The R package, LARisk
, to compute lifetime attributable
risk (LAR) of radiation-induced cancer can be helpful with enhancement
of the flexibility in research of projected risks of
radiation-associated cancers. LARisk
produces LAR estimates
considering various options or arguments. In addition, it is possible to
handle large-size data easily and compute LAR values by the group such
as occupation, sex, age, group, etc., which can provide research topics
for radiation-associated cancer risk.
This document provides a detailed description of the
LARisk
package with some examples. If the package is
installed, then we can load it into an R session by
LAR
functionThe LARisk
package has 3 main functions for estimating
lifetime attributable risk such as LAR
,
LAR_batch
and LAR_group
. LAR
is a
basic function to compute individual LAR values. And the others are
extended functions to handle large batch data and calculate LAR
estimates by group. The description of each function is in
Functions for estimating LAR.
LAR(data, basedata, sim=300, seed=99, current=as.numeric(substr(Sys.Date(),1,4)),
ci=0.9, weight=NULL, DDREF=TRUE, basepy=1e+05)
The following table shows the arguments of the LAR
function.
Arguments | Description |
---|---|
data | A data frame containing demographic and exposure information |
basedata | A list of data of lifetime and incidence rate tables |
sim | A scalar for the number of iteration |
seed | A scalar for a random seed number |
current | A scalar for a current year |
ci | A scalar for confidence level to compute confidence intervals for LAR estimates |
weight | A list containing values on [0,1] to compute LAR values based on ERR and EAR models for each cancer site |
DDREF | Logical. Whether apply the dose and dose-rate effectiveness factor for chronic exposure |
basepy | A scalar for the number of base person-years |
The data should have some prerequisite information such as sex and birth year(s) (birth), exposure year (exposure), exposed dose distributions (dosedist), fixed exposed radiation dose or parameters of dose distributions (dose1, dose2, dose3), sites where exposed (site), and exposure rate (exposure_rate). The name of variables in data should be written as expressed.
The following table expresses the essential variables of the argument, data.
Variables | Format |
---|---|
sex | one of the character strings ‘male’ or ‘female’ |
birth | numeric |
expposure | numeric |
site | one of the chracter strings ‘stomach’, ‘colon’, ‘liver’, ‘lung’, ‘breast’, ‘ovary’, ‘uterus’, ‘prostate’, ‘bladder’, ‘brain/cns’, ‘thyroid’, ‘remainder’, ‘oral’, ‘oesophagus’, ‘rectum’, ‘gallbladder’, ‘pancreas’, ‘kidney’, ‘leukemia’. |
exposure_rate | one of the character strings ‘chronic’ or ‘acute’ |
dosedist | one of the character strings ‘fixedvalue’, ‘lognormal’, ‘normal’, ‘triangular’, ‘logtriangular’, ‘uniform’, ‘loguniform’ |
dose1 | numeric |
dose2 | numeric |
dose3 | numeric |
Because LAR
is the function for each object, it is
logically trivial that all sex and
birth are same. Also, since the event dates of exposure
must occur after the birth date, exposure should be
larger than birth.
ex_data <- data.frame(sex = 'male', birth = 1900, exposure = 1980,
site = 'stomach', exposure_rate = "chronic",
dosedist = 'fixedvalue', dose1 = 10, dose2=NA, dose3=NA)
LAR(ex_data, basedata=list(life2010, incid2010)) ## error
#> Error in check_data(data, current): Age is not allowed to be greater than 100 years.
The maximum age in the function is set as 100 years old. If the data contains a birth year which makes attained age over 100, it occurs error.
For site, we put the irradiated organ site or
cancer-site. LAR
estimates excess cases with the site as
‘stomach’, ‘colon’, ‘liver’, ‘lung’,
‘breast’, ‘ovary’, ‘uterus’,
‘prostate’, ‘bladder’, ‘brain/cns’,
‘thyroid’, ‘remainder’, ‘oral’,
‘oesophagus’, ‘rectum’, ‘gallbladder’,
‘pancreas’, ‘kidney’, ‘leukemia’. In
particular, site that are applicable in
LAR
differ by gender(sex). For
male, ‘breast’, ‘ovary’ and ‘uterus’
are not allowed. Similarly, for female, ‘prostate’ is
not allowed.
In dosedist, we insert the distribution of the
exposed dose. It can have ‘fixedvalue’, ‘lognormal’,
‘normal’, ‘triangular’, ‘logtriangular’,
‘uniform’ or ‘loguniform’. Each distribution demands
essential parameters. For instance, if the exposed dose has a normal
distribution with the mean of 2.3 and the standard deviation of 0.8, we
input dose1=2.3
, dose2=0.8
and
dose3=NA
. If the dose has the fixed value of 3.2, we add
values asdose1=3.2
, dose2=NA
and
dose3=NA
.
dose distribution | dose1 | dose2 | dose3 |
---|---|---|---|
fixedvalue | value | NA | NA |
lognormal | median | geometric standard deviation | NA |
normal | mean | standard deviation | NA |
triangular | minimum | mode | maximum |
logtriangular | minimum | mode | maximum |
uniform | minimum | maximum | NA |
loguniform | minimum | maximum | NA |
The LAR
and the other extended functions need lifetime
and cancer incidence rate tables. We put these tables to the argument
‘basedata’ in which the first element is lifetime table
and the second element is cancer incidence rate table.
LAR(data,
basedata = list("the first is lifetime table", "the second is cancer incidence rate table"))
LARisk
includes these tables which were made in 2010 and
2018 in Korea: life2010
, incid2010
,
life2018
and incid2018
. Thus we can estimate
the risk for the Korean population in 2010 or 2018 using these
tables.
If we want to estimate the risks of the other population, we’ll need the lifetime and cancer incidence rate tables of the population. Similar to data, lifetime and cancer incidence rate tables must follow the specified format.
head(life2010) ## lifetime table of the Korean in 2010.
#> Age Prob_d_m Prob_d_f
#> 1 0 0.00369 0.00275
#> 2 1 0.00032 0.00030
#> 3 2 0.00025 0.00022
#> 4 3 0.00018 0.00015
#> 5 4 0.00015 0.00011
#> 6 5 0.00013 0.00009
The columns of a lifetime table are consist of ‘Age’, ‘Prob_d_m’, and ‘Prob_d_f’. Prob_d_m and Prob_d_f are the probabilities of death of male and female, respectively.
head(incid2010) ## cancer incidence rate table of the Korean in 2010.
