Package: LSMonteCarlo (via r-universe)

September 17, 2024

Type Package
Title American options pricing with Least Squares Monte Carlo method
Version 1.0
Date 2013-09-20
Author Mikhail A. Beketov
Maintainer Mikhail A. Beketov <mikhail.beketov@gmx.de></mikhail.beketov@gmx.de>
Description The package compiles functions for calculating prices of American put options with Least Squares Monte Carlo method. The option types are plain vanilla American put, Asian American put, and Quanto American put. The pricing algorithms include variance reduction techniques such as Antithetic Variates and Control Variates. Additional functions are given to derive ``price surfaces" at different volatilities and strikes, create 3-D plots, quickly generate Geometric Brownian motion, and calculate prices of European options with Black & Scholes analytical solution.
License GPL-3
Depends mytnorm, fBasics, stats, utils, graphics, grDevices
NeedsCompilation no
Repository CRAN
Date/Publication 2013-09-23 23:07:43
Contents
LSMonteCarlo-package 2 AmerPutLSM 3 AmerPutLSMPriceSurf 4 AmerPutLSM_AV 6 AmerPutLSM_CV 7 AsianAmerPutLSM 9 AsianAmerPutLSMPriceSurf 10

package American options pricing with Least Sauares Monte	
	19
nerPutLSM_AV	17
nerPutLSMPriceSurf	
nerPutLSM	14
Row	13

Description

The package compiles functions that calculate prices of American put options with Least Squares Monte Carlo method. The option types are plain vanilla American put, Asian American put, and Quanto American put. The pricing algorithms include variance reduction techniques such as Antithetic Variates and Control Variates. Additional functions are given to derive "price surfaces" at different volatilities and strikes, create 3-D plots, quickly generate Geometric Brownian motion, and calculate prices of European options with Black & Scholes analytical solution.

Details

Package: LSMonteCarlo

Type: Package Version: 1.0

Date: 2013-09-20 License: GPL 3

The Least Squares Monte Carlo is an approach developed to approximate the value of American options. It combines regression modeling and Monte Carlo simulation. The key feature of this method is estimation of the conditional expectation of the future pay-offs by a regression model (for details see Longstaff & Schwartz, 2000). The main pricing functions employing this method in the package are: AmerPutLSM, AsianAmerPutLSM, and QuantoAmerPutLSM. Pricing functions that include variance reduction methods are: AmerPutLSM_AV, QuantoAmerPutLSM_AV (Antithetic Variates) and AmerPutLSM_CV (Control Variates, with Black & Scholes solution for European put used as the control). All these functions are based on Geometric Brownian motion as a price process. They can be used with tailored summary, print, and price functions. The "price surfaces" at different volatilities and strikes can be derived using the functions AmerPutLSMPriceSurf, AsianAmerPutLSMPriceSurf, and QuantoAmerPutLSMPriceSurf, and plotted with tailored plot function. For general reading on option pricing with Monte Carlo methods see Glasserman (2004).

Author(s)

Mikhail A. Beketov

Maintainer: Mikhail A. Beketov <mikhail.beketov@gmx.de>

AmerPutLSM 3

References

Glasserman, P. 2004. Monte Carlo Methods in Financial Engineering. Springer.

Longstaff, F.A., and E.S. Schwartz. 2000. Valuing american option by simulation: A simple least-squared approach. The Review of Financial Studies. 14:113-147.

See Also

Functions: AmerPutLSM, AmerPutLSM_AV, AmerPutLSM_CV, AsianAmerPutLSM, QuantoAmerPutLSM, and QuantoAmerPutLSM_AV.

Examples

```
Put<-AmerPutLSM(Spot=14.2, Strike=16.5, n=200, m=50)
summary(Put)
price(Put)
plot(AmerPutLSMPriceSurf(vols = (seq(0.1, 1.5, 0.2)), n=200, m=10,
strikes = (seq(0.5, 1.9, 0.2))), color = divPalette(150, "RdBu"))</pre>
```

AmerPutLSM

Calculating the price of plain vanilla American put

Description

The function calculates the price of plain vanilla American put with Least Squares Monte Carlo method. The regression model included in the algorithm is quadratic polynomial (Longstaff & Schwartz, 2000).

