrected, corrected){
+ return(sum(uncorrected - corrected, na.rm = TRUE)/
+ length(which(!is.na(corrected))))
+ }
R> difs = numeric()
R> difs[1] = 0
R> for(i in 2:ncol(ltdFrame)){
+ difs[i] = avgDif(ltdFrame[1:92, 1], ltdFrame[1:92, i])
+ }
R> outmat = data.frame(expand.grid(c(-1,1), c(-1,1), c(-1,1), c(-1,1)))
R> names(outmat) = noisyVars
R> outmat$difs = difs

Table 3 shows that regardless of inclusion of the noise terms, if both weight and dosage are
included in Local Control bias correction, that the treatment difference estimate converges
to the true difference, namely zero. Conversely, if either weight or dosage are not included
in the model, a biased incorrect estimate remains. Figure 5 presents this data graphically.
Using the values from Table 3, a stepwise full factorial linear model is built to evaluate the
significance of each variable with respect to the treatment difference. Table 4 shows that the
noise terms are not significant using stepwise regression, either alone or in combination in
affecting the treatment estimate, and thus should be removed as covariates from the Local
Control model. Table 4 can be created as follows:
R> model = formula("difs ~ (weight + dosage + noise1 + noise2)^4")
R> fit = glm( difs ~ 1, data = outmat, family = gaussian)
R> fit.AIC = step( fit, model, direction = "both", k = 2, trace = 0)
R> regTable = summary.glm( fit.AIC )$coef
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Figure 5: Full factorial Local Control on the simulated data. This presents a graphical repre-
sentation of the different covariate configurations. Each of the curves on the plot corresponds
to one of the rows in Table 3. When both weight and dosage are included in the model
(purple), the corrected treatment difference converges to the correct answer of zero. When
only one of weight or dosage is used in the model (red or blue), or neither (green), then the
biases remain, and the treatment difference estimate is non-zero. Because this simulated data
contains no perfect matches, the corresponding section is excluded from this plot.

While the full factorial can be performed for quick results in this small example, the number
of runs doubles with the inclusion of each additional covariate. One approach to reducing
the dimensionality of Local Control analysis, while accounting for many sources of bias, is
to employ a propensity score as one of the clustering variables to collapse information from
many covariates related to treatment bias.

3.4. Lindner analysis with LocalControl

In Section 2, LocalControlClassic() was used to analyze the data from the Lindner Ab-
ciximab study. Here an analogous analysis is performed using LocalControl() to provide
a comparison of the methods and results. The LocalControl() function is called using the
Lindner dataframe from Section 2. Average within-cluster treatment difference is plotted
as a function of observation similarity within clusters (radius length). Confidence intervals
are generated using the LocalControlNearestNeighborsConfidence function. In Figure 6,
observe that the LocalControl() results show a reduction in treatment cost as the level of
correction increases, similar to the original study.

This analysis can be reproduced in R with the following commands:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.15 0.01 97.36 9.22E-19

dosage 1.15 0.01 97.24 9.36E-19
weight 0.72 0.01 61.37 2.32E-16

dosage:weight 0.73 0.01 61.82 2.13E-16

Table 4: Regression output from the full factorial analysis. A regression is performed to
explore the effects of having each variable combination in the model. While weight and
dosage are significant, the noise variables are not. This indicates that they should be dropped
from the model.

R> linRes = LocalControl(data = lindner,
+ clusterVars = all7Vars, treatmentColName= "abcix",
+ outcomeColName = "cardbill", treatmentCode = 1)
R> linCI = LocalControlNearestNeighborsConfidence(data = lindner,
+ clusterVars = all7Vars, treatmentColName = "abcix",
+ outcomeColName = "cardbill", treatmentCode = 1,
+ nBootstrap = 100)
R> plot(linRes, nnConfidence = linCI)
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Figure 6: LocalControl confidence estimates from 100 resamples. Confidence intervals are
generated for Local Control by repeatedly resampling N patients with replacement from the
original population. Local Control is run once for each of the resampled populations, storing
the results from each run as elements of a list. After 100 calls to LocalControl, the 50%, and
95% confidence intervals are drawn from the resampled results.
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4. Survival Local Control