#> Site Age Rate_m Rate_f
#> 1 oral 0 0.2 0.1
#> 2 oral 1 0.2 0.1
#> 3 oral 2 0.2 0.1
#> 4 oral 3 0.2 0.1
#> 5 oral 4 0.2 0.1
#> 6 oral 5 0.2 0.2
Also, the columns of a cancer incidence rate table consist of ‘Site’, ‘Age’, ‘Rate_m’, and ‘Rate_f’. Rate_m and Rate_f are incidence rates of each cancer site of male and female, respectively. The tables should have the range of age from 0 to 100 one by one.
weight is used to estimate LAR through the weighted average of LAR estimates based on ERR and EAR models. It has the form of list whose name of elements is site to decide organ and values of them is for a specific value of the weight. For example, if a weight of stomach cancer is 0.5, run the below code.
LAR
sets the default weight to 0.7 in most cancers.
However, in lung cancer, the weight is 0.3, and cancers of breast and
thyroid only have weights of 1 for LAR functions based on EAR or ERR
models, respectively (see below table).
Cancer site | LAR_ERR | LAR_EAR | weight |
---|---|---|---|
Most cancer | 70% | 30% | 0.7 |
Lung | 30% | 70% | 0.3 |
Breast | 0% | 100% | 0.0 |
Thyroid | 100% | 0% | 1.0 |
Gallbladder | 100% | 0% | 1.0 |
Brain/CNS | 100% | 0% | 1.0 |
DDREF (dose and dose-rate effectiveness factor) is
the logical option to select whether or not to consider DDREF in the LAR
calculation. DDREF is to modify the effect of exposure, especially, for
low-dose exposure. In addition, DDREF is considered differently
according to exposure rate. However, if the site is leukemia, DDREF dose
not apply even if DDREF = TRUE
.
ex_data <- data.frame(sex = 'male', birth = 1990, exposure = 2015,
site = 'leukemia', exposure_rate = "chronic",
dosedist = 'fixedvalue', dose1 = 10, dose2=NA, dose3=NA)
LAR(ex_data, basedata=list(life2010, incid2010), DDREF=TRUE)
#> LAR:
#> Lower Mean Upper
#> 2.6587 5.9803 13.4514
#>
#> Future LAR:
#> Lower Mean Upper
#> F.LAR 2.4456 5.4806 12.2823
#> BFR 530.4766 530.4766 530.4766
#> TFR 532.9221 535.9572 542.7589
#> ---
LAR(ex_data, basedata=list(life2010, incid2010), DDREF=FALSE) ## the result are same
#> LAR:
#> Lower Mean Upper
#> 2.6587 5.9803 13.4514
#>
#> Future LAR:
#> Lower Mean Upper
#> F.LAR 2.4456 5.4806 12.2823
#> BFR 530.4766 530.4766 530.4766
#> TFR 532.9221 535.9572 542.7589
#> ---
seed is the random seed number. As long as the same
seed number is provided, we obtain the same result in anytime.
sim is the number of simulation runs. Note that as
sim goes larger, the computation time takes longer
although the simulation variation is getting smaller. i.e., even though
seed is different, the large sim
yields a similar outcome. In LARisk
, sim=300
is default. basepy is the baseline person year such as
10,000 person year or 100,000 person year.
LAR(data, basedata, seed=1111) ## changing seed number, the result is also changed
LAR(data, basedata, sim=1000) ## the large 'sim' offers a stable simulation result
LAR(data, basedata, basepy=1e+03) ## setting the baseline person-year is 1000
current is the year to set as the moment of estimation. The default value is set as the system time of the computer. Since it is considered as the current year, we can change the option if we want to set the current time into other years. It recommends that the value should be in form of a year in 4 digits.
Changing the current time affects the estimation of future lifetime attributable risk and future baseline risk.
ci is the level of significance to provide the
confidence interval of LAR estimates, expressed in number between 0 and
1. The default value is 0.9, in other words, the LAR
function provides the confidence interval at 90% level of significance
in default setting.
As mentioned above, the package LARisk
includes 3 main
functions LAR
, LAR_batch
, and
LAR_group
that estimate the LAR values for various cases.
These functions can be used for a variety of purposes by users. The
functions give the three kinds of estimates such as lifetime risk,
future risk and lifetime baseline risk. LAR
and
F_LAR
are represented as LAR and future LAR estimates with
confidence limits (lower and upper) for each cancer site, solid cancer
and total.
We will use the toy example data ‘nuclear’ in this section, which is
simulated with the assumption that all people are exposed to radiation
at the same time (Details on this data are in “APPENDIX:
Datasets in LARisk
”).
LAR
: the function of estimating LAR for one personLAR
is the function to estimate LAR for one person. It
returns an object of class LAR
. LAR
class
contains the risks of the person, information of the person (gender and
birth-year), and some options for calculating risks. The following is
the table of components in the LAR
object.
Values | Description |
---|---|
LAR | Lifetime attributable risk (LAR) from the time of exposure to the end of the expected lifetime |
F_LAR | Future attributable risk from current to the expected lifetime |
LBR | Lifetime baseline risk |
BFR | Baseline future risk |
LFR | Lifetime fractional risk |
TFR | Total future risk |
current | Current year |
ci | Confidence level |
pinfo | Information of the person |
nuclear1 <- nuclear[nuclear$ID=="ID01",]
print(nuclear1)
#> ID sex birth exposure site exposure_rate dosedist dose1 dose2
#> 1 ID01 female 1973 2011 ovary acute fixedvalue 50.06989 NA
#> 2 ID01 female 1973 2011 oesophagus acute fixedvalue 50.37462 NA
#> 3 ID01 female 1973 2011 bladder acute fixedvalue 52.46040 NA
#> 4 ID01 female 1973 2011 lung acute fixedvalue 55.69177 NA
#> 5 ID01 female 1973 2011 remainder acute fixedvalue 51.64678 NA
#> 6 ID01 female 1973 2011 rectum acute fixedvalue 49.37011 NA
#> 7 ID01 female 1973 2011 thyroid acute fixedvalue 54.14875 NA
#> dose3 distance
#> 1 NA 1
#> 2 NA 1
#> 3 NA 1
#> 4 NA 1
#> 5 NA 1
#> 6 NA 1
#> 7 NA 1
LAR(nuclear1, basedata = list(life2010, incid2010))
#> LAR:
#> Lower Mean Upper
#> 359.9479 671.3751 1203.8111
#>
#> Future LAR:
#> Lower Mean Upper
#> F.LAR 321.1756 547.7289 926.4876
#> BFR 15038.6045 15038.6045 15038.6045
#> TFR 15359.7802 15586.3335 15965.0921
#> ---
The LAR
object prints the total LAR , total future LAR,
total baseline future risk, and total future risk. If you want the more
detailed results, you can use the summary
function.