Usage

```
AmerPutLSM(Spot = 1, sigma = 0.2, n = 1000, m = 365, Strike = 1.1, r = 0.06,
dr = 0, mT = 1)
## S3 method for class 'AmerPut'
print(x, ...)
## S3 method for class 'AmerPut'
summary(object, ...)
```

Arguments

Spot	Spot price of the underlying asset (e.g. stock).
sigma	Volatility of the underlying asset.
n	Number of paths simulated.
m	Number of time steps in the simulation.
Strike	Strike price of the option.
r	Interest rate of the numeraire currency (e.g. EUR).

4 AmerPutLSMPriceSurf

dr	Dividend rate of the underlying asset.
mT	Maturity time (years).
x	An object returned by the functions ${\tt AmerPutLSM}.$
object	An object returned by the function AmerPutLSM.
	Not used.

Value

The function returns an object of the class AmerPut that is a list comprising the price calculated, option type, and the entry parameters. Class-specific print function gives the option type information and the price. The price as a single number can be derived using the price function. An overview of the entire object can be seen using the summary function.

Author(s)

Mikhail A. Beketov

References

Longstaff, F.A., and E.S. Schwartz. 2000. Valuing american option by simulation: A simple least-squared approach. The Review of Financial Studies. 14:113-147.

See Also

Functions: price, AmerPutLSM_AV, AmerPutLSM_CV, AsianAmerPutLSM, and QuantoAmerPutLSM.

Examples

```
AmerPutLSM()
put<-AmerPutLSM(Spot=14.2, Strike=16.5, n=500, m=100)
put
summary(put)
price(put)
put$price</pre>
```

AmerPutLSMPriceSurf Deriving a table of American put prices at different volatilities and strikes

Description

The function calculates the prices at different volatilities and strikes using the AmerPutLSM function.

AmerPutLSMPriceSurf 5

Usage

```
AmerPutLSMPriceSurf(Spot = 1, vols = (seq(0.1, 2, 0.1)), n = 1000, m = 365,
strikes = (seq(0.5, 2.5, 0.1)), r = 0.06, dr = 0, mT = 1)

## S3 method for class 'PriceSurface'
summary(object, ...)

## S3 method for class 'PriceSurface'
plot(x, color = divPalette(800, "RdBu"), ...)
```

Arguments

Spot	Spot price of the underlying asset (e.g. stock).
vols	Sequence of volatilities.
n	Number of paths simulated.
m	Number of time steps in the simulation.
strikes	Sequence of strikes.
r	Interest rate of the numeraire currency (e.g. EUR).
dr	Dividend rate of the underlying asset.
mT	Maturity time (years).
object	Object of the class PriceSurface that is a matrix of prices at different volatilities and strikes.
х	Object of the class PriceSurface that is a matrix of prices at different volatilities and strikes.
color	Color palette (the default pallet requires package fBasics, if you do not want to load this package, you can set color=NULL or other palette).
	Not used.

Value

The function returns an object of the class PriceSurface that is a matrix of prices at different volatilities and strikes. Class-specific summary function gives the sequences of volatilities and strikes used, as well as maximum, minimum, and average prices. Class-specific plot function constructs a 3-D plot of the price surface.

Author(s)

Mikhail A. Beketov

See Also

Functions: AmerPutLSM, AsianAmerPutLSMPriceSurf, and QuantoAmerPutLSMPriceSurf.

6 AmerPutLSM_AV

Examples

```
surface<-AmerPutLSMPriceSurf(vols = (seq(0.1, 1.5, 0.2)), n=200, m=10,
strikes = (seq(0.5, 1.9, 0.2)))
summary(surface)
plot(surface, color = divPalette(150, "RdBu"))</pre>
```

AmerPutLSM_AV

Pricing plain vanilla American put with Antithetic Variates

Description

The function calculates the price of a plain vanilla American put with Least Squares Monte Carlo method with Antithetic Variates (Glasserman, 2004). The regression model included in the algorithm is quadratic polynomial (Longstaff & Schwartz, 2000).

Usage

```
AmerPutLSM_AV(Spot = 1, sigma = 0.2, n = 1000, m = 365, Strike = 1.1, r = 0.06,
dr = 0, mT = 1)

## S3 method for class 'AmerPutAV'
print(x, ...)
## S3 method for class 'AmerPutAV'
summary(object, ...)
```

Arguments

Spot	Spot price of the underlying asset (e.g. stock).
sigma	Volatility of the underlying asset.
n	Number of paths simulated.
m	Number of time steps in the simulation.
Strike	Strike price of the option.
r	Interest rate of the numeraire currency (e.g. EUR).
dr	Dividend rate of the underlying asset.
mT	Maturity time (years).
X	An object returned by the functions AmerPutLSM_AV.
object	An object returned by the function AmerPutLSM_AV.
	Not used.

