
KFAS: Exponential Family State Space Models in R

Jouni Helske
University of Jyvaskyla

Abstract

State space modelling is an efficient and flexible method for statistical inference of a
broad class of time series and other data. This paper describes an R package KFAS for
state space modelling with the observations from an exponential family, namely Gaus-
sian, Poisson, binomial, negative binomial and gamma distributions. After introducing
the basic theory behind Gaussian and non-Gaussian state space models, an illustrative
example of Poisson time series forecasting is provided. Finally, a comparison to alterna-
tive R packages suitable for non-Gaussian time series modelling is presented.

Keywords: R, exponential family, state space models, time series, forecasting, dynamic linear
models.

Vignette based on the corresponding paper at Journal of Statistical Software.

1. Introduction
State space models offer a unified framework for modelling several types of time series and
other data. Structural time series, autoregressive integrated moving average (ARIMA) mod-
els, simple regression, generalized linear mixed models, and cubic spline smoothing are just
some examples of the statistical models which can be represented as a state space model.
One of the simplest classes of state space models are linear Gaussian state space models (also
known as dynamic linear models), which are analytically tractable, and are therefore often
used in many fields of science.
Petris and Petrone (2011) and Tusell (2011) introduce and review some of the contributed
R (R Core Team 2017) packages available at Comprehensive R Archive Network (CRAN) for
Gaussian state space modelling. Since then, several new additions have emerged in CRAN.
Most of these packages use one package or multiple packages reviewed in Tusell (2011) for
filtering and smoothing and add new user interfaces and functionality for certain type of
models. For example, package rucm (Chowdhury 2015) is focused on structural time series,
dlmodeler (Szymanski 2014) provides a unified interface compatible with multiple packages,
and MARSS (Holmes, Ward, and Wills 2012, 2013) provides functions for the maximum
likelihood estimation of a large class of Gaussian state space models via the EM-algorithm.
One of the packages reviewed in the aforementioned papers is KFAS (the Kalman Filtering
And Smoothing). Besides of modelling the general linear Gaussian state space models, KFAS
can also be used in cases where the observations are from other exponential family models,
namely binomial, Poisson, negative binomial, and Gamma models.
After the papers by Petris and Petrone (2011) and Tusell (2011), KFAS has been completely

2 KFAS: Exponential Family State Space Models in R

rewritten. The package is now much more user-friendly due to the use of R’s symbolic formulas
in model definition. The non-Gaussian modelling, which was somewhat experimental in the
old versions of KFAS, is now fully functional supporting multivariate models with different
distributions. Many other features have also been added (such as methods for computing
model residuals and predictions), the performance of the main functions has improved and in
the process several bugs have been fixed.
In this paper I first introduce the basic theory related to state space modelling, and then
proceed to show the main aspects of KFAS in more detail, illustrate its functionality by
applying it to real life dataset, and finally make a short comparison between KFAS and other
potentially useful packages for non-Gaussian time series modelling.

2. Gaussian state space model
In this section an introduction to key concepts regarding the theory of Gaussian state space
modelling as in KFAS is given. As the algorithms behind KFAS are mostly based on Durbin
and Koopman (2012) and the related articles by the same authors, the basic notation is nearly
identical with the one used by Durbin and Koopman.
For the linear Gaussian state space model with continuous states and discrete time intervals
t = 1, . . . , n, we have

yt = Ztαt + ϵt, (observation equation)
αt+1 = Ttαt + Rtηt, (state equation)

(1)

where ϵt ∼ N(0, Ht), ηt ∼ N(0, Qt) and α1 ∼ N(a1, P1) independently of each other. We
assume that yt is a p × 1, αt+1 is an m × 1 and ηt is a k × 1 vector. We also denote
α = (α⊤

1 , . . . , α⊤
n)⊤ and similarly y = (y⊤

1 , . . . , y⊤
n)⊤.

Here yt contains the observations at time t, whereas αt is a vector of latent state process
at time point t. The system matrices Zt, Tt, and Rt, together with the covariance matrices
Ht and Qt depend on the particular model definition, and are often time invariant, i.e.,
do not depend on t. Usually at least some of these matrices contain unknown parameters
which need to be estimated. In KFAS one defines the model with the function SSModel.
The function SSModel only builds the model and does not perform estimation of unknown
parameters, which differs from functions like lm, which builds and estimates the model with
one command.
The main goal of the state space modelling is to gain knowledge of the latent states α given
the observations y. This is achieved by using two important recursive algorithms, the Kalman
filtering and smoothing. From the Kalman filtering algorithm we obtain the one-step-ahead
predictions and the prediction errors

at+1 = E(αt+1|yt, . . . , y1),
vt = yt − Ztat

and the related covariance matrices

Pt+1 = VAR(αt+1|yt, . . . , y1),
Ft = VAR(vt) = ZtPtZ

⊤
t + Ht.

Jouni Helske 3

Using the results of the Kalman filtering, we establish the state smoothing equations running
backwards in time and yielding

α̂t = E(αt|yn, . . . , y1),
Vt = VAR(αt|yn, . . . , y1).

Similar smoothed estimates can also be computed for the disturbance terms ϵt and ηt, and
straightforwardly for the signal θt = Ztαt. For details on these algorithms, see Appendix A
and Durbin and Koopman (2012).
A prior distribution of the initial state vector α1 can be defined as a multivariate Gaussian
distribution with mean a1 and covariance matrix P1. For an uninformative diffuse prior, one
typically sets P1 = κI, where κ is 107, for example. However, this method can be numerically
unstable due to cumulative roundoff errors. To solve this issue Koopman and Durbin (2003)
present the exact diffuse initialization method, where the diffuse elements in a1 are set to zero
and P1 is decomposed as κP∞,1+P∗,1, where κ → ∞. Here P∞,1 is a diagonal matrix with ones
on those diagonal elements which relate to the diffuse elements of α1, and P∗,1 contains the
covariances of the nondiffuse elements of α1 (and zeros elsewhere). At the start of the Kalman
filtering (and at the end of backward smoothing) we use so-called exact diffuse initialisation
formulas until P∞,t becomes a zero matrix, and then continue with the usual Kalman filtering
equations. This exact method should be less prone to numerical errors, although they can still
occur especially in the smoothing phase, if we, for example, have high collinearity between
the explanatory variables of the model. Note that given all the parameters in the system
matrices, results from the Kalman filter and smoother are equivalent with Bayesian analysis
given the same prior distribution for α1.
When we have multivariate observations, it is possible that in the diffuse phase the matrix
Ft is not invertible, and the computation of at+1 and Pt+1 becomes impossible. On the other
hand, even if Ft is invertible, the computations can become slow when the dimensionality
of Ft, that is, the number of series increases. Also in the case of multivariate observations,
the formulas relating to the diffuse initialization become cumbersome. Based on the ideas of
Anderson and Moore (1979), a complete univariate approach for filtering and smoothing was
introduced by Koopman and Durbin (2000) (known as sequential processing by Anderson and
Moore). The univariate approach is based on the alternative representation of the model (1),
namely

yt,i = Zt,iαt,i + ϵt,i, i = 1, . . . , pt, t = 1, . . . , n,

αt,i+1 = αt,i, i = 1, . . . , pt − 1,

αt+1,1 = Ttαt,pt + Rtηt, t = 1, . . . , n,

and a1,1 ∼ N(a1, P1), with the assumption that Ht is diagonal for all t. Here the dimension of
the observation vector yt can vary over time and therefore missing observations are handled
straightforwardly by adjusting the dimensionality of yt. In the case of non-diagonal Ht,
the original model can be transformed either by taking the LDL decomposition of Ht, and
multiplying the observation equation with the L−1

t , so ϵ∗
t ∼ N(0, Dt), or by augmenting the

state vector with ϵ, when Qt becomes block diagonal with blocks Qt and Ht. Augmenting
can also be used for introducing a correlation between ϵ and η. Both the LDL decomposition
and the state vector augmentation are supported in KFAS.
In theory, when using the univariate approach, the computational costs of filtering and
smoothing decrease, as the number of matrix multiplications decrease, and there is no need