summary(LAR(nuclear1, basedata = list(life2010, incid2010)))
#> Information:
#> sex birth
#> female 1973
#>
#> LAR:
#> Lower Mean Upper LBR LFR
#> lung 74.5065 156.5247 241.1717 3630.3464 0.0431
#> ovary 4.4880 13.3756 27.6491 697.6095 0.0192
#> bladder 13.0799 30.4405 58.7444 452.0590 0.0673
#> thyroid 83.9986 368.7603 877.5446 7318.8901 0.0504
#> remainder 33.5177 89.1794 169.3327 4237.3935 0.0210
#> oesophagus 0.2000 4.0450 10.4666 116.7920 0.0346
#> rectum 0.2670 9.0496 21.7567 2157.6294 0.0042
#> leukemia 0.0000 0.0000 0.0000 0.0000 NaN
#> solid 359.9479 671.3751 1203.8111 18610.7199 0.0361
#> total 359.9479 671.3751 1203.8111 18610.7199 0.0361
#>
#> Future LAR:
#> Lower Mean Upper BFR TFR
#> lung 72.5943 152.5667 235.0454 3529.8402 3682.4069
#> ovary 3.8388 11.2291 24.1188 557.0741 568.3032
#> bladder 12.9023 30.0419 57.9653 450.8342 480.8761
#> thyroid 58.8575 259.8668 638.9150 4383.3358 4643.2027
#> remainder 31.1815 81.8748 154.7518 3987.9538 4069.8286
#> oesophagus 0.1963 3.8641 10.0477 115.1383 119.0024
#> rectum 0.2484 8.2855 19.8152 2014.4280 2022.7136
#> leukemia 0.0000 0.0000 0.0000 0.0000 0.0000
#> solid 321.1756 547.7289 926.4876 15038.6045 15586.3335
#> total 321.1756 547.7289 926.4876 15038.6045 15586.3335
#>
#> Confidence Level: 0.9
#> Current Year: 2025
#> ---
The suumary
function provides the person’s gender and
year of birth, risks by cancer type, confidence levels, and current
year. In summary
results, the LAR tab includes
site-specific LAR, lifetime baseline risk (LBR), and lifetime fractional
risk (LFR). Also, the Future LAR tab contains site-specific future LAR,
baseline future risk (BFR), and total future risk (TFR).
LAR_batch
: the function of estimating LAR for several
peopleIf you want to consider more than one person, you can use
LAR'. But, for large observations, the
LAR_batchfunction is useful. Unlike
LAR`,
it calculates each persons’ risks after reading multiple people’s data
at once.
Since data contains more than one person, the function requires an
argument to distinguish each person. pid
is the argument,
which is a vector to distinguish each person in the dataset. For
example, suppose that we want to calculate LAR estimates of several
people in the nuclear
dataset. Since the variable “ID” is
the person ID for this data, we can estimate the LAR values as
follows.
ex_batch <- LAR_batch(nuclear, pid=nuclear$ID, basedata = list(life2010, incid2010))
class(ex_batch)
#> [1] "LAR_batch" "LAR"
class(ex_batch[[1]])
#> [1] "LAR"
The LAR_batch
returns the LAR_batch
class
object. It is the form of the list of LAR
class objects
which names of elements are IDs for people, i.e., each element of
LAR_batch
class is LAR
class object. Thus,
printing the results of LAR_batch
is similar to
LAR
.
print(ex_batch, max.id=3)
#> LAR result of ID01
#>
#> LAR:
#> Lower Mean Upper
#> 359.9479 671.3751 1203.8111
#>
#> Future LAR:
#> Lower Mean Upper
#> F.LAR 321.1756 547.7289 926.4876
#> BFR 15038.6045 15038.6045 15038.6045
#> TFR 15359.7802 15586.3335 15965.0921
#> ---
#>
#> LAR result of ID02
#>
#> LAR:
#> Lower Mean Upper
#> 308.6326 532.0084 758.9928
#>
#> Future LAR:
#> Lower Mean Upper
#> F.LAR 290.4604 508.7879 714.8052
#> BFR 24619.7282 24619.7282 24619.7282
#> TFR 24910.1886 25128.5161 25334.5334
#> ---
#>
#> LAR result of ID03
#>
#> LAR:
#> Lower Mean Upper
#> 791.5664 1241.2319 1734.6870
#>
#> Future LAR:
#> Lower Mean Upper
#> F.LAR 762.0682 1201.938 1672.642
#> BFR 20323.9982 20323.998 20323.998
#> TFR 21086.0664 21525.937 21996.640
#> ---
#>
#> The results for 17 people are omitted.
If you want the minimum results, we can use the print
.
It also runs by default when simply calling the LAR_batch
class object. Using the max.id
option, you can control the
maximum number of printing results (default is 50).