Value

The function returns an object of the class AmerPutAV that is a list comprising the price calculated and the entry parameters. Class-specific print function gives the option type information and the price. The price as a single number can be derived using the price function. An overview of the entire object can be seen using the summary function.

AmerPutLSM_CV 7

Author(s)

Mikhail A. Beketov

References

Glasserman, P. 2004. Monte Carlo Methods in Financial Engineering. Springer.

Longstaff, F.A., and E.S. Schwartz. 2000. Valuing american option by simulation: A simple least-squared approach. The Review of Financial Studies. 14:113-147.

See Also

Functions: price, AmerPutLSM, AmerPutLSM_CV, AsianAmerPutLSM, and QuantoAmerPutLSM.

Examples

```
AmerPutLSM_AV(n=500, m=50)
put<-AmerPutLSM_AV(Spot=14.2, Strike=16.5, n=200, m=50)
put
summary(put)
price(put)
put$price</pre>
```

AmerPutLSM_CV

Pricing plain vanilla American put with Control Variates

Description

The function calculates the price of a plain vanilla American put with Least Squares Monte Carlo method with Control Variates (Glasserman, 2004). Black & Scholes solution for European put is used as the control. The regression model included in the algorithm is quadratic polynomial (Longstaff & Schwartz, 2000).

Usage

```
AmerPutLSM_CV(Spot = 1, sigma = 0.2, n = 1000, m = 365, Strike = 1.1, r = 0.06,
dr = 0, mT = 1)

## S3 method for class 'AmerPutCV'
print(x, ...)
## S3 method for class 'AmerPutCV'
summary(object, ...)
```

8 AmerPutLSM_CV

Arguments

Spot price of the underlying asset (e.g. su	oot price of the underlying asset (e.g. stock	Spot
---	---	------

sigma Volatility of the underlying asset.

n Number of paths simulated.

m Number of time steps in the simulation.

Strike Strike price of the option.

r Interest rate of the numeraire currency (e.g. EUR).

dr Dividend rate of the underlying asset.

mT Maturity time (years).

x An object returned by the functions AmerPutLSM_CV.
object An object returned by the function AmerPutLSM_CV.

... Not used.

Value

The function returns an object of the class AmerPutCV that is a list comprising the price calculated and the entry parameters. Class-specific print function gives the option type information and the price. The price as a single number can be derived using the price function. An overview of the entire object can be seen using the summary function.

Author(s)

Mikhail A. Beketov

References

Glasserman, P. 2004. Monte Carlo Methods in Financial Engineering. Springer.

Longstaff, F.A., and E.S. Schwartz. 2000. Valuing american option by simulation: A simple least-squared approach. The Review of Financial Studies. 14:113-147.

See Also

Functions: price, AmerPutLSM, AmerPutLSM_AV, AsianAmerPutLSM, and QuantoAmerPutLSM.

```
AmerPutLSM_CV()
put<-AmerPutLSM_CV(Spot=14.2, Strike=16.5, n=200, m=50)
put
summary(put)
price(put)
put$price</pre>
```

AsianAmerPutLSM 9

AsianAmerPutLSM	Calculating the price of Asian American put	
-----------------	---	--

Description

The function calculates the price of Asian American put with Least Squares Monte Carlo method (pay-off based on arithmetic mean). The regression model included in the algorithm is quadratic polynomial (Longstaff & Schwartz, 2000).

Usage

```
AsianAmerPutLSM(Spot = 1, sigma = 0.2, n = 1000, m = 365, Strike = 1.1, r = 0.06,
dr = 0, mT = 1)
## S3 method for class 'AsianAmerPut'
print(x, ...)
## S3 method for class 'AsianAmerPut'
summary(object, ...)
```

Arguments

Spot	Spot price of the underlying asset (e.g. stock).
sigma	Volatility of the underlying asset.
n	Number of paths simulated.
m	Number of time steps in the simulation.
Strike	Strike price of the option.
r	Interest rate of the numeraire currency (e.g. EUR).
dr	Dividend rate of the underlying asset.
mT	Maturity time (years).
x	An object returned by the functions AsianAmerPutLSM.
object	An object returned by the function AsianAmerPutLSM.
	Not used.