4.1. Methodology

The LocalControl function is an extension of the nearest-neighbor Local Control introduced
in Section 3. The major variation here is that this adaptation supports survival analysis. In
the previous versions of Local Control, the outcome differences within clusters were examined
as a function of the cluster-radius. With temporal data, a non-parametric counting method
is adopted to compare bias-corrected survival curves. Note that Kaplan-Meier estimates with
a single outcome with potentially censored observations is a special case of the more general
competing risks problem where there are one or more competing risks (outcomes). Thus a
single function is provided for both Kaplan-Meier estimates and the more general case of
multiple competing risks.
Kaplan-Meier survival curves provide an intuitive visualization of time to event data. Unfor-
tunately, due to the nature of the counting process, the curves generated with Kaplan-Meier
do nothing to correct for covariates in a model, and are thus normally suitable only for ran-
domized studies. With nearest-neighbors clustering, the Kaplan-Meier counting process is
adapted to compute survival curves within clusters that are aggregated to produce globally
corrected survival curves. These covariate-adjusted survival curves can be easily interpreted,
tested, and compared with one another. As a non-parametric method, Local Control does not
rely on the proportional hazards assumption or the assumption of linear effects of covariates
as is the case for Cox regression. Recall that the Kaplan-Meier estimate for survival at time t,
S(t), is equal to the product of the number of observations remaining after the events of time
t, divided by the number surviving before those events for all times leading up to t (Kaplan
and Meier 1958), or:

S(t) =
∏
tj≤t

atriskj − failuresj

atriskj

Bias-corrected survival curves are generated by aggregating survival outcomes from within
each cluster. The contribution from each cluster is scaled to ensure that the total number of
observations considered at risk never exceeds the original number of observations in the study.
Each informative cluster, regardless of the number of near neighbors, contributes equally to
the curves generated at a given radius. For example, if cluster j (observation j and its near-
neighbors) has five observations, while cluster k has twenty, both would increment the total
at risk for each treatment by one. Similarly, in the case where the radius reaches all N-1
observations, the total at risk would be N.
The concept of "fractional observations" is introduced, whereby within clusters, the contribu-
tions to the number at risk, and the event (failure and censor) bins are scaled with respect
to the number of neighbors on a given treatment. As an example, consider a cluster j, which
contains three T1 and two T0 observations. Cluster j is informative, so it increases the num-
ber at risk by one for both treatment groups. Because the total number of events must be
equal to the number at risk, the contributions to the event bins within a cluster must sum
to one for both treatment groups. In cluster j, the outcomes must be scaled such that each
observation contributes only 1

numT 1j
= 1

3 or 1
numT 0j

= 1
2 to the event bin at their respective

time. After considering each cluster, for both treatment groups, the total at risk and the sum
of all fractional outcomes is equal to the number of informative clusters. From this point, the
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Kaplan-Meier counting process is applied. With the global radius, this process generates the
same Kaplan-Meier curves that can be created from the data naively. This process iterates
over decreasing radius lengths to produce curves across many different levels of similarity.
For a given competing risk, the estimator is the cumulative sum over each time interval of
the probability neither event occurs before time t (the Kaplan-Meier estimate where both
competing risks are combined as an event, and the censored observations are treated as
censored) multiplied by the fraction experiencing a given event type out of those still at risk
at that time.
Because competing risks is also a counting process, the extension of Local Control Kaplan-
Meier to support competing risks is straightforward. Using the same method of creating
fractional observations, cumulative incidence curves are created for each type of risk using
the following formula:

CIFrisk(t) =
∑
tj≤t

eventsrisk,j

atriskj
S(tj−1)

Combining the bias correction of Local Control with a competing risks framework enables
computation of bias-corrected cumulative incidence curves while accounting for all possible
outcomes. Section 4.2 provides an example using survival based Local Control to correct bias
in a simulated set of data. Section 5 presents an in-depth competing risks case study using
the publicly available Framingham Heart Study data.

Competing risks confidence intervals

The LocalControlCompetingRisksConfidence function produces pointwise standard error
estimates for the LocalControl cumulative incidence functions (CIFs). This is done using an
implementation of Choudhury’s (Choudhury 2002) approach that supports Local Control’s
fractional observations. Users can pass the object returned from the competing risks function
to LocalControlCompetingRisksConfidence(), which produces confidence intervals corre-
sponding to each of the calculated CIFs. The function currently supports the creation of
90%, 95%, 98%, and 99% confidence intervals. Additionally, this function allows users to
choose between the linear, log(-log), and arcsine confidence interval transformations which
are detailed in Choudhury’s work.