Similarly, using the summary
, you can get more
detailed results. The result of the function is the same as listing the
summary of each person.
summary(ex_batch, max.id=3)
#> summaries of LAR result : ID01
#>
#> Information:
#> sex birth
#> female 1973
#>
#> LAR:
#> Lower Mean Upper LBR LFR
#> lung 74.5065 156.5247 241.1717 3630.3464 0.0431
#> ovary 4.4880 13.3756 27.6491 697.6095 0.0192
#> bladder 13.0799 30.4405 58.7444 452.0590 0.0673
#> thyroid 83.9986 368.7603 877.5446 7318.8901 0.0504
#> remainder 33.5177 89.1794 169.3327 4237.3935 0.0210
#> oesophagus 0.2000 4.0450 10.4666 116.7920 0.0346
#> rectum 0.2670 9.0496 21.7567 2157.6294 0.0042
#> leukemia 0.0000 0.0000 0.0000 0.0000 NaN
#> solid 359.9479 671.3751 1203.8111 18610.7199 0.0361
#> total 359.9479 671.3751 1203.8111 18610.7199 0.0361
#>
#> Future LAR:
#> Lower Mean Upper BFR TFR
#> lung 72.5943 152.5667 235.0454 3529.8402 3682.4069
#> ovary 3.8388 11.2291 24.1188 557.0741 568.3032
#> bladder 12.9023 30.0419 57.9653 450.8342 480.8761
#> thyroid 58.8575 259.8668 638.9150 4383.3358 4643.2027
#> remainder 31.1815 81.8748 154.7518 3987.9538 4069.8286
#> oesophagus 0.1963 3.8641 10.0477 115.1383 119.0024
#> rectum 0.2484 8.2855 19.8152 2014.4280 2022.7136
#> leukemia 0.0000 0.0000 0.0000 0.0000 0.0000
#> solid 321.1756 547.7289 926.4876 15038.6045 15586.3335
#> total 321.1756 547.7289 926.4876 15038.6045 15586.3335
#>
#> Confidence Level: 0.9
#> Current Year: 2025
#> ---
#>
#> summaries of LAR result : ID02
#>
#> Information:
#> sex birth
#> male 1981
#>
#> LAR:
#> Lower Mean Upper LBR LFR
#> colon 91.2117 191.6816 305.6734 4478.9565 0.0428
#> lung 74.4763 168.8631 279.8595 9283.1503 0.0182
#> prostate -86.4482 25.0355 145.8765 5267.9372 0.0048
#> thyroid 22.3790 96.6625 222.4750 1752.7121 0.0552
#> oral 3.5526 17.3279 37.6939 910.2072 0.0190
#> gallbladder -47.0215 -3.5972 35.1159 1660.5321 -0.0022
#> pancreas 7.0824 36.0351 75.1721 1444.6747 0.0249
#> leukemia 0.0000 0.0000 0.0000 0.0000 NaN
#> solid 308.6326 532.0084 758.9928 24798.1701 0.0215
#> total 308.6326 532.0084 758.9928 24798.1701 0.0215
#>
#> Future LAR:
#> Lower Mean Upper BFR TFR
#> colon 89.5358 187.5921 299.5779 4486.1536 4673.7458
#> lung 74.5921 169.2339 280.5659 9421.9911 9591.2250
#> prostate -87.7125 25.3151 147.5182 5375.1836 5400.4987
#> thyroid 17.7564 78.4418 176.4609 1298.3212 1376.7630
#> oral 3.2549 16.1630 35.3841 895.4369 911.5999
#> gallbladder -47.1338 -3.6042 35.1967 1683.8350 1680.2308
#> pancreas 6.9058 35.6461 74.5706 1458.8067 1494.4529
#> leukemia 0.0000 0.0000 0.0000 0.0000 0.0000
#> solid 290.4604 508.7879 714.8052 24619.7282 25128.5161
#> total 290.4604 508.7879 714.8052 24619.7282 25128.5161
#>
#> Confidence Level: 0.9
#> Current Year: 2025
#> ---
#>
#> summaries of LAR result : ID03
#>
#> Information:
#> sex birth
#> male 1988
#>
#> LAR:
#> Lower Mean Upper LBR LFR
#> stomach 282.2981 484.3981 719.4266 10050.485 0.0482
#> prostate -209.3797 60.6094 306.9072 5240.937 0.0116
#> remainder 408.0930 696.2245 1095.6493 5028.838 0.1384
#> leukemia 0.0000 0.0000 0.0000 0.000 NaN
#> solid 791.5664 1241.2319 1734.6870 20320.261 0.0611
#> total 791.5664 1241.2319 1734.6870 20320.261 0.0611
#>
#> Future LAR:
#> Lower Mean Upper BFR TFR
#> stomach 277.4963 477.3002 708.9757 10096.193 10573.494
#> prostate -211.9092 60.9461 309.3497 5305.135 5366.081
#> remainder 387.4366 663.6922 1042.7133 4922.670 5586.362
#> leukemia 0.0000 0.0000 0.0000 0.000 0.000
#> solid 762.0682 1201.9384 1672.6416 20323.998 21525.937
#> total 762.0682 1201.9384 1672.6416 20323.998 21525.937
#>
#> Confidence Level: 0.9
#> Current Year: 2025
#> ---
#>
#> The results for 17 people are omitted.
### LAR_group
: the function of averaging estimated
LAR by group The function LAR_group
is averaging the
calculated risks according to groups. It offers grouped LAR, grouped
future LAR, and grouped baseline risk values based on values of
simulation for each person. It provides each LAR value for each group,
which makes new LAR values, and then these new LAR values are taken to
present summarized LAR values for each group.
This function requires not only the value distinguishing the person
but also the value for the group. group
is the vector or
list that groups the data. The function returns the
LAR_group
class object which is the form of a list of
LAR
class objects.
Suppose that we want to estimate the average LAR of the people
in the nuclear
dataset by the distance. Then we
can put group=nuclear$distnace
in
LAR_group
.