Value

The function returns an object of the class AsianAmerPut that is a list comprising the price calculated, option type, and the entry parameters. Class-specific print function gives the option type information and the price. The price as a single number can be derived using the price function. An overview of the entire object can be seen using the summary function.

Author(s)

Mikhail A. Beketov

References

Longstaff, F.A., and E.S. Schwartz. 2000. Valuing american option by simulation: A simple least-squared approach. The Review of Financial Studies. 14:113-147.

See Also

Functions: price, AmerPutLSM, AmerPutLSM_CV, AmerPutLSM_AV, and QuantoAmerPutLSM.

Examples

```
AsianAmerPutLSM(n=500, m=100)
put<-AsianAmerPutLSM(Spot=14.2, Strike=16.5, n=500, m=50)
put
summary(put)
price(put)
put$price
```

AsianAmerPutLSMPriceSurf

Deriving a table of Asian American put prices at different volatilities and strikes

Description

The function calculates the prices at different volatilities and strikes using the AsianAmerPutLSM function.

Usage

```
AsianAmerPutLSMPriceSurf(Spot = 1, vols = (seq(0.1, 2, 0.1)), n = 1000, m = 365, strikes = (seq(0.5, 2.5, 0.1)), r = 0.06, dr = 0, mT = 1)
```

Arguments

Spot	Spot price of the underlying asset (e.g. stock).
vols	Sequence of volatilities.
n	Number of paths simulated.
m	Number of time steps in the simulation.
strikes	Sequence of strikes.
r	Interest rate of the numeraire currency (e.g. EUR).
dr	Dividend rate of the underlying asset.
mT	Maturity time (years).

EuPutBS 11

Value

The function returns an object of the class PriceSurface that is a matrix of prices at different volatilities and strikes. Class-specific summary function gives the sequences of volatilities and strikes used, as well as maximum, minimum, and average prices. Class-specific plot function constructs a 3-D plot of the price surface.

Author(s)

Mikhail A. Beketov

See Also

Functions: AsianAmerPutLSM, summary.PriceSurface, plot.PriceSurface, AmerPutLSMPriceSurf, and QuantoAmerPutLSMPriceSurf.

Examples

```
surface<-AsianAmerPutLSMPriceSurf(vols = (seq(0.1, 1.5, 0.2)), n=200, m=10,
strikes = (seq(0.5, 1.9, 0.2)))
summary(surface)
plot(surface, color = divPalette(150, "RdBu"))</pre>
```

EuPutBS

Black & Scholes solution for European put and call

Description

Pricing plain vanilla American put and call options using Black & Scholes solution.

Usage

```
EuPutBS(Spot, sigma, Strike, r, dr, mT)
EuCallBS(Spot, sigma, Strike, r, dr, mT)
```

Arguments

Spot	Spot price of the underlying asset (e.g. stock).
sigma	Volatility of the underlying asset.
Strike	Strike price of the option.
r	Interest rate of the numeraire currency (e.g. EUR).
dr	Dividend rate of the underlying asset.
mT	Maturity time (years).

Value

The function returns the price as a single number (class "numeric").

12 fastGBM

See Also

```
AmerPutLSM_CV
```

Examples

```
EuPutBS(1, 0.2, 1, 0.06, 0, 1)
EuCallBS(1, 0.2, 1, 0.06, 0, 1)
```

fastGBM

Generating Geometric Brownian motion

Description

Quick Generating Geometric Brownian motion avoiding unnecessary loops using the cumsum function. Technical function implemented in the pricing functions of the package.

Usage

```
fastGBM(Spot = 1, sigma = 0.2, n = 1000, m = 365, r = 0.06, dr = 0, mT = 1)
```

Arguments

Spot price of the underlying asset (e.g. stock).
Volatility of the underlying asset.
Number of paths simulated.
Number of time steps in the simulation.
Interest rate of the numeraire currency (e.g. EUR).
Dividend rate of the underlying asset.
Maturity time (years).

Value

Table with paths generated (each row is a path, class "matrix")

Author(s)

Mikhail A. Beketov

See Also

 $Functions: AmerPutLSM, AmerPutLSM_CV, Asian AmerPutLSM, Quanto AmerPutLSM, and Quanto AmerPutLSM_AV.$

```
fastGBM(n=10, m=5)
matplot(t(fastGBM(n=100, m=100)), type="1") # matrix transpose by "t()"
```

firstValueRow 13

firstValueRow

Returning the first >0 value in each row of a matrix

Description

Technical function implemented in the pricing functions of the package. It returns the first >0 value in each row of a matrix and assign zero to all subsequent values.