4 KFAS: Exponential Family State Space Models in R

for solving the system of equations (Durbin and Koopman 2012, p. 159). As noted in Tusell
(2011), these gains can somewhat cancel out as more calls to linear algebra functions are
needed and the memory management might not be as effective as working with larger objects
at once. Nevertheless, as noted previously, sequential processing has also other clear benefits,
especially with diffuse initialization where the univariate approach simplifies the recursions
considerably (Durbin and Koopman 2012).
KFAS uses this univariate approach in all cases. Although vt, Ft, and Kt = PtZ

⊤
t =

COV(at, yt|yt−1, . . . , y1) differ from the standard multivariate versions, we get at = at,1 and
Pt = Pt,1 by using the univariate approach. If standard multivariate matrices Ft and Kt are
needed for inference, they can be computed later from the results of the univariate filter. As
the covariances F∗,i,t, K∗,i,t, and P∗,t relating to the diffuse phase (see Appendix A) coincide
with the nondiffuse counterparts if F∞,i,t = 0, the asterisk is dropped from the variable names
in KFAS, and, for example, the variable F is an n × p array containing F∗,i,t and Fi,t, whereas
Finf is an n × d, where d is the last time point before the diffuse phase ended.

2.1. Log-likelihood of the Gaussian state space model

The Kalman filter equations can be used for computing the log-likelihood, which in its stan-
dard form is

log L = −np

2 log 2π − 1
2

n∑
t=1

(log |Ft| + v⊤
t F −1

t vt).

In the case of the univariate treatment and diffuse initialization, the diffuse log-likelihood can
be written as

log Ld = −1
2

n∑
t=1

pt∑
i=1

wi,t,

where

wi,t =
{

log F∞,i,t, if F∞,i,t > 0,
I(Fi,t > 0)(log 2π + log Fi,t + v2

i,tF
−1
i,t), if F∞,i,t = 0.

See Durbin and Koopman (2012, Chapter 7) for details. Francke, Koopman, and De Vos
(2010) show that there are cases where the above definition of diffuse log-likelihood is not
optimal. Without going into the details, if system matrices Zt or Tt contain unknown pa-
rameters in their diffuse parts, the diffuse likelihood is missing one term which depends on
those unknown parameters. Francke et al. (2010, p.411–412) present a recursive formula for
computing this extra term, which is also supported by KFAS.

2.2. Example of Gaussian state space model

Now the theory of previous sections is illustrated via example. Our time series consists of
yearly alcohol-related deaths per 100,000 persons in Finland for the years 1969–2007 in the
age group of 40–49 years (Figure 1). The data is taken from Statistics Finland (2014a,b).
For the observations y1, . . . , yn we assume that yt ∼ N(µt, σϵ) for all t = 1, . . . , n, where µt is
a random walk with drift process

µt+1 = µt + ν + ηt

Jouni Helske 5

with ηt ∼ N(0, σ2
η). Assume that we have no prior information about the initial state µ1 or

the constant slope ν. This model can be written in a state space form by defining

Z =
(

1 0
)

, H = σ2
ϵ , T =

(
1 1
0 1

)
,

αt =
(

µt

νt

)
, R =

(
1
0

)
, Q = σ2

η,

a1 =
(

0
0

)
, P∗,1 =

(
0 0
0 0

)
, P∞,1 =

(
1 0
0 1

)
.

In KFAS, this model can be written with the following code. For illustrative purposes we
define all the system matrices manually without resorting default values.

R> data("alcohol")
R> deaths <- window(alcohol[, 2], end = 2007)
R> population <- window(alcohol[, 6], end = 2007)
R> Zt <- matrix(c(1, 0), 1, 2)
R> Ht <- matrix(NA)
R> Tt <- matrix(c(1, 0, 1, 1), 2, 2)
R> Rt <- matrix(c(1, 0), 2, 1)
R> Qt <- matrix(NA)
R> a1 <- matrix(0, 2, 1)
R> P1 <- matrix(0, 2, 2)
R> P1inf <- diag(2)
R>
R> model_gaussian <- SSModel(deaths / population ~ -1 +
+ SSMcustom(Z = Zt, T = Tt, R = Rt, Q = Qt, a1 = a1, P1 = P1,
+ P1inf = P1inf),
+ H = Ht)

The first argument to the SSModel function is the formula which defines the observations (left
side of tilde operator ~) and the structure of the state equation (right side of tilde). Here
deaths / population is a univariate time series, and the state equation is defined using
the system matrices with auxiliary function SSMcustom, and the intercept term is omitted
with -1 in order to keep the model identifiable. The observation level variance is defined via
the argument H. The NA values represent the unknown variance parameters σ2

ϵ and σ2
η which

can be estimated using the function fitSSM. After estimation, the filtering and smoothing
recursions are performed using the KFS function.

R> fit_gaussian <- fitSSM(model_gaussian, inits = c(0, 0), method = "BFGS")
R> out_gaussian <- KFS(fit_gaussian$model)

In this case, the maximum likelihood estimates are 9.5 for σ2
ϵ and 4.3 for σ2

η.
From the Kalman filter algorithm we get one-step-ahead predictions for the states at =
(µt, νt)⊤. Note that even though the slope term ν was defined as time-invariant (νt = ν) in

6 KFAS: Exponential Family State Space Models in R

our model, it is recursively estimated by the Kalman filter. Thus at each time point t when
the new observation yt becomes available, the estimate of ν is updated to take account of the
new information given by yt. At the end of Kalman filtering, an+1 gives our final estimate of
the constant slope term given all of our data. Here the slope term is estimated as 0.84 with
standard error 0.34. For µt, the Kalman filter gives the one-step-ahead predictions, but as
the state is time-varying, we need to run also the smoothing algorithm if we are interested in
the estimates of µt for t = 1, . . . , n given all the data.
Figure 1 shows the observations with one-step-ahead predictions (red) and smoothed (blue)
estimates of the random walk process µt. Notice the typical pattern; at the time t the Kalman
filter computes the one-step-ahead prediction error vt = yt − µt, and uses this and the the
previous prediction to correct the prediction for the next time point (see Appendix A for the
detailed update formula). Here this is most easily seen at the beginning of the series where
our predictions seem to be lagging the observations by one time step. On the other hand, the
smoothing algorithm takes account of both the past and the future values at each time point,
thus producing more smoothed estimates of the latent process.