ex_group1 <- LAR_group(nuclear, pid = nuclear$ID, group = nuclear$distance,
basedata = list(life2010, incid2010))
summary(ex_group1)
#> summaries of LAR result : Group 1
#>
#> Group Information:
#> sex count birth
#> female 35 1962.600
#> male 45 1962.222
#>
#> LAR:
#> Lower Mean Upper LBR LFR
#> stomach 50.9850 66.2373 87.8936 2926.1714 0.0226
#> colon 43.4301 56.1274 72.3353 2160.0832 0.0260
#> liver 7.0657 10.4933 15.2987 808.9772 0.0130
#> lung 39.1538 53.4791 70.6998 3097.9930 0.0173
#> breast 2.8636 4.2821 6.0646 331.2576 0.0129
#> ovary 0.3206 0.9554 1.9749 49.8292 0.0192
#> uterus 0.0216 0.1491 0.3288 68.4665 0.0022
#> prostate -15.4917 6.2743 27.6037 960.8121 0.0065
#> bladder 10.5122 16.1598 23.8353 430.7553 0.0375
#> brain/cns 0.7414 1.3918 2.2998 46.3592 0.0300
#> thyroid 67.7618 185.2396 350.2187 1648.0018 0.1124
#> remainder 34.5468 56.8793 88.6948 912.3992 0.0623
#> oral 0.3038 1.3365 2.7663 105.2675 0.0127
#> oesophagus 2.7255 5.3313 8.1798 208.5186 0.0256
#> rectum 0.3667 1.3777 2.5946 618.5623 0.0022
#> gallbladder -6.2708 -0.9336 4.2742 420.9955 -0.0022
#> pancreas 3.4377 7.4064 11.9408 493.6795 0.0150
#> kidney 1.0530 3.2226 6.5984 203.1165 0.0159
#> leukemia 0.0713 0.2012 0.5677 19.9927 0.0101
#> solid 339.2210 475.4092 659.3305 15491.2456 0.0307
#> total 339.4012 475.6104 659.5318 15511.2384 0.0307
#>
#> Future LAR:
#> Lower Mean Upper BFR TFR
#> stomach 46.4503 61.4748 82.4859 2369.1288 2430.6036
#> colon 39.1060 51.8882 68.4563 1827.8028 1879.6909
#> liver 5.4983 8.2791 12.1746 509.4548 517.7339
#> lung 37.7782 51.8490 69.3206 2815.4823 2867.3312
#> breast 2.0931 3.1704 4.5034 124.3365 127.5069
#> ovary 0.2742 0.8021 1.7228 39.7910 40.5931
#> uterus 0.0185 0.1124 0.2367 35.1988 35.3112
#> prostate -15.6731 6.2053 27.6449 864.8368 871.0422
#> bladder 10.2254 15.9165 23.6161 378.5707 394.4872
#> brain/cns 0.5385 0.9752 1.5952 32.5980 33.5732
#> thyroid 54.0296 159.2511 307.1434 1101.5100 1260.7611
#> remainder 32.8132 53.7157 83.0856 807.5121 861.2278
#> oral 0.2438 1.2110 2.5980 83.9342 85.1452
#> oesophagus 2.2481 4.0510 5.9571 151.9243 155.9753
#> rectum 0.3149 1.2371 2.3627 498.7383 499.9754
#> gallbladder -5.8033 -0.8520 4.0685 348.0588 347.2068
#> pancreas 3.1216 6.9651 11.3113 437.1109 444.0761
#> kidney 0.9314 3.0793 6.4746 178.0941 181.1734
#> leukemia 0.0702 0.1217 0.2107 11.6943 11.8160
#> solid 305.7734 429.3313 595.1314 12604.0832 13033.4144
#> total 305.8951 429.4529 595.2530 12615.7775 13045.2304
#>
#> Confidence Level: 0.9
#> Current Year: 2025
#> ---
#>
#> summaries of LAR result : Group 2
#>
#> Group Information:
#> sex count birth
#> female 12 1987.417
#> male 5 1956.000
#>
#> LAR:
#> Lower Mean Upper LBR LFR
#> colon 372.7596 534.3113 750.7850 2319.0697 0.2304
#> liver 33.3218 57.2681 87.5048 1184.1939 0.0484
#> lung 846.3382 1072.5057 1355.1944 903.6865 1.1868
#> breast 222.3765 302.6915 391.8901 1117.4866 0.2709
#> ovary 9.4594 24.1729 47.0888 183.7846 0.1315
#> bladder 142.6668 242.1335 363.4800 559.0715 0.4331
#> brain/cns 21.8762 44.8910 77.9991 154.8744 0.2899
#> thyroid 6.3675 20.9331 49.7293 208.9864 0.1002
#> remainder 70.0662 148.2741 249.0938 996.9884 0.1487
#> oral 4.7167 12.1716 21.1804 85.6799 0.1421
#> rectum -0.0033 13.9800 30.7953 822.0275 0.0170
#> gallbladder -30.2879 -3.1930 21.6224 392.5105 -0.0081
#> kidney 13.8521 63.7456 115.0254 108.8816 0.5855
#> leukemia 0.0000 0.0000 0.0000 0.0000 NaN
#> solid 2151.0610 2533.8854 2926.4130 9037.2418 0.2804
#> total 2151.0610 2533.8854 2926.4130 9037.2418 0.2804
#>
#> Future LAR:
#> Lower Mean Upper BFR TFR
#> colon 358.5421 518.9878 736.8814 2168.8941 2687.8819
#> liver 26.5901 44.4973 66.4874 803.4050 847.9023
#> lung 846.5952 1072.7409 1355.7720 904.7881 1977.5290
#> breast 212.8543 288.8203 372.4440 958.3232 1247.1435
#> ovary 8.8224 22.1431 43.7064 167.8291 189.9721
#> bladder 138.4590 236.1825 359.2219 515.6799 751.8624
#> brain/cns 17.5738 33.5939 58.7773 131.8720 165.4659
#> thyroid 3.2561 10.8821 26.1895 77.4828 88.3649
#> remainder 59.8172 125.6464 208.2837 847.6342 973.2805
#> oral 4.2359 10.9473 18.9997 80.5077 91.4550
#> rectum 0.0194 10.4333 22.5134 583.8140 594.2473
#> gallbladder -26.8679 -2.8248 19.0988 355.1633 352.3385
#> kidney 13.8423 63.2177 114.2202 108.0992 171.3170
#> leukemia 0.0000 0.0000 0.0000 0.0000 0.0000
#> solid 2065.0362 2435.2677 2829.0276 7703.4925 10138.7602
#> total 2065.0362 2435.2677 2829.0276 7703.4925 10138.7602
#>
#> Confidence Level: 0.9
#> Current Year: 2025
#> ---
#>
#> summaries of LAR result : Group 3
#>
#> Group Information:
#> sex count birth
#> female 1 1933
#> male 2 2004
#>
#> LAR:
#> Lower Mean Upper LBR LFR
#> colon 1209.822 1769.6169 2469.1052 2222.3599 0.7963
#> oral 6.602 17.1635 29.4681 62.4035 0.2750
#> rectum 13.638 298.1917 594.8688 1749.5705 0.1704
#> leukemia 0.000 0.0000 0.0000 0.0000 NaN
#> solid 1372.524 2084.9721 2843.2003 4034.3339 0.5168
#> total 1372.524 2084.9721 2843.2003 4034.3339 0.5168
#>
#> Future LAR:
#> Lower Mean Upper BFR TFR
#> colon 1208.5828 1768.1856 2467.4248 2229.7148 3997.9004
#> oral 3.8786 9.8786 16.6260 26.5337 36.4123
#> rectum 13.6128 298.3636 595.3324 1755.7242 2054.0878
#> leukemia 0.0000 0.0000 0.0000 0.0000 0.0000
#> solid 1366.3716 2076.4278 2835.7201 4011.9727 6088.4005
#> total 1366.3716 2076.4278 2835.7201 4011.9727 6088.4005
#>
#> Confidence Level: 0.9
#> Current Year: 2025
#> ---
The result of the LAR_group
is similar to those of
LAR_batch
. The difference is the Group Information
tab, which provides the gender frequency table within the group
and the average birth-year within the group, instead of each
individuals’ gender and birth-year. The risks are the estimates of the
average LAR in groups.