Usage

```
firstValueRow(x)
```

Arguments

Х

A matrix.

Value

A matrix.

Author(s)

Mikhail A. Beketov

See Also

Functions: AmerPutLSM, AmerPutLSM_AV, AmerPutLSM_CV, AsianAmerPutLSM, QuantoAmerPutLSM, and QuantoAmerPutLSM_AV.

Examples

```
\label{eq:matrix} \begin{array}{ll} \text{mat} < -\text{matrix}(c(\emptyset,\emptyset,2,\emptyset,4,\emptyset,3,\emptyset,1,9,8,7), \text{ ncol=4}) \\ \text{mat} \\ \text{firstValueRow}(\text{mat}) \end{array}
```

price

Extracting price from the pricing functions outputs

Description

The function is nothing else, but the object\$price action, with the object returned by the pricing functions in the package.

Usage

```
price(x)
```

14 QuantoAmerPutLSM

Arguments

Χ

Object returned by the pricing functions in the package

Value

The function returns the price as a single number (class "numeric").

See Also

Functions: AmerPutLSM, AmerPutLSM_AV, AmerPutLSM_CV, AsianAmerPutLSM, QuantoAmerPutLSM, and QuantoAmerPutLSM_AV.

Examples

```
put<-AmerPutLSM()
price(put)
put$price</pre>
```

QuantoAmerPutLSM

Calculating the price of Quanto American put

Description

The function calculates the price of Quanto American put with Least Squares Monte Carlo method. The Quanto option is cash-settled option, whose pay-off is converted into a third currency/asset at exercise at a pre-specified rate/price (Wystup, 2011), and can also be considered as a usual option but settled in a "wrong" asset (Vecer, 2011). The regression model included in the algorithm is quadratic polynomial (Longstaff & Schwartz, 2000).

Usage

```
QuantoAmerPutLSM(Spot = 1, sigma = 0.2, n = 1000, m = 365, Strike = 1.1, r = 0.06,
dr = 0, mT = 1, Spot2 = 1, sigma2 = 0.2, r2 = 0, dr2 = 0, rho = 0)
## S3 method for class 'QuantoAmerPut'
print(x, ...)
## S3 method for class 'QuantoAmerPut'
summary(object, ...)
```

Arguments

Spot Spot price of the underlying asset (e.g. stock).

sigma Volatility of the underlying asset.

n Number of paths simulated.

m Number of time steps in the simulation.

QuantoAmerPutLSM 15

Strike	Strike price of the option.
r	Interest rate of the numeraire currency (e.g. USD).
dr	Dividend rate of the underlying asset.
mT	Maturity time (years).
Spot2	Spot price of the 3rd asset (e.g. EUR/USD).
sigma2	Volatility of the 3rd asset.
r2	Interest rate of the 3rd asset.
dr2	Dividend rate of the 3rd asset.
rho	Correlation coefficient between the prices.
x	An object returned by the functions QuantoAmerPutLSM.
object	An object returned by the function QuantoAmerPutLSM.
	Not used.

Value

The function returns an object of the class QuantoAmerPut that is a list comprising the price calculated, option type, and the entry parameters. Class-specific print function gives the option type information and the price. The price as a single number can be derived using the price function. An overview of the entire object can be seen using the summary function.

Note

The function rmvnorm included in the pricing algorithm is a part of the mnormt package. Please, load that package before the use of the QuantoAmerPutLSM function.

Author(s)

Mikhail A. Beketov

References

Longstaff, F.A., and E.S. Schwartz. 2000. Valuing american option by simulation: A simple least-squared approach. The Review of Financial Studies. 14:113-147.

Vecer, J. 2011. Stochastic Finance: A Numeraire Approach. CRC Press.

Wystup, U. 2011. Quanto Options. MathFinance AG.

See Also

Functions: price, QuantoAmerPutLSM_AV, AmerPutLSM, AsianAmerPutLSM, and AmerPutLSM_AV.

```
QuantoAmerPutLSM(n=200, m=50)
put<-QuantoAmerPutLSM(Spot=14.2, Strike=16.5, n=200, m=50)
put
summary(put)
price(put)</pre>
```

QuantoAmerPutLSMPriceSurf

Deriving a table of Quanto American put prices at different volatilities and strikes

Description

The function calculates the prices at different volatilities and strikes using the QuantoAmerPutLSM function.