Competing risks hypothesis testing

In addition to the confidence intervals described above, LocalControl() also supports hy-
pothesis testing using the Pepe and Mori method (Pepe and Mori 1993). This test compares
two CIFs using the area between the curves, weighting the differences to account for time
passed and the number of observations remaining. The function gives higher weights to dif-
ferences which occur earlier in time, where more patients remain at risk. The code used
to perform the hypothesis testing is derived from the compCIF function provided in Pintilie
(2006). As with Choudhury’s, this modified function also works with fractional observations.
At each radius, the test is performed on the CIFs from the first risk for the two treatment
groups. Each test returns a χ 2 and p value which can be retrieved by calling summary() on
the object returned from LocalControl().

Survival data format
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treatment outcome time x1 x2 . . . xk

A death 3 red 0 . . . 98.6
B censored 9 green 1 . . . 99.2
...

...
...

...
... . . . ...

A cancer 4 blue 0 . . . 101.1

Table 5: Data frame for survival-based Local Control. Contains all of the columns which
are necessary to run LocalControl. The first three from the left, treatment, outcome, and
time must be included for all survival analyses. The remaining x-columns correspond to the
covariates used for clustering observations.

For survival analysis LocalControl(outcomeType = "survival"), the outcome variable must
be categorical, where the values correspond to types of risk, or right censoring (specified with
cenCode.) Additionally, the data frame must contain a variable representing the time that
the outcome occurred. Table 5 displays an example of a valid survival data frame.
There are two major parameter differences for LocalControl() when working with survival
outcomes.

• Time to outcome: Rather than severity or magnitude of an outcome, this function takes
as input the time to an event. This means that an additional column must be specified,
containing the amount of time it took to reach the observed outcome. This function
supports time in both integer and floating point formats.

• Categorical outcomes: This function is used with survival or competing risks data. The
column of outcomes provided should correspond to the category of outcome, rather than
a measure of effect. With right-censored survival data not involving competing risks,
the outcome column is generally binary or logical with a value of 1 for patients who
experienced the outcome, and 0 for those who were right-censored. For competing risks
data, multiple factors can be included, with one of them representing right censoring.

4.2. Example

Data: Survival simulation

A + B A B p value
n (patients) 10000 4708 5292
age (years) 41.48 38.36 44.26 2.11E-108
BMI ( kg

m2 ) 25.98 25.58 26.34 3.84E-21

Table 6: Survival simulation cohort summary. A hypothetical hypertension Treatment A
(blue) is prescribed more frequently to younger, healthier patients with a low body mass
index (BMI), Treatment B (red) is prescribed to older patients with a higher body mass
index. Significant treatment biases exist for age and BMI.

This simulated data demonstrates the effects of Local Control on correcting bias within sur-
vival data. In this simulation, a treatment bias is introduced which skews the global treatment
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difference. Treatment A and B are two pharmaceutically equivalent treatments. The true
effects of these drugs are masked by assigning treatment A to younger, lower BMI patients,
and treatment B to those who are older and have a higher BMI. That is, the two treatments
affect all patients equally, but one drug is given to the healthier patients, making the alterna-
tive superficially appear to have inferior outcomes due to the detrimental effects of age and
obesity. Table 6 describes the two treatment groups.
The following code can be used to generate this data in an R session:

R> weibullSim = function(N, lambda, rho, betaage, betabmi) {
+ bmi = rnorm(N, mean = 26, sd = 4)
+ age = runif(N) * 47 + 18
+ pbmi = (bmi - min(bmi)) / (max(bmi) - min(bmi)) * 0.8 + 0.1
+ page = (age - min(age)) / (max(age) - min(age)) * 0.8 + 0.1
+ drug = 1 - rbinom(N, 1, (pbmi + page) / 2)
+ et = exp(bmi * betabmi + age * betaage)
+ Tlat = (-log(runif(n=N)) / (lambda * et))^(1 / rho)
+ C = runif(N) * 30
+ time = pmin(Tlat, C)
+ status = as.numeric(Tlat <= C)
+ data.frame(id = 1:N, drug, age, bmi, time, status)
+ }
R> survSimData = weibullSim(10000, 1e-10, 2.6, log(1.2), log(1.45))

The LocalControl package also includes a saved copy of this simulation, cardSim, which can
be loaded using data("cardSim"). After generating or loading the data, the covariates are
specified and LocalControl is invoked.