LARisk
includes the functions which write a result of
LAR
, LAR_batch
, and LAR_group
.
write_LAR
is the function that saves the LAR
class family into a CSV file.
In this function, x
is an object that wants to save into
a CSV file. When you put the file name or connection to write into
filename
, the object is saved there. Note that if there
exists the csv file which has the same title with filename
,
it would be overlapped. Therefore, before deciding a
file name
, be cautious to check whether or not the name is
duplicated. In the same way as above, the result from the LAR batch
function can be saved as a CSV file.
If the object is a LAR
class object, the format of
the saved file is that:
Lower | Mean | Upper | F.Lower | F.Mean | F.Upper | LBR | BFR | LFR | TFR | |
---|---|---|---|---|---|---|---|---|---|---|
site-name | ||||||||||
solid | ||||||||||
total |
The function exports a table whose row is represented as site-names, solid, total, and whose column is the risks.
Since the LAR_batch
class object is a list of
LAR
objects, it is difficult to export files in the same
form as above. Thus, if the object’s class is LAR_batch
,
the function saves a file whose values are represented in a horizontal
way for each organ, solid, and total.
Despite the case of the LAR
function is somehow
intuitive, the LAR_batch
function is not simple. We make
space for all organs, and values from the function are put in their own
space. Therefore, there are 190 columns including the person ID
column (PID), and the number of rows depends on the number of
ids in the data. The columns are ordered in
(LAR)-(Future LAR)-(Baseline
Risk)-(Total Future Risk) in general. In
LAR and Future LAR, each is made up of
lower limit, upper limit, and mean values, and for the Baseline
Risk, it is made up of baseline risk of exposed age, the
baseline risk of attained age, and LFR. The last part
is the total future risk for each site. Hence, for each
component, there are values of all-organ, all-solid-cancer, and each
organ, i.e. 21 elements. So that, the file has somehow wide shape with
210 columns.
If the class of the object is LAR_group
, the format of
the saved file is the same. In this case, the first column is
GROUP instead of PID.
Now, consider the toy example of organ
data. This data
has 20 people which are exposed to radiation several times.
head(organ)
#> ID sex birth exposure site exposure_rate dosedist dose1
#> 1 ID01 male 1985 2011 oesophagus chronic fixedvalue 0.001954895
#> 2 ID01 male 1985 2011 kidney chronic fixedvalue 0.003855487
#> 3 ID01 male 1985 2011 rectum chronic fixedvalue 0.003855487
#> 4 ID01 male 1985 2011 thyroid chronic fixedvalue 0.005104447
#> 5 ID01 male 1985 2013 oesophagus chronic fixedvalue 0.089358392
#> 6 ID01 male 1985 2013 kidney chronic fixedvalue 0.176234606
#> dose2 dose3 occup
#> 1 NA NA 1
#> 2 NA NA 1
#> 3 NA NA 1
#> 4 NA NA 1
#> 5 NA NA 1
#> 6 NA NA 1
Assume that we want to calculate the risks with the current year is 2021. In this example, we calculate the risks for the population in Korea, in 2018.
First, the estimated risks of ‘ID01’ is that:
organ1 <- organ[organ$ID=='ID01',]
ex_organ1 <- LAR(organ1, baseda=list(life2018, incid2018), current=2021)
ex_organ1
#> LAR:
#> Lower Mean Upper
#> 1.1149 1.6981 2.5132
#>
#> Future LAR:
#> Lower Mean Upper
#> F.LAR 1.1132 1.6759 2.4744
#> BFR 6694.6423 6694.6423 6694.6423
#> TFR 6695.7555 6696.3182 6697.1167
#> ---
The estimated LAR of the person ID01 is 1.6981 with the 90% confidence interval (1.1149, 2.5132). The future risk is 1.6759 with the 90% confidence interval (1.1132, 2.4744)
summary(ex_organ1)
#> Information:
#> sex birth
#> male 1985
#>
#> LAR:
#> Lower Mean Upper LBR LFR
#> thyroid 0.4673 0.9709 1.8205 1771.543 5e-04
#> oesophagus 0.1025 0.1824 0.2729 1048.947 2e-04
#> rectum 0.0978 0.2385 0.4111 2893.126 1e-04
#> kidney 0.1416 0.3064 0.5160 1338.149 2e-04
#> leukemia 0.0000 0.0000 0.0000 0.000 NaN
#> solid 1.1149 1.6981 2.5132 7051.764 2e-04
#> total 1.1149 1.6981 2.5132 7051.764 2e-04
#>
#> Future LAR:
#> Lower Mean Upper BFR TFR
#> thyroid 0.4507 0.9512 1.7587 1453.492 1454.443
#> oesophagus 0.1025 0.1823 0.2728 1055.583 1055.766
#> rectum 0.0977 0.2379 0.4108 2877.117 2877.355
#> kidney 0.1406 0.3045 0.5153 1308.450 1308.755
#> leukemia 0.0000 0.0000 0.0000 0.000 0.000
#> solid 1.1132 1.6759 2.4744 6694.642 6696.318
#> total 1.1132 1.6759 2.4744 6694.642 6696.318
#>
#> Confidence Level: 0.9
#> Current Year: 2021
#> ---
With summary
, we can get a more detailed report of the
result. By the result, the person ID01 is a man born in 1985.