Year

A
lc

oh
ol

−
re

la
te

d
de

at
hs

 in
 F

in
la

nd
 p

er
 1

00
,0

00
 p

er
so

ns

1970 1980 1990 2000

0
10

20
30

40
50

60

Figure 1: Alcohol-related deaths in Finland in the age group of 40–49 years (black line) with
predicted (red) and smoothed (blue) estimates.

3. State space models for the exponential family
KFAS can also deal with observations which come from distributions of an exponential family

Jouni Helske 7

class other than Gaussian. We assume that the state equation is as in the Gaussian case, but
the observation equation has the form

p(yt|θt) = p(yt|Ztαt),

where θt = Ztαt is the signal and p(yt|θt) is the observational density.
The signal θt is the linear predictor which is connected to the expected value E(yt) = µt via
a link function l(µt) = θt. In KFAS, the following distributions and links are available:

1. Gaussian distribution with mean µt and variance ut with identity link θt = µt.

2. Poisson distribution with intensity λt and exposure ut together with log-link θt =
log(λt). Thus we have E(yt|θt) = VAR(yt|θt) = ute

θt .

3. Binomial distribution with size ut and probability of success πt. KFAS uses logit-link
so θt = logit(πt) resulting E(yt|θt) = utπt and VAR(yt|θt) = ut(πt(1 − πt)).

4. Gamma distribution with a shape parameter ut and an expected value µt, again with
log-link θt = log(µ), where Gamma distribution is defined as

p(yt|µt, ut) = uut
t

Γ(ut)
µ−ut

t yut−1
t e

−ytut
µt .

This gives us E(yt|θt) = eθt and VAR(yt|θt) = e2θt/ut.

5. Negative binomial distribution with a dispersion parameter ut and an expected value
µt with log-link θt = log(µt), where the negative binomial distribution is defined as

p(yt|µt, ut) = Γ(yt + ut)
Γ(ut)yt!

µyt
t uut

t

(µt + ut)ut+yt
,

giving us E(yt|θt) = eθt and VAR(yt|θt) = eθt + e2θt/ut.

Note that the variable ut has a different meaning depending on the distribution it is linked
to. In KFAS one defines the distribution for each time series via argument distribution and
the additional known parameters ut corresponding to each series as columns of the matrix u.
In order to make inferences of the non-Gaussian models, we first find a Gaussian model which
has the same conditional posterior mode as p(θ|y) (Durbin and Koopman 2000). This is done
using an iterative process with Laplace approximation of p(θ|y), where the updated estimates
for θt are computed via the Kalman filtering and smoothing from the approximating Gaussian
model. In the approximating Gaussian model the observation equation is replaced by

ỹt = Ztαt + ϵt, ϵt ∼ N(0, Ht)

where the pseudo-observations ỹt variances Ht are based on the first and second derivatives
of log p(yt|θt) with respect to θt (Durbin and Koopman 2000).
Final estimates θ̂t correspond to the mode of p(θ|y). In the Gaussian case the mode is also
the mean. In cases listed in (1)-(5) the difference between the mode and the mean is often
negligible. Nevertheless, we are usually more interested in µt than in the linear predictor θt.

8 KFAS: Exponential Family State Space Models in R

As the link function is non-linear, direct transformation µ̂t = l−1(θ̂t) introduces some bias. To
solve this problem KFAS also contains methods based on importance sampling, which allows
us to correct these possible approximation errors. With the importance sampling technique
we can also compute the log-likelihood and the smoothed estimates for f(α), where f is an
arbitrary function of states, exp(Ztαt) being a typical example.
In the importance sampling scheme, we first find the approximating Gaussian model, simulate
the states αi from this Gaussian model and then compute the corresponding weights wi =
p(y|αi)/g(y|αi), where p(y|αi) represents the conditional non-Gaussian density of the original
observations, and g(y|αi) is the conditional Gaussian density of the pseudo-observations ỹ.
These weights are then used for computing

E(f(α)|y) =
∑N

i=1 f(αi)wi∑N
i=1 wi

.

The simulation of Gaussian state space models in KFAS is based on the simulation smoothing
algorithm by Durbin and Koopman (2002). In order to improve simulation efficiency, KFAS
can use two antithetic variables in the simulation algorithms. See Durbin and Koopman
(2012, p. 265-266) for details on how these are constructed.
KFAS also provides means for the filtering of non-Gaussian models. This is achieved by se-
quentially using the smoothing scheme for (y1, . . . , yt), t = 1 . . . , n with yt set as missing. This
is a relatively slow procedure for large models, as the importance sampling algorithms need to
be performed n times, although the first steps are much faster than the one using the whole
data. The non-Gaussian filtering is mainly for the computation of recursive residuals (see
Section 4) and for illustrative purposes, where computational efficiency is not that important.
With large models or online-filtering problems, one is recommended to use a proper particle
filter approach, which is out of the scope of this paper.
For non-Gaussian exponential family models in the context of generalized linear models, a
typical way of obtaining the confidence interval of the prediction is to compute confidence
intervals in the scale of a linear predictor, and then the interval is transformed to the scale
of observations. The issue of prediction intervals is often dismissed. For obtaining proper
prediction intervals in the case of non-Gaussian state space models, the following algorithm
is used in KFAS.

(1) Draw N replicates of the linear predictor θ from the approximating Gaussian density
g(θ|y) with importance weights p(y|θ)/g(y|θ). Denote this sample θ̃1, . . . , θ̃N as θ̃

(2) Using the importance weights as sampling probabilities, draw a sample of size N with
replacement from θ̃. We now have N independent draws from p(θ|y).

(3) For each θ̃i sampled in step (2), take a random sample of yi from the observational
distribution p(y|θi).

(4) Compute the the prediction intervals as empirical quantiles from y1, . . . , yN .

Assuming all the model parameters are known, these intervals coincide (within the Monte
Carlo error) with the ones obtained from Bayesian analysis using the same priors for states.

Jouni Helske 9

3.1. Log-likelihood of the non-Gaussian state space model

The log-likelihood function for the non-Gaussian model can be written as (Durbin and Koop-
man 2012, p. 272)

log L(y) = log
∫

p(α, y)dα

= log Lg(y) + log Eg

[
p(y|θ)
g(y|θ)

]
,

where Lg(y) is the log-likelihood of the Gaussian approximating model and the expectation
is taken with respect to the Gaussian density g(α|y). The expectation can be approximated
by

log Eg

[
p(y|θ)
g(y|θ)

]
≈ log 1

N

N∑
i=1

wi. (2)

In many cases, a good approximation of the log-likelihood can be computed without any
simulation, by setting N = 0 and using the mode estimate θ̂ from the approximating model.
In practice (2) suffers from the fact that wi = p(y|θi)/g(y|θi) is numerically unstable; when
the number of observations is large, the discrete probability mass function p(y|θi) tends to
zero, even when the Gaussian density function g(y|αi) does not. Therefore it is better to
redefine the weights as

w∗
i = p(y|θi)/p(y|θ̂)

g(y|θi)/g(y|θ̂)
.