R> results = LocalControl( data = cardSim,
+ outcomeType = "survival",
+ treatmentColName = "drug",
+ timeColName = "time",
+ outcomeColName = "status",
+ clusterVars = c("age", "bmi"))

The object returned from LocalControl is an R list containing vectors, data frames, and
nested lists. The KM element contains the Kaplan-Meier survival curves for both treatment
groups at each radius. CIF contains a list of lists for each different risk in the model. The
sublists each contain a pair of data frames (T1 and T0) with CIFs for each radius. If there
is only one possible type of failure (not including censoring) in the data provided, then both
treatment groups will have one cumulative incidence curve generated per radius which are
equivalent to 1 minus the Kaplan-Meier estimate. Figure 7 illustrates the correction that
occurs when calling LocalControl(outcomeType = "survival") on the biased simulated
data discussed previously in Section 4.2. The dotted lines show the survival curves generated
from the raw data. Without correction, it appears that the blue (treatment A) and red
(treatment B) patients have nearly identical outcomes. The solid lines on the plot represent
the curves generated across Local Control clusters at a much smaller radius (7.61 vs 0.82
radius units). In Section 5, Local Control survival analysis is applied to real data from the
Framingham Heart Study.
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Figure 7: Treatment bias correction using Local Control on the survival simulation. Because
of the treatment assignment bias, patients on A appear to have better outcomes than those
on B (dotted lines on Kaplan-Meier plot). However, the Local Control corrected curves (solid
lines) show the true treatment effect, that the two treatments are identical, when patients are
clustered for similarity of age and BMI. The upper right subfigure shows a scatterplot of age
and BMI in the survival simulation. The shading of points indicates the time to failure, with
light shading corresponding to a short survival time, while darker points represent a longer
survival time. The color of the points represents the treatment group of an observation. Blue
and red points indicate whether a patient received treatment A or B, respectively.

5. Case study: Framingham heart patients
The effects of smoking on the time to the competing risk of either reaching death, or being
diagnosed with hypertension are analyzed using Local Control. Those who leave the study
prior to reaching either of these outcomes, or reach the study conclusion without either
outcome occurring, are considered to be right-censored observations. The available covariates
are tested for a significant impact on the outcome and examine the results produced along
with their interpretation.

Data: framingham

The Framingham study data tracks the cardiac health of more than 4000 patients over the
course of twenty-four years (Dawber et al. 1951). A subset of the data is provided that
has been approved for training and testing purposes. More information about the Framing-
ham Heart Study can be found at: https://www.framinghamheartstudy.org/. While the
original data includes several additional variables, only the following are used in this analysis:

• female - Sex of the patient. 1=female, 0=male.

• totchol - Total cholesterol of patient at study entry.

• age - Age of the patient at study entry.

https://www.framinghamheartstudy.org/
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• bmi - Patient body mass index.

• BPVar - Average units of systolic and diastolic blood pressure above normal:
((SystolicBP-120)/2) + (DiasystolicBP-80)

• heartrte - Patient heartrate taken at study entry.

• glucose - Patient blood glucose level.

• cursmoke - Whether or not the patient was a smoker at the time of study entry.

• outcome - Did the patient die, experience hypertension, or leave the study without
experiencing either event.

• time_outcome - The time at which the patient experienced outcome.

• cigpday - Number of cigarettes smoked per day at time of study entry.

All patients Smokers Nonsmokers p value
n (patients) 2316 1238 1078

female 0.56 0.48 0.65 3.34E-16
totchol (mg

dL ) 230.34 229.18 231.67 1.55E-01
age (years) 47.43 46.12 48.94 8.15E-17
BMI ( kg

m2 ) 24.78 24.28 25.35 2.61E-14
BPVar (mm Hg) -3.45 -4.49 -2.26 2.28E-06

heartrte (bpm) 74.17 74.94 73.28 3.93E-04
glucose (mg

dL ) 78.54 78.11 79.03 6.92E-02

Table 7: Framingham Heart Study cohort biases. Patients with preexisting cardiovascular
conditions are dropped from the study. Fisher’s exact test is used for the comparison of the
female binary covariate. For the remaining continuous covariates, a t-test is used to compare
the two groups. Smoking "treatment" bias significantly affects sex, age, BMI, blood pressure,
and heart rate.