This person was exposed radiation to thyroid, oesophagus, ‘rectum’, and
kidney. Since leukemia
is not included in this data, the
result for leukemia
is zero.
Consider the risks of the female / male groups of the
organ
.
ex_organ2 <- LAR_group(organ, pid=organ$ID, group=organ$sex,
basedata=list(life2018, incid2018), current=2021)
summary(ex_organ2)
#> summaries of LAR result : Group female
#>
#> Group Information:
#> sex count birth
#> female 166 1976.313
#>
#> LAR:
#> Lower Mean Upper LBR LFR
#> colon 0.6832 1.1392 1.7064 1080.1190 0.0011
#> lung 2.3739 2.8990 3.5941 1353.2750 0.0021
#> uterus 0.1447 0.2874 0.4696 338.1363 0.0008
#> bladder 0.9560 1.3026 1.7539 155.9481 0.0084
#> remainder 2.9905 4.5565 6.7692 1875.6871 0.0024
#> oral 0.1509 0.2311 0.3413 130.7238 0.0018
#> oesophagus 0.0203 0.0768 0.1583 18.0691 0.0043
#> rectum 0.2375 0.4315 0.6480 873.1753 0.0005
#> gallbladder -0.1736 -0.0274 0.1067 290.7825 -0.0001
#> pancreas 0.0661 0.1089 0.1608 283.0072 0.0004
#> leukemia 0.0792 0.1800 0.4092 81.1517 0.0022
#> solid 9.3445 11.0056 13.3345 6398.9234 0.0017
#> total 9.5265 11.1856 13.5145 6480.0751 0.0017
#>
#> Future LAR:
#> Lower Mean Upper BFR TFR
#> colon 0.6658 1.0964 1.6314 1051.6541 1052.7505
#> lung 2.3673 2.8906 3.5837 1352.5231 1355.4137
#> uterus 0.1423 0.2825 0.4686 296.3270 296.6095
#> bladder 0.9503 1.2916 1.7359 154.4180 155.7096
#> remainder 2.8942 4.4153 6.5409 1792.3971 1796.8124
#> oral 0.1444 0.2181 0.3177 119.1196 119.3377
#> oesophagus 0.0201 0.0762 0.1568 18.0923 18.1685
#> rectum 0.2346 0.4186 0.6327 835.6204 836.0390
#> gallbladder -0.1735 -0.0274 0.1066 292.4045 292.3771
#> pancreas 0.0653 0.1079 0.1591 281.1836 281.2915
#> leukemia 0.0944 0.1773 0.3603 77.5662 77.7435
#> solid 9.1382 10.7697 12.9982 6193.7399 6204.5095
#> total 9.3172 10.9470 13.1770 6271.3060 6282.2530
#>
#> Confidence Level: 0.9
#> Current Year: 2021
#> ---
#>
#> summaries of LAR result : Group male
#>
#> Group Information:
#> sex count birth
#> male 805 1966.561
#>
#> LAR:
#> Lower Mean Upper LBR LFR
#> stomach 3.3791 3.8814 4.5159 2861.1179 0.0014
#> colon 2.9728 3.5787 4.2951 891.9982 0.0040
#> liver 0.7400 0.9784 1.2916 328.3202 0.0030
#> lung 1.7903 2.1896 2.7012 1379.3554 0.0016
#> prostate -0.1064 0.8221 1.7976 1553.0173 0.0005
#> bladder 0.9763 1.2158 1.5097 530.2854 0.0023
#> brain/cns 0.1014 0.1315 0.1718 75.0266 0.0018
#> thyroid 1.1497 1.6947 2.4809 508.2328 0.0033
#> remainder 7.3442 8.7682 10.4821 1396.0668 0.0063
#> oral 0.4086 0.5480 0.7018 355.2983 0.0015
#> oesophagus 0.4106 0.4973 0.5973 299.5552 0.0017
#> rectum 0.3106 0.4829 0.6906 619.8016 0.0008
#> gallbladder -0.2683 -0.0629 0.1323 281.3131 -0.0002
#> pancreas 0.4762 0.6373 0.8672 262.5764 0.0024
#> kidney 0.6250 0.8268 1.0208 477.9452 0.0017
#> leukemia 0.4202 0.9776 2.2777 98.4367 0.0099
#> solid 23.8700 26.1898 28.7939 11819.9106 0.0022
#> total 24.8542 27.1674 29.7754 11918.3472 0.0023
#>
#> Future LAR:
#> Lower Mean Upper BFR TFR
#> stomach 2.9529 3.3947 3.9262 2755.3275 2758.7222
#> colon 2.7211 3.2932 3.9434 870.3818 873.6751
#> liver 0.6131 0.8033 1.0509 274.2192 275.0226
#> lung 1.7390 2.1254 2.6232 1389.8859 1392.0113
#> prostate -0.1170 0.8140 1.7755 1582.8508 1583.6647
#> bladder 0.9560 1.1886 1.4847 533.9888 535.1774
#> brain/cns 0.0800 0.1066 0.1424 64.5289 64.6355
#> thyroid 0.6714 0.9920 1.3906 331.6146 332.6066
#> remainder 6.5417 7.7960 9.4301 1277.7412 1285.5372
#> oral 0.3365 0.4629 0.6085 326.9197 327.3826
#> oesophagus 0.3778 0.4561 0.5447 296.6060 297.0622
#> rectum 0.2574 0.4175 0.6129 582.9204 583.3379
#> gallbladder -0.2587 -0.0614 0.1289 285.0148 284.9534
#> pancreas 0.4322 0.5781 0.7887 256.1738 256.7519
#> kidney 0.4992 0.6462 0.7967 409.5781 410.2243
#> leukemia 0.3114 0.7470 1.7946 83.8317 84.5786
#> solid 20.8728 23.0132 25.3536 11237.7516 11260.7648
#> total 21.6190 23.7602 26.1058 11321.5832 11345.3434
#>
#> Confidence Level: 0.9
#> Current Year: 2021
#> ---
By the result, the estimated average lifetime risk of a female group is 11.1856 (9.5265, 13.5145). Similarly, the estimated average lifetime risk of a male group is 27.1674 (23.8700, 28.7939).