The log-likelihood is then computed as

log L̂(y) = log Lg(y) + log ŵ + log 1
N

N∑
i=1

w∗
i ,

where ŵ = p(y|θ̂)/g(y|θ̂).

3.2. Example of non-Gaussian state space model

The alcohol-related deaths of Section 2.2 can also be modelled naturally as a Poisson process.
Now our observations yt are the actual counts of alcohol-related deaths in year t, whereas
the varying population size is taken account of by the exposure term ut. The state equation
remains the same, but the observation equation is now of form p(yt|µt) = Poisson(ute

µt).

R> model_poisson <- SSModel(deaths ~ -1 +
+ SSMcustom(Z = Zt, T = Tt, R = Rt, Q = Qt, P1inf = P1inf),
+ distribution = "poisson", u = population)

Compared to the Gaussian model of Section 2.2, we now need to define the distribution of
the observations using the argument distribution (which defaults to "gaussian"). We also
define the exposure term via the argument u (for non-Gaussian models the H is omitted and
vice versa), and use default values for a1 and P1 in the SSMcustom.
In this model there is only one unknown parameter, σ2

η. This is estimated as 0.0053, but the
actual values of σ2

η between the Gaussian and Poisson models are not directly comparable

10 KFAS: Exponential Family State Space Models in R

as the intepretation of µt differs between models. The slope term of the Poisson model is
estimated as 0.022 with standard error 1.4 × 10−4, corresponding to the 2.3% yearly increase
in deaths.
Figure 2 shows the smoothed estimates of the intensity (deaths per 100,000 persons) modelled
as Gaussian process (blue), and as a Poisson process (red).

Year

A
lc

oh
ol

−
re

la
te

d
de

at
hs

 in
 F

in
la

nd
 p

er
 1

00
,0

00
 p

er
so

ns

1970 1980 1990 2000

20
30

40
50

60

Figure 2: Alcohol-related deaths in Finland (black line) with smoothed estimates from Gaus-
sian model (blue) and Poisson model (red).

4. Residuals
For exponential family state space models, multiple types of residuals can be computed.
Probably the most useful ones are standardized recursive residuals, which are based on the
one-step-ahead predictions from the Kalman filter. For the univariate case these are defined
as

yt − E(yt|yt−1, . . . , y1)√
VAR(yt|yt−1, . . . , y1)

, t = d + 1 . . . , n,

where d is the last time point of the diffuse phase, and the denominator can be decomposed
as

VAR(yt|yt−1, . . . , y1) = VAR(E(yt|θt, yt−1, . . . , y1)|yt−1, . . . , y1)
+ E(VAR(yt|θt, yt−1, . . . , y1)|yt−1, . . . , y1)
= VAR(E(yt|θt)|yt−1, . . . , y1) + E(VAR(yt|θt)|yt−1, . . . , y1).

Jouni Helske 11

In the Gaussian case this simplifies to vtF
− 1

2
t .

For multivariate observations we have several options on how to standardize the residuals.
The most common one is a marginal standardization approach, where each residual series
is divided by its standard deviation, so we get residual series which should not exhibit any
autocorrelations. Another option is to use, for example, Cholesky decomposition for the
prediction error covariance matrix Ft and standardize the residuals by L−1

t (yt − ŷt) where
LtL

⊤
t = Ft. Now the whole series of residuals (treated as a single univariate series) should

not contain any autocorrelation.
For computing the marginally standardized residuals, multivariate versions of Ft and vt are
needed, whereas the Cholesky standardized residuals can be computed directly from the
sequential Kalman filter as

vi,tF
− 1

2
it

, j = 1, . . . , p, t = d + 1 . . . , n.

These multivariate residuals depend on the ordering of the series, so if the residual diagnostics
exhibit deviations from model assumptions, then the interpretation is somewhat more difficult
than when using the marginal residuals. Therefore marginal residuals might be preferred.
Note that if we want quadratic form residuals (yt − ŷt)′F −1

t (yt − ŷt), then the ordering of the
series does not matter.
The recursive residuals are defined just for the non-diffuse phase, which is problematic if the
model contains a long diffuse phase, for example, because a dummy variable with a diffuse
prior is incorporated to the model. This is because the diffuse phase cannot end before the
dummy variable changes its value at least once. In order to circumvent this, one can use
a proper but highly non-informative prior distribution for the intervention variable when
computing the residuals, which should have a negligible effect on the visual inspection of the
residual plots.
Other potentially useful residuals are auxiliary residuals, which are based on smoothed values
of states. For details, see Harvey and Koopman (1992) and Durbin and Koopman (2012,
Chapter 7).

5. Functionality of KFAS
The state space model used with KFAS is built using the function SSModel. The function uses
R’s formula object in a similar way to that of the functions lm and glm, for example. In order
to define the different components of the state space model, auxiliary functions SSMtrend,
SSMseasonal, SSMcycle, SSMarima, SSMregression are provided. These functions can be
used to define the structural, ARIMA, and regression components of the model. The function
SSMcustom can be used for constructing an arbitrary component by directly defining the
system matrices of the model (1). More details on how to construct common state space
models with KFAS are presented in Section 6.
The function SSModel returns an object of class SSModel, which contains the observations y
as the ts object, system matrices Z,H,T,R,Q as arrays of appropriate dimensions, together with
matrices a1, P1, and P1inf defining the initial state distribution. Additional components
contain the system matrix u which is used in non-Gaussian models for additional parame-
ters, the character vector distribution which defines the distributions of the observations

12 KFAS: Exponential Family State Space Models in R

(multivariate series can have different distributions), and the tolerance parameter tol which
is used in diffuse phase for checking whether F∞ is nonzero.
SSModel object also contains some attributes, namely, integer valued attributes p,m,k, and
n which define the dimensions of the system matrices, character vectors state_types and
eta_types which define the elements of αt and ηt, and integer vector tv which defines whether
the model contains time-varying system matrices. These attributes are used internally by
KFAS, although the user can carefully modify them if needed. For example, if the user
wishes to redefine the error term ηt by changing the dimensions of R and Q, the attributes k
and eta_types need to be updated accordingly.
The unknown model parameters can be estimated with fitSSM, which is a wrapper around
R’s optim function and the logLik method for the SSModel object. For fitSSM, the user
gives the model object, initial values of unknown parameters and a function updatefn, which
is used to update the model given the parameters (the help page of fitSSM gives an example
of updatefn). As the numerical optimization routines update the model and compute the
likelihood thousands of times, the user is encouraged to build his own problem-specific model
updating function for maximum efficiency. By default, fitSSM estimates the NA values in the
time invariant covariance matrices H and Q, but no general estimation function is provided.
Of course, the user can also directly use the logLik method for computing the likelihood and
thus is free to choose a suitable optimization method for his problem.
The function KFS computes the filtered (one-step-ahead prediction) and smoothed estimates
for states, signals, and the values of the inverse link function (expected value µ or probability
π) in a non-Gaussian case. For Gaussian models, disturbance smoothing is also available.
With simulateSSM the user can simulate the states, signals or disturbances of the Gaussian
state space models given the model and the observations. If the model contains missing
observations, these can also be simulated by simulateSSM in a similar way. It is also possible
to simulate states from predictive distributions p(αt|y1, . . . , yt−1), t = 1, . . . , n. For these
simulations, instead of using marginal distributions N(at, Pt), KFAS uses a modification of
Durbin and Koopman (2002), where smoothing is replaced by filtering.
For non-Gaussian models, importanceSSM returns the states or signals simulated from the
approximating Gaussian model, and the corresponding weights wi, which can then be used
to compute arbitrary functions of the states or signals.
There are several S3 methods available for SSModel and KFS objects. For both objects,
simple print methods are provided, and for SSModel objects there is the logLik method.
The predict method is for computing the point predictions together with confidence or
prediction intervals. The extraction operator [for extracting and replacing the subsets of
model elements is available for the SSModel class. Using this method when modifying the
model is suggested instead of a common list extractor $, as the latter can accidentally modify
the dimensions of the corresponding model matrices. A simple plot method for residual
inspection is also provided.
For the KFS object, the methods residuals, rstandard, and hatvalues are provided. Also,
a function signal can be used for extracting subsets of signals from KFS objects, for example,
the part of Ztαt that corresponds to the regression part of the model.
Methods coef and fitted for the quick extraction of state or mean estimates are also available
for KFS and SSModel objects.