Due to the high correlation between diastolic and systolic blood pressure, the two variables are
combined by centering them at the threshold of ideal/pre-high blood pressure, then scaling
comparably and summing them to create BPvar. Patients with preexisting conditions are
also removed to form a more comparable population (Table 7). The competing risks of
hypertension and death are analyzed.
R> data("framingham")
R> framVars = c("female","totchol","age","bmi","BPVar","heartrte","glucose")
R> FHSResults = LocalControl( data = framingham, outcomeType = "survival",
+ treatmentColName = "cursmoke", treatmentCode = 1,
+ timeColName = "time_outcome", outcomeColName = "outcome",
+ clusterVars = framVars)
R> print(summary(FHSResults))

The summary frame contains the percentage of informative information across all levels of
radius correction (Table 8). Figure 8 shows the cumulative incidence curves for both risks
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Figure 8: Competing risks of hypertension and death among smokers and nonsmokers in
the Framingham Heart Study. The top plot shows the cumulative incidence without any
correction for covariates. This biased estimate suggests that non-smokers have a higher risk
for hypertension and lower risk of death. The bottom plot displays the results from Local
Control after correcting for sex, cholesterol, age, BMI, heart rate, blood pressure, and blood
glucose level. The competing risks Local Control bias-corrected curves show us that, among
comparable patients, there is almost no difference in the rate of hypertension over time, but
that the greater risk of death remains for smokers. The shaded areas represent the 95%
confidence interval estimates.
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and treatment groups first without any correction, then with the correction observed at the
11th radius, corresponding with 78.3% of the data being informative.
The uncorrected plot of Figure 8 shows that after a long exposure, the cumulative incidence
of death in the smoking treatment group is higher than that of the non-smokers. What is
surprising is that it appears as though smoking protects individuals from hypertension. After
correcting with Local Control, the hypertension curve for non-smokers shifts down towards
the smoking group, and is no longer significantly different. Note that the death CIFs remain
almost identical in both of these plots. Does smoking protect from hypertension? An early
article claimed that cigarette smoking inhibits blood pressure (Seltzer 1974), but a more
recent review suggests the evidence is inconclusive (Virdis et al. 2010). Even if smoking
reduced hypertension, the competing risk of death is still higher for smokers.

6. Patient level prediction/heterogeneity of treatment effect
Heretofore, covariates have been used to group patients for comparison to estimate a bias-
corrected global treatment difference between a pair of treatments within a population. Such
evidence is useful in making generalizations that one treatment may be safer or more effective
than another on average. However, this does not answer the question of what is the expected
outcome from a given treatment for a particular patient. Patient level prediction recognizes
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All male
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Figure 9: Recursive partitioning tree. Using the results from the analysis in Section 3.4 as
input to recursive partitioning, variables are identified which produce significant treatment dif-
ferences. The color of the nodes is used to differentiate between the entire population (purple),
subgroups containing only women (pink), and those with only male patients (blue). The dots
bordering the leaves represent a second partitioning of the men and women. Solid dots repre-
sent patients with a stent, while hollow dots represent those without. The LocalControl()
outcomes for each of these subgroups are displayed in Figure 10.

that there may be heterogeneity of treatment effect (HTE), namely that patients can have



26 LocalControl: An R package for CSER

very different outcomes depending on patient characteristics. Traditional approaches will
use regression models or machine learning on patient covariates to predict patient outcomes.
While these approaches can provide patient level predictions, the interpretation of such mod-
els could be distorted by the biasing variables. Instead, after bias correction, regression or
machine learning can be applied to model bias-corrected treatment differences, giving in-
sight into what variables modify the difference in outcome from one treatment to another,
unpolluted by variables that govern choice of treatment.
In Section 2, an analysis of the Lindner data was presented using LocalControlClassic.
In Section 3, LocalControl was used to provide a comparison of the results from the two
methods. The Lindner data is now analyzed for the third time, for the investigation of patient
subgroups. This analysis continues from Section 3.4, having just called LocalControl on the
Lindner data, and plotting the results (Figure 6). Recursive partitioning is used to explore pa-
tient subgroups with statistically significant differences in bias-corrected treatment difference
as a function of patient covariates, including the clustering variables (Obenchain and Young
2013; Faries et al. 2013; Young et al. 2015, 2016). Statistical significance was adjusted to
account for multiple comparisons. A clustering radius must be selected to begin the analysis.
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Figure 10: Local Control subgroup analysis. After identifying significant subgroups with
recursive partitioning, the subgroup treatment differences are graphed as a function of radius.
Observe that the men without stents have a much lower billing cost on Abciximab vs. control
than each of the other subgroups.