We can also set the variables for group. For example, we want the
average risks of female and occup
is 1
ex_organ3 <- LAR_group(organ, pid=organ$ID, group=list(organ$sex, organ$occup),
basedata=list(life2018, incid2018), current=2021)
print(ex_organ3, max.id=3)
#> LAR result of female.1
#>
#> LAR:
#> Lower Mean Upper
#> 4.7547 6.2051 8.0758
#>
#> Future LAR:
#> Lower Mean Upper
#> F.LAR 4.7348 6.1773 8.0388
#> BFR 3746.8142 3746.8142 3746.8142
#> TFR 3751.5490 3752.9915 3754.8530
#> ---
#>
#> LAR result of male.1
#>
#> LAR:
#> Lower Mean Upper
#> 37.9314 41.3941 45.0670
#>
#> Future LAR:
#> Lower Mean Upper
#> F.LAR 32.3847 35.4936 38.7843
#> BFR 12300.1490 12300.1490 12300.1490
#> TFR 12332.5337 12335.6426 12338.9333
#> ---
#>
#> LAR result of female.4
#>
#> LAR:
#> Lower Mean Upper
#> 0.1310 0.4694 0.8903
#>
#> Future LAR:
#> Lower Mean Upper
#> F.LAR 0.1299 0.4655 0.8830
#> BFR 108.5540 108.5540 108.5540
#> TFR 108.6839 109.0195 109.4369
#> ---
#>
#> The results for 4 groups are omitted.
LARisk
The LARisk
package include two toy example datasets,
nuclear
and organ
. These datasets are
simulated assuming two situation: One is that all people were exposed to
radiation at the same time, and the other is that each person was
exposed to radiation over a long period of time. Each data has 11
variables, including 9 essential variables for calculating the LAR.
nuclear
: a simulated dataset assuming radioactive
explosionnuclear
was simulated assuming the scenario in which
everyone is exposed to radiation at the same time. This data includes 20
people, who were exposed to radiation at the same time in 2011. The age
exposed to radiation is from 3 to 81 years old, and there are 10 males
and 10 females. All values of exposure_rate
are
acute
and all values of dosedist
are
fixedvalue
.
str(nuclear)
#> 'data.frame': 100 obs. of 11 variables:
#> $ ID : chr "ID01" "ID01" "ID01" "ID01" ...
#> $ sex : chr "female" "female" "female" "female" ...
#> $ birth : int 1973 1973 1973 1973 1973 1973 1973 1981 1981 1981 ...
#> $ exposure : num 2011 2011 2011 2011 2011 ...
#> $ site : chr "ovary" "oesophagus" "bladder" "lung" ...
#> $ exposure_rate: chr "acute" "acute" "acute" "acute" ...
#> $ dosedist : chr "fixedvalue" "fixedvalue" "fixedvalue" "fixedvalue" ...
#> $ dose1 : num 50.1 50.4 52.5 55.7 51.6 ...
#> $ dose2 : logi NA NA NA NA NA NA ...
#> $ dose3 : logi NA NA NA NA NA NA ...
#> $ distance : chr "1" "1" "1" "1" ...
ID
is the variable that is used to identify the
individual. We generated the sex
, birth
, and
site
fully random. And the exposure dose
(dose1
) was generated from the log-normal distribution, and
a variable called distance
was created by dividing it into
three groups.
organ
: a simulated dataset assuming the workers at
interventional radiology departmentsUnlike nuclear
, organ
assumes that people
have been exposed to radiation over several times. There are 20 people
in this data, 14 of whom are male and 6 are female. Also, this data
includes job information of people (occup
).
ID | sex | birth | occup | ID | sex | birth | occup |
---|---|---|---|---|---|---|---|
ID01 | male | 1985 | 1 | ID11 | male | 1965 | 6 |
ID02 | male | 1960 | 1 | ID12 | male | 1976 | 1 |
ID03 | male | 1979 | 6 | ID13 | female | 1986 | 5 |
ID04 | male | 1982 | 1 | ID14 | male | 1983 | 1 |
ID05 | male | 1981 | 6 | ID15 | male | 1980 | 1 |
ID06 | male | 1966 | 6 | ID16 | female | 1980 | 6 |
ID07 | female | 1980 | 1 | ID17 | male | 1982 | 6 |
ID08 | female | 1980 | 1 | ID18 | female | 1968 | 5 |
ID09 | male | 1992 | 1 | ID19 | male | 1965 | 1 |
ID10 | female | 1984 | 4 | ID20 | male | 1983 | 5 |
str(organ)
#> 'data.frame': 971 obs. of 11 variables:
#> $ ID : chr "ID01" "ID01" "ID01" "ID01" ...
#> $ sex : chr "male" "male" "male" "male" ...
#> $ birth : num 1985 1985 1985 1985 1985 ...
#> $ exposure : num 2011 2011 2011 2011 2013 ...
#> $ site : chr "oesophagus" "kidney" "rectum" "thyroid" ...
#> $ exposure_rate: chr "chronic" "chronic" "chronic" "chronic" ...
#> $ dosedist : chr "fixedvalue" "fixedvalue" "fixedvalue" "fixedvalue" ...
#> $ dose1 : num 0.00195 0.00386 0.00386 0.0051 0.08936 ...
#> $ dose2 : num NA NA NA NA NA NA NA NA NA NA ...
#> $ dose3 : num NA NA NA NA NA NA NA NA NA NA ...
#> $ occup : chr "1" "1" "1" "1" ...
All values of exposure_rate
are chronic
and
all values of dosedist
are fixedvalue
. The
birth-year of people has a range from 1960 to 1992, and the exposed age
is from 23 to 60 years old.
sex
, birth
, site
, and
occup
were randomly selected, and exposure
was
generated before 2021 (This means that this data assumed that the
current year is 2021). The exposure dose (dose1
) was
generated from the Gaussian mixture distribution, which mimics data of
workers at interventional radiology departments in Korea (Lee, et al.,
2021).
De Gonzalez, A. B., et al. (2012). RadRAT: a radiation risk assessment tool for lifetime cancer risk projection. Journal of Radiological Protection, 32(3), 205.
Lee, W. J., Bang, Y. J., Cha, E. S., Kim, Y. M., & Cho, S. B. (2021). Lifetime cancer risks from occupational radiation exposure among workers at interventional radiology departments. International Archives of Occupational and Environmental Health, 94(1), 139-145.