Jouni Helske 13

6. Constructing common state space models with KFAS
This section presents some typical models which can be formulated in a state space form. More
examples can be found on the main help page of KFAS by typing ?KFAS after the package
is loaded via "library("KFAS"). These examples include most of the examples presented in
Durbin and Koopman (2012). Additional examples illustrating the functionality of KFAS can
be found from the documentation of the particular functions.
All the auxiliary functions used in the formula argument of the function SSModel have some
common arguments which are not directly related to the system matrices of the corresponding
component. In complex multivariate models, an important argument is index, which defines
the series for which the corresponding component is constructed. For example, if we have
four time series (p = 4), we may want to use a certain regression component only for series
2 and 4. In this case we use the argument index = c(2,4) when calling the appropriate
SSMregression function. By default the index is 1:p so the component is constructed for all
series.
Another argument used in several auxiliary functions is type, which can take two possible
values. The value "distinct" defines the component separately for each series defined by
index (with covariance structure defined by the argument Q), whereas the value "common"
constructs a single component which applies to all series defined by index. For example, we
can define distinct random walk components for all series together with a covariance matrix
which captures the dependencies of the different series, or we can define just a single random
walk component which is common to all series.

6.1. Structural time series
A structural time series refers to the class of state space models where the observed time
series is decomposed into several underlying components, such as trend and seasonal effects.
The basic structural time series model is of the form

yt = µt + γt + ct + ϵt, ϵt ∼ N(0, Ht),
µt+1 = µt + νt + ξt, ξt ∼ N(0, Qlevel,t),
νt+1 = νt + ζt, ζt ∼ N(0, Qslope,t),

(3)

where µt is the trend component, γt is the seasonal component and ct is the cycle component.
The seasonal component with period s can be defined in a dummy variable form

γt+1 = −
s−1∑
j=1

γt+1−j + ωt, ωt ∼ N(0, Qseasonal,t),

or in a trigonometric form, where

γt =
⌊s/2⌋∑
j=1

γj,t,

γj,t+1 = γj,t cos λj + γ∗
j,t sin λj + ωj,t,

γ∗
j,t+1 = −γj,t sin λj + γ∗

j,t cos λj + ω∗
j,t, j = 1, . . . , ⌊s/2⌋,

with ωj,t and ω∗
j,t being independently distributed variables with N(0, Qseasonal,t) distribution

and λj = 2πj/s.

14 KFAS: Exponential Family State Space Models in R

The cycle component with period s is defined as

ct+1 = ct cos λc + c∗
t sin λc + ωt,

c∗
t+1 = −ct sin λc + c∗

t cos λc + ω∗
t ,

with ωt and ω∗
t being independent variables from N(0, Qcycle,t) distribution and frequency

λc = 2π/s.
For non-Gaussian models the observation equation of (3) is replaced by p(yt|θt), where θt =
µt + γt + ct. An additional Gaussian noise term ϵt can also be included in θt using the
SSMcustom function (this is illustrated in Section 6.5). The general matrix formulation of
structural time series can be found, for example, in Durbin and Koopman (2012, Chapter 3).
Three auxiliary functions, SSMtrend, SSMcycle, and SSMseasonal, for building structural
time series are provided in KFAS. The argument degree of SSMtrend defines the degree of
the polynomial component, where 1 corresponds to a local level model and 2 to a local linear
trend model. Higher order polynomials can also be defined with larger values. Another
important argument for SSMtrend is Q, which defines the covariance structure of the trend
component. This is typically a list of p × p matrices (with p being the number of series for
which the component is defined), where the first matrix corresponds to the level component
(µ in (3)), the second to the slope component ν and so forth.
The function SSMcycle differs from SSMtrend only by one argument. SSMcycle does not have
argument degree, but instead it has argument period which defines the length of the cycle
ct. The same argument is also used in the function SSMseasonal, which contains also another
important argument sea.type, which can be used to define whether the user wants a dummy
or a trigonometric seasonal.
The example models of Sections 2.2 and 3.2 are special cases of the local linear trend model,
where the variance of ζt is zero, and there are no seasonal or cycle components. Thus the
Gaussian model of Section 2.2 can be built with KFAS more easily by the following code:

R> model_structural <- SSModel(deaths / population ~
+ SSMtrend(degree = 2, Q = list(matrix(NA), matrix(0))), H = matrix(NA))
R> fit_structural <- fitSSM(model_structural, inits = c(0, 0),
+ method = "BFGS")
R> fit_structural$model["Q"]

, , 1

[,1] [,2]
[1,] 4.256967 0
[2,] 0.000000 0

Here the state equation is defined using the SSMtrend auxiliary function without the need for
an explicit definition of the corresponding system matrices. The intercept term is automat-
ically omitted from the right side of the formula when the SSMtrend component is used, in
order to keep the model identifiable. Here the unknown variance parameters are set to NA, so
the default behaviour of the fitSSM function can be used for the parameter estimation.

Jouni Helske 15

6.2. ARIMA models

Another typical time series modelling framework are ARIMA models, which are also possible
to define as a state space model. The auxiliary function SSMarima defines the ARIMA model
using vectors ar and ma, which define the autoregressive and moving average coefficients,
respectively. The function assumes that all series defined by the index have the same coeffi-
cients. The argument d defines the degree of differencing, and a logical argument stationary
defines whether stationarity (after differencing) is assumed (if not, diffuse initial states are
used instead of a stationary distribution). A univariate ARIMA(p,d,q) model can be written
as

y∗
t = ϕ1y∗

t−1 + . . . + ϕpy∗
t−p + ξt + θ1ξt−1 + . . . + θqξt−q,

where y∗
t = ∆dyt and ξt ∼ N(0, σ2). Let r = max(p, q + 1). KFAS defines the state space

representation of the ARIMA(p,d,q) model with stationary initial distribution as

Z⊤ =

1d+1

0
...
0

 , H = 0, T =

Ud 1⊤
d 0 · · · 0

0 ϕ1 1 0
... . . .
... ϕr−1 0 1
0 ϕr 0 · · · 0

, R =

0d

1
θ1
...