The problem of radius selection is similar to that of selecting bin sizes when using propensity
scoring. It is difficult to say which radius is "correct", and the results may vary significantly
from one to the next. It is thus important to examine the behavior of the estimates across a
range of radii, as well as compare those results to perfectly matched patients, if they exist.
When a radius must be selected, it is useful to plot the fraction of patients who are considered
informative at a given radius. In this example, a radius is chosen where 95% of the data is
informative, and where the estimates are also plateauing (Figure 6). Eeach patient is assigned
the average treatment difference produced within their cluster at the selected radius. With lo-
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cal treatment difference as the dependent variable, and patient covariates as the independent
variables, recursive partitioning is used to classify patient subgroups. In Figure 9, recursive
partitioning identifies four mutually exclusive subgroups: men and women with and without
stents. Patients are then divided into these identified subgroups to examine the average local
treatment differences per subgroup (Figure 10). The data suggests over a wide range of radii
of bias correction, that men without stents result in lower cost of care on Abciximab, but
that all other subgroups have a lower or neutral cost of treatment on usual care alone.
In large data sets it can be true that an "average/overall" effect is meaningless. The answer
is that "it depends". For example, a drug might work for women, but not for men. When
there is treatment response heterogeneity, a recommendation of one-size-fits-all is problematic
and even a bias-corrected overall effect is misleading. Local Control enables the analysis
of both the bias-corrected average effect, as well as creates insight into subgroup outcome
heterogeneity.
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radius pct_informative pct_radius chisq p_value
1 11 1 1 20 6.13E-06
2 9.13 1.00 0.80 20.45 6.13E-06
3 7.30 1.00 0.64 20.38 6.36E-06
4 5.84 1.00 0.51 19.73 8.90E-06
5 4.67 1.00 0.41 19.38 1.07E-05
6 3.74 1.00 0.33 15.78 7.12E-05
7 2.99 1.00 0.26 5.99 1.44E-02
8 2.39 0.99 0.21 3.08 7.93E-02
9 1.91 0.97 0.17 1.19 2.75E-01

10 1.53 0.92 0.13 1.44 2.31E-01
11 1.23 0.78 0.11 2.25 1.33E-01

Table 8: Framingham Local Control summary. Each row corresponds to one radius of correc-
tion. The values in the first column are the radius lengths in normalized units. The second
column contains the fraction of observations who are informative at the given radius. The
pct_radius column is the size of the radius as a fraction of the maximum distance between
any two observations. The last two columns contain the results from the hypothesis tests com-
paring the hypertension CIFs for the two treatment groups (as described in Section 4.1.2).



N. R. Lauve, S. J. Nelson, S. S. Young, R. L. Obenchain, C.G. Lambert 29

7. Conclusion
The R LocalControl package has been presented with examples of bias-corrected estimation
of treatment outcome differences for observational studies, including time-to event data with
competing risks. Patient-level prediction and heterogeneity of treatment effect analysis is
currently not implemented for survival analysis. It remains as future work to adapt this
approach to survival-based outcomes, for example by extensions to survival-based recursive
partitioning trees (Bou-Hamad et al. 2011).

Computational details
The results in this paper were obtained using R 4.4.2 with the LocalControl 1.1.4 package.
R itself and the following packages which have been used throughout the paper are available
from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.

• xtable Dahl (2016)

• gplots Warnes et al. (2016)

• dendextend Galili (2015)

• data.table Dowle and Srinivasan (2017)

• colorspace Ihaka et al. (2016)

• RColorBrewer Neuwirth (2014)

• gridExtra Auguie (2017)

• ggplot2 Wickham (2009)

• rpart Therneau and Atkinson (2018)

• rpart.plot Milborrow (2017)
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