Usage

```
QuantoAmerPutLSMPriceSurf(Spot = 1, vols = (seq(0.1, 2, 0.1)), n = 1000, m = 365, strikes = (seq(0.5, 2.5, 0.1)), r = 0.06, dr = 0, mT = 1, Spot2 = 1, sigma2 = 0.2, r2 = 0, dr2 = 0, rho = 0)
```

Arguments

Spot	Spot price of the underlying asset (e.g. stock).	
vols	Sequence of volatilities.	
n	Number of paths simulated.	
m	Number of time steps in the simulation.	
strikes	Sequence of strikes.	
r	Interest rate of the numeraire currency (e.g. USD).	
dr	Dividend rate of the underlying asset.	
mT	Maturity time (years).	
Spot2	Spot price of the 3rd asset (e.g. EUR/USD).	
sigma2	Volatility of the 3rd asset.	
r2	Interest rate of the 3rd asset.	
dr2	Dividend rate of the 3rd asset.	
rho	Correlation coefficient between the prices.	

Value

The function returns an object of the class PriceSurface that is a matrix of prices at different volatilities and strikes. Class-specific summary function gives the sequences of volatilities and strikes used, as well as maximum, minimum, and average prices. Class-specific plot function constructs a 3-D plot of the price surface.

Note

The function rmvnorm included in the pricing algorithm is a part of the mnormt package. Please, load that package before the use of the QuantoAmerPutLSMPriceSurf function. Using the function plot with default pallet requires package fBasics, if you do not want to load this package, you can set color=NULL or other palette).

Author(s)

Mikhail A. Beketov

See Also

Functions: QuantoAmerPutLSM, summary.PriceSurface, plot.PriceSurface, AmerPutLSMPriceSurf, and AsianAmerPutLSMPriceSurf.

Examples

```
surface<-QuantoAmerPutLSMPriceSurf(vols = (seq(0.1, 1.7, 0.2)), n=100, m=5,
strikes = (seq(0.7, 1.7, 0.2)))
summary(surface)
plot(surface, color = divPalette(150, "RdBu"))</pre>
```

QuantoAmerPutLSM_AV

Pricing Quanto American put with Antithetic Variates

Description

The function calculates the price of Quanto American put with Least Squares Monte Carlo method with Antithetic Variates (Glasserman, 2004). The Quanto option is cash-settled option, whose payoff is converted into a third currency/asset at exercise at a pre-specified rate/price (Wystup, 2011), and can also be considered as a usual option but settled in a "wrong" asset (Vecer, 2011). The regression model included in the algorithm is quadratic polynomial (Longstaff & Schwartz, 2000).

Usage

```
QuantoAmerPutLSM_AV(Spot = 1, sigma = 0.2, n = 1000, m = 365, Strike = 1.1,
r = 0.06, dr = 0, mT = 1, Spot2 = 1, sigma2 = 0.2, r2 = 0, dr2 = 0, rho = 0)
## S3 method for class 'QuantoAmerPut_AV'
print(x, ...)
## S3 method for class 'QuantoAmerPut_AV'
summary(object, ...)
```

Arguments

Spot	Spot price of the underlying asset (e.g. stock).	
sigma	Volatility of the underlying asset.	
n	Number of paths simulated.	
m	Number of time steps in the simulation.	
Strike	Strike price of the option.	
r	Interest rate of the numeraire currency (e.g. USD).	

	dr	Dividend rate of the underlying asset.
--	----	--

mT Maturity time (years).

Spot 2 Spot price of the 3rd asset (e.g. EUR/USD).

sigma2 Volatility of the 3rd asset.

r2 Interest rate of the 3rd asset.

dr2 Dividend rate of the 3rd asset.

rho Correlation coefficient between the prices.

x An object returned by the functions QuantoAmerPutLSM_AV. object An object returned by the function QuantoAmerPutLSM_AV.

... Not used.

Value

The function returns an object of the class QuantoAmerPut_AV that is a list comprising the price calculated, option type, and the entry parameters. Class-specific print function gives the option type information and the price. The price as a single number can be derived using the price function. An overview of the entire object can be seen using the summary function.

Note

The function rmvnorm included in the pricing algorithm is a part of the mnormt package. Please, load that package before the use of the QuantoAmerPutLSM_AV function.