θr−1

 ,

αt =

yt−1
...

∆d−1yt−1
y∗

t

ϕ2y∗
t−1 + . . . + ϕry∗

t−r+1 + θ1ηt + . . . + θr−1ηt−r+2
...

ϕry∗
t−1 + θr−1ηt

, Q = σ2,

a1 =

 0
...
0

 , P∗,1 =
(

0 0
0 Sr

)
, P∞,1 =

(
Id 0
0 0

)
, ηt = ξt+1

where ϕp+1 = . . . = ϕr = θq+1 = . . . = θr−1 = 0, 1d+1 is a 1 × (d + 1) vector of ones, Ud is a
d × d upper triangular matrix of ones and Sr is the covariance matrix of stationary elements
of α1. The elements of the initial state vector α1 which correspond to the differenced values
y0, . . . , ∆d−1y0 are treated as diffuse. The covariance matrix Sr can be computed by solving
the linear equation (I − T ⊗ T)vec(Sr) = vec(RR⊤) (Durbin and Koopman 2012, p.138).
Note that the arima function from stats also uses the same state space approach for ARIMA
modelling, although the handling of the intercept and possible covariates is done in a slightly
different manner (see documentation of arima for details).
As an example, we again model the alcohol-related deaths but now use the ARIMA(0,1,1)
model with drift:

R> drift <- 1:length(deaths)
R> model_arima <- SSModel(deaths / population ~ drift +
+ SSMarima(ma = 0, d = 1, Q = 1))

16 KFAS: Exponential Family State Space Models in R

R>
R> update_model <- function(pars, model) {
+ tmp <- SSMarima(ma = pars[1], d = 1, Q = pars[2])
+ model["R", states = "arima"] <- tmp$R
+ model["Q", states = "arima"] <- tmp$Q
+ model["P1", states = "arima"] <- tmp$P1
+ model
+ }
R>
R> fit_arima <- fitSSM(model_arima, inits = c(0, 1), updatefn = update_model,
+ method = "L-BFGS-B", lower = c(-1, 0), upper = c(1, 100))
R> fit_arima$optim.out$par

[1] -0.4994891 16.9937889

In this case we need to supply the model updating function for fitSSM which updates our
model definition based on the current values of the parameters we are estimating. Instead
of manually altering the corresponding elements of the model, update_model uses SSMarima
function for computation of relevant system matrices R, Q and P1. The estimated values for
θ1 and σ are -0.5 and 17.
Comparing the results of our previous structural time series model and the estimated ARIMA
model, we see that the estimated drift term and the log-likelihood are identical:

R> (out_arima <- KFS(fit_arima$model))

Smoothed values of states and standard errors at time n = 39:
Estimate Std. Error

drift 0.8409 0.3446
arima1 20.3008 13.1100
arima2 1.3545 1.3898
arima3 0.3031 0.6453

R> (out_structural <- KFS(fit_structural$model))

Smoothed values of states and standard errors at time n = 39:
Estimate Std. Error

level 54.7532 2.1705
slope 0.8409 0.3446

R> out_arima$logLik

[1] -108.9734

R> out_structural$logLik

[1] -108.9734

Jouni Helske 17

This is not suprising given the well-known connections between structural time series and
ARIMA models Harvey (1989).

6.3. Linear and generalized linear models

An ordinary linear regression model

yt = x⊤
t β + ϵt, t = 1, . . . , n,

where ϵt ∼ N(0, σ2), can be written as a Gaussian state space model by defining Zt = x⊤
t ,

Ht = σ2, Rt = Qt = 0 and αt = β. Assuming that the prior distribution of β is defined as
diffuse, the diffuse likelihood of this state space model corresponds to a restricted maximum
likelihood (REML). Then the estimate for σ2 obtained from fitSSM would be the familiar
unbiased REML estimate of residual variance. It is important to notice that for this simple
model numerical optimization is not needed, since we can estimate σ2 by running the Kalman
filter with Ht = 1, which gives us

σ̂2 = 1∑
I(F∞,t = 0)

n∑
t=1

I(F∞,t = 0)v2
t /Ft,

which equals to the REML estimate of σ2. The initial Kalman filter already provides correct
estimates of β as an+1, and running the Kalman filter again with Ht = σ2 also gives the
covariance matrix of β̂ as Pn+1.
The extension from a linear model to a generalized linear model is straightforward as the
basic theory behind the exponential family state space modelling can be formulated from the
theory of generalized linear models (GLM) and can be thought of as extension to GLMs with
additional dynamic structure. The iterative process of finding the approximating Gaussian
model is equivalent with the famous iterative reweighted least squares (IRLS) algorithm
(McCullagh and Nelder 1989, p. 40). If the model is ordinary GLM, the final estimates of
regression coefficients β and their standard errors coincide with maximum likelihood estimates
obtained from ordinary GLM fitting. By adjusting the prior distribution for β we can use
KFAS also for the Bayesian analysis of Poisson and binomial regression (as those distributions
do not depend on any additional parameters such as residual variance) with Gaussian prior.
A simple (generalized) linear model can be defined using SSModel without any auxiliary
functions by defining the regression formula in the main part of the formula. For example,
the following code defines a Poisson GLM which is identical to the one found on the help page
of glm:

R> counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)
R> outcome <- gl(3, 1, 9)
R> treatment <- gl(3, 3)
R> model_glm1 <- SSModel(counts ~ outcome + treatment,
+ distribution = "poisson")

The previous model could also be defined using the auxiliary function SSMregression:

R> model_glm2 <- SSModel(counts ~ SSMregression(~ outcome + treatment),
+ distribution = "poisson")

18 KFAS: Exponential Family State Space Models in R

If our observations are multivariate, distinct regression components are defined for each of the
series. For example, if counts counts above were a bivariate series, then both series would
have ther own regression coefficients but the same covariate values. By using SSMregression
explicitly, one could also define type = "common", which would construct common regression
coefficients for all series.
With SSMregression one can also define more complex regression models. The first argument
of SSMregression, rformula can be used to provide a single formula or a list of formulas,
where each component of the list contains the appropriate formula to be used for the cor-
responding series (ith formula in the list is used for the ith series defined by the argument
index). When rformula is a list, the data argument of SSMregression can be a single data
frame (or environment), or a list of such data objects. If data is a list, ith element of that
list is used for ith formula, and if data is a single data frame or environment, the same data
is used for all formulas.
The state space approach makes it possible to extend classical GLMs in many ways. The
extension to multivariate GLMs is straightforward, allowing, for example, the modelling of
multiple groups of data where some of the model parameters are assumed to be identical
between the groups, or where the number of explanatory variables differs between groups.
For Gaussian models, a correlation of error terms ϵ between groups can also be incorporated.
The use of dynamic GLM, where the regression coefficients follow a random walk process, can
be defined by using argument Q in SSMregression. By manually altering the corresponding
elements in the T matrix, one can also define autoregressive behaviour for the coefficients. An
additional parameter ut is defined separately for each observation, making it possible to define
models where, for example, the dispersion parameter of a negative binomial model varies in
time. One can also compute prediction intervals and other interesting measures efficiently via
the importance sampling approach discussed in Section 3.