Author(s)

Mikhail A. Beketov

References

Glasserman, P. 2004. Monte Carlo Methods in Financial Engineering. Springer.

Longstaff, F.A., and E.S. Schwartz. 2000. Valuing american option by simulation: A simple least-squared approach. The Review of Financial Studies. 14:113-147.

Vecer, J. 2011. Stochastic Finance: A Numeraire Approach. CRC Press.

Wystup, U. 2011. Quanto Options. MathFinance AG.

See Also

Functions: price, QuantoAmerPutLSM, AmerPutLSM, AsianAmerPutLSM, and AmerPutLSM_AV.

```
QuantoAmerPutLSM_AV(n=200, m=50)
put<-QuantoAmerPutLSM_AV(Spot=14.2, Strike=16.5, n=200, m=50)
put
summary(put)
price(put)</pre>
```

Index

* American call EuPutBS, 11 * American put		firstValueRow, 13	
		LSMonteCarlo-package, 2	
		price, 13	
	AmerPutLSM, 3	QuantoAmerPutLSM, 14	
	AmerPutLSM_AV, 6	QuantoAmerPutLSM_AV, 17	
	AmerPutLSM_CV, 7	QuantoAmerPutLSMPriceSurf, 16	
	AmerPutLSMPriceSurf, 4	* Quantitative Finance	
	AsianAmerPutLSM, 9	LSMonteCarlo-package, 2	
	AsianAmerPutLSMPriceSurf, 10	* Regression	
	EuPutBS, 11	LSMonteCarlo-package, 2	
	fastGBM, 12	*	
	firstValueRow, 13	LSMonteCarlo-package, 2	
	price, 13	AmounDattion 2 2 5 7 0 10 12 15 10	
	QuantoAmerPutLSM, 14	AmerPutLSM, 3, 3, 5, 7, 8, 10, 12–15, 18	
	QuantoAmerPutLSM_AV, 17	AmerPutLSM_AV, 3, 4, 6, 8, 10, 12–15, 18	
	QuantoAmerPutLSMPriceSurf, 16	AmerPutLSM_CV, 3, 4, 7, 7, 10, 12–14	
* N	Ionte Carlo	AmerPutLSMPriceSurf, 4, 11, 17	
	AmerPutLSM, 3	AsianAmerPutLSM, <i>3</i> , <i>4</i> , <i>7</i> , <i>8</i> , 9, <i>11–15</i> , <i>18</i> AsianAmerPutLSMPriceSurf, <i>5</i> , 10, <i>17</i>	
	AmerPutLSM_AV, 6	ASTANAMIET PULLSMPT TCESUTT, 3, 10, 17	
	AmerPutLSM_CV, 7	EuCallBS (EuPutBS), 11	
	AmerPutLSMPriceSurf, 4	EuPutBS, 11	
	AsianAmerPutLSM, 9	,	
	AsianAmerPutLSMPriceSurf, 10	fastGBM, 12	
	fastGBM, 12	firstValueRow, 13	
	firstValueRow, 13	104 10 1 (104 10 1 1 1)	
	LSMonteCarlo-package, 2	LSMonteCarlo (LSMonteCarlo-package), 2	
price, 13		LSMonteCarlo-package, 2	
	QuantoAmerPutLSM, 14	plot.PriceSurface, 11, 17	
	QuantoAmerPutLSM_AV, 17	plot.PriceSurface	
	QuantoAmerPutLSMPriceSurf, 16	(AmerPutLSMPriceSurf), 4	
* Option pricing		price, 4, 7, 8, 10, 13, 15, 18	
	AmerPutLSM, 3	print.AmerPut(AmerPutLSM), 3	
	AmerPutLSM_AV, 6	print.AmerPutAV(AmerPutLSM_AV),6	
	AmerPutLSM_CV, 7	print.AmerPutCV(AmerPutLSM_CV), 7	
	AmerPutLSMPriceSurf, 4	print.AsianAmerPut(AsianAmerPutLSM), 9	
	AsianAmerPutLSM, 9	print.QuantoAmerPut(QuantoAmerPutLSM)	
	AsianAmerPutLSMPriceSurf, 10	14	
	EuPutBS, 11	<pre>print.QuantoAmerPut_AV</pre>	
	fastGBM, 12	(QuantoAmerPutLSM_AV), 17	

20 INDEX