6.4. Generalized linear mixed models
Just like in GLM setting, it is also possible to write the generalized linear mixed model
(GLMM) as a state space model. The difference between fixed and random effects lies in
the initial state distribution; fixed effects are initialized via diffuse prior whereas random
effects have proper variance defined by elements of P1. Both types of states are automatically
estimated by the Kalman filter, given the covariance structure of the random effects (and the
residual variance or other parameters related to the distribution of the observation equation).
In practice, the mixed model formulation becomes quite cumbersome especially in hierarchical
settings, but with large longitudinal settings it might still be useful to write a mixed model
as a state space model, as it is then straightforward to add, for example, stochastic cycles or
trends to the model. As an example I define a linear mixed model for the sleep deprivation
study data from lme4 (Bates, Mächler, Bolker, and Walker 2015; Bates, Mächler, Bolker, and
Walker 2017) package as on the help page of the data. The data frame sleepstudy consists
of three variables, the response variable Reaction (average reaction time), Days (number
of days of sleep deprivation) and grouping variable Subject. First the response variable is
restructured to a matrix (or ts) object:

R> library("lme4", quietly = TRUE)
R> y_split <- split(sleepstudy["Reaction"], sleepstudy["Subject"])
R> p <- length(y_split)

Jouni Helske 19

R> y <- matrix(unlist(y_split), ncol = p,
+ dimnames = list(NULL, paste("Subject", names(y_split))))

The data frame with explanatory variables is also split to a list where each list component
corresponds to one group.

R> dataf <- split(sleepstudy, sleepstudy["Subject"])

The only explanatory variable Days in the data is identical to each Subject so the previous
split of the data frame is not necessary, but illustrates the workflow for more complex data.
We can now build the state space model by defining the common fixed part for each group
(SSMregression function with argument type = "common"). Using the same function we
can define the distinct random effect parts for each group, and the covariance structure of the
random effects using the argument P1 (the diffuse part P1inf is automatically set to zero for
those states where the corresponding element in P1 is nonzero). The function .bdiag from
the Matrix package (Bates and Mächler 2017) is used for building a block diagonal covariance
matrix for the random effects.

R> P1 <- as.matrix(.bdiag(replicate(p, matrix(NA, 2, 2), simplify = FALSE)))
R> model_lmm <- SSModel(y ~ -1 +
+ SSMregression(rep(list(~ Days), p), type = "common", data = dataf,
+ remove.intercept = FALSE) +
+ SSMregression(rep(list(~ Days), p), data = dataf,
+ remove.intercept = FALSE, P1 = P1),
+ H = diag(NA, p))

Note that in SSMregression, we use a lists of formulas (the first unnamed argument rformula)
and data frames (argument data), where each component corresponds to one column of y.
Thus we could use different formulas for different groups in more complex models. In this
simple example the same model could be built with call

R> model_lmm2 <- SSModel(y ~ - 1 +
+ SSMregression(~ Days, type = "common", remove.intercept = FALSE) +
+ SSMregression(~ Days, remove.intercept = FALSE, P1 = P1),
+ H = diag(NA, p), data = data.frame(Days = 0:9))

Again we need to define the model updating function for fitSSM:

R> update_lmm <- function(pars, model) {
+ P1 <- diag(exp(pars[1:2]))
+ P1[1, 2] <- pars[3]
+ P1 <- crossprod(P1)
+ model["P1", states = 3:38] <-
+ as.matrix(.bdiag(replicate(p, P1, simplify = FALSE)))
+ model["H"] <- diag(exp(pars[4]), p)
+ model
+ }
R>
R> fit_lmm <- fitSSM(model_lmm, c(1, 1, 1, 5), update_lmm, method = "BFGS")

20 KFAS: Exponential Family State Space Models in R

The estimated likelihood, variance/covariance parameters, and the estimates of fixed and
random effects are practically identical to the ones obtained by lmer function of lme4 package.
The only major difference is in the estimation of conditional covariance matrices of the random
effects, which is due to the fact that in lme4 these matrices are computed conditionally on all
the other model parameters, including the fixed effects (Bates et al. 2015, p.28). In KFAS the
conditioning is only on the the numerically estimated variance/covariance parameters, and
thus the resulting standard errors of random effects take account of the uncertainty of the
estimation of fixed effects also.
In this example different groups were thought of as separate response vectors. In cases where
the sample sizes in different groups are not equal, the same approach can be used after
appropriately filling the data matrix with missing values. The corresponding NA values in
covariates do not cause problems as they are not referenced in the Kalman filter.
It is also possible to define the mixed model using univariate response and time-varying system
matrices Tt and Qt. This reduces the state space and thus makes the model computationally
more efficient, but adding other stochastic components to the model can be more problematic.
For building such a model we need to use either the customSSM function for defining the
corresponding time-varying system matrices, or we can use SSMregression as a starting
point and alter the model components manually. This univariate approach is illustated on
the main help page of KFAS.

6.5. Arbitrary state space models

By combining the auxialiary functions presented in the previous sections and possibly man-
ually adjusting the resulting system matrices, a large amount of models can be constructed
with relative ease. For cases where this is not sufficient or otherwise preferable, the auxiliary
function SSMcustom can be used for the construction of arbitrary components by direct defi-
nition of the system matrices. As an example, we modify the Poisson model of Section 3 by
adding an additional white noise term which tries to capture possible overdispersion of the
data. Our model for the Poisson intensity is now ut exp(µt + ϵt) with

µt+1 = µt + ν + ηt,

where ηt ∼ N(0, σ2
η) as before, and ϵt ∼ N(0, σ2

ϵ). This model can be written in a state space
form by defining

R> model_poisson <- SSModel(deaths ~ SSMtrend(2, Q = list(NA, 0)) +
+ SSMcustom(Z = 1, T = 0, Q = NA, P1 = NA),
+ distribution = "poisson", u = population)

As the model contains unknown parameters in P1, we need to provide a specific model up-
dating function for fitSSM:

R> update_poisson <- function(pars, model) {
+ model["Q", etas = "level"] <- exp(pars[1])
+ model["Q", etas = "custom"] <- exp(pars[2])
+ model["P1", states = "custom"] <- exp(pars[2])
+ model
+ }

Jouni Helske 21

R> fit_poisson <- fitSSM(model_poisson, c(-3, -3),
+ update_poisson, method = "BFGS")
R> fit_poisson$model["Q", etas = "level"]

[1] 0.00316852

R> fit_poisson$model["Q", etas = "custom"]

[1] 0.002506342

From Figure 3 we see that the Gaussian structural time series model and the Poisson structural
time series model with additional white noise produce nearly indistinguishable estimates of
the smoothed trend µt. This is due to the relatively high intensity of the Poisson process.

Year

A
lc

oh
ol

−
re

la
te

d
de

at
hs

 in
 F

in
la

nd
 p

er
 1

00
,0

00
 p

er
so

ns

1970 1980 1990 2000

20
30

40
50

60

Figure 3: Alcohol-related deaths in Finland (black line) with smoothed estimates from Gaus-
sian model (blue) and Poisson model with additional noise (red).

7. Illustration
I now illustrate the use of KFAS with a more complete example case than the previous
examples. Again the data consists of alcohol-related deaths in Finland, but now four age
groups, 30–39, 40–49, 50–59 and 60–69, are modelled together as a multivariate Poisson model.

22 KFAS: Exponential Family State Space Models in R

The death counts and yearly population sizes in corresponding age groups are available for the
years 1969–2012, but as an illustration, we only use the data until 2007, and make predictions
for the years 2008–2013. Figure 4 shows the number of deaths per 100,000 persons for all age
groups.

R> data("alcohol")
R> colnames(alcohol)

[1] "death at age 30-39" "death at age 40-49"
[3] "death at age 50-59" "death at age 60-69"
[5] "population by age 30-39" "population by age 40-49"
[7] "population by age 50-59" "population by age 60-69"

R> ts.plot(window(alcohol[, 1:4] / alcohol[, 5:8], end = 2007), col = 1:4,
+ ylab = "Alcohol-related deaths in Finland per 100,000 persons",
+ xlab = "Year")
R> legend("topleft",col = 1:4, lty = 1, legend = colnames(alcohol)[1:4])

Year

A
lc

oh
ol

−
re

la
te

d
de

at
hs

 in
 F

in
la

nd
 p

er
 1

00
,0

00
 p

er
so

ns

1970 1980 1990 2000

20
40

60
80

10
0

death at age 30−39
death at age 40−49
death at age 50−59
death at age 60−69

Figure 4: Alcohol-related deaths per 100,000 persons in Finland in 1969–2007 for four age
groups.

Jouni Helske 23

Here I choose a multivariate extension of the Poisson model used in Section 6.5:

p(yt|θt) = Poisson(ute
θt), ut = populationt,

θt = µt + ϵt, ϵt ∼ N(0, Qnoise),
µt+1 = µt + νt + ξt, ξt ∼ N(0, Qlevel),
νt+1 = νt.

(4)

Here µt is the random walk with drift component, νt is a constant slope and ϵt is an additional
white noise component which captures the extra variation of the series. I make no restrictions
for the covariance structures of the level or the noise component.
The model (4) can be constructed with KFAS as follows.

R> alcoholPred <- window(alcohol, start = 1969, end = 2007)
R> model <- SSModel(alcoholPred[, 1:4] ~
+ SSMtrend(2, Q = list(matrix(NA, 4, 4), matrix(0, 4, 4))) +
+ SSMcustom(Z = diag(1, 4), T = diag(0, 4), Q = matrix(NA, 4, 4),
+ P1 = matrix(NA, 4, 4)), distribution = "poisson",
+ u = alcoholPred[, 5:8])

The updating function for fitSSM is

R> updatefn <- function(pars, model, ...){
+ Q <- diag(exp(pars[1:4]))
+ Q[upper.tri(Q)] <- pars[5:10]
+ model["Q", etas = "level"] <- crossprod(Q)
+ Q <- diag(exp(pars[11:14]))
+ Q[upper.tri(Q)] <- pars[15:20]
+ model["Q", etas = "custom"] <- model["P1", states = "custom"] <-
+ crossprod(Q)
+ model
+ }

We can estimate the model parameters first without simulation, and then using those esti-
mates as initial values run the estimation procedure again with importance sampling. In this
case, the results obtained from the importance sampling step are practically identical with
the ones obtained from the initial step.

R> init <- chol(cov(log(alcoholPred[, 1:4] / alcoholPred[, 5:8])) / 10)
R> fitinit <- fitSSM(model, updatefn = updatefn,
+ inits = rep(c(log(diag(init)), init[upper.tri(init)]), 2),
+ method = "BFGS")
R> -fitinit$optim.out$val

[1] -704.8052

R> fit <- fitSSM(model, updatefn = updatefn, inits = fitinit$optim.out$par,
+ method = "BFGS", nsim = 250)
R> -fit$optim.out$val

24 KFAS: Exponential Family State Space Models in R

[1] -704.8034

Using the model extraction method for the fitted models, we can check the estimated covari-
ance and correlation matrices:

R> varcor <- fit$model["Q", etas = "level"]
R> varcor[upper.tri(varcor)] <- cov2cor(varcor)[upper.tri(varcor)]
R> print(varcor, digits = 2)

[,1] [,2] [,3] [,4]
[1,] 0.0074 0.66022 0.8062 0.856
[2,] 0.0028 0.00239 0.1654 0.711
[3,] 0.0040 0.00047 0.0034 0.755
[4,] 0.0033 0.00156 0.0020 0.002

R> varcor <- fit$model["Q", etas = "custom"]
R> varcor[upper.tri(varcor)] <- cov2cor(varcor)[upper.tri(varcor)]
R> print(varcor, digits = 2)

[,1] [,2] [,3] [,4]
[1,] 0.00537 0.73118 0.75627 8.0e-01
[2,] 0.00315 0.00346 0.99924 9.9e-01
[3,] 0.00295 0.00313 0.00283 1.0e+00
[4,] 0.00043 0.00043 0.00039 5.4e-05

Parameter estimation of a state space model is often a difficult task, as the likelihood surface
contains multiple maxima, thus making the optimization problem highly dependent on the
initial values. Often the unknown parameters are related to the unobserved latent states,
such as the covariance matrix in this example, with little a priori knowledge. Therefore, it is
challenging to guess good initial values, especially in more complex settings. Thus, multiple
initial value configurations possibly with several different type of optimization routines is
recommended before one can be reasonably sure that proper optimum is found. Here we use
the covariance matrix of the observed series as initial values for the covariance structures.
Another issue in the case of non-Gaussian models is the fact that the likelihood computation
is based on iterative procedure which is stopped using some stopping criteria (such as the
relative change of log-likelihood), so the log-likelihood function actually contains some noise.
This in turn can affect the gradient computations in methods like BFGS and can in theory
give unreliable results. Using derivative free method like Nelder-Mead is therefore sometimes
recommended. On the other hand, BFGS is usually much faster than Nelder-Mead, and thus
I prefer to try BFGS first at least in preliminary analysis.
Using the function KFS we can compute the smoothed estimates of states:

R> out <- KFS(fit$model, nsim = 1000)
R> out

Jouni Helske 25

Smoothed values of states and standard errors at time n = 39:
Estimate Std. Error

level.death at age 30-39 2.8569330 0.0761330
slope.death at age 30-39 0.0107578 0.0140697
level.death at age 40-49 4.0315223 0.0436889
slope.death at age 40-49 0.0237437 0.0080662
level.death at age 50-59 4.7580900 0.0404141
slope.death at age 50-59 0.0504065 0.0094313
level.death at age 60-69 4.4940884 0.0347550
slope.death at age 60-69 0.0482817 0.0072838
custom1 -0.0009196 0.0603432
custom2 -0.0202014 0.0406535
custom3 -0.0175385 0.0368064
custom4 -0.0022117 0.0051207

From the output of KFS we see that the slope term is not significant in the first age group. For
time-varying states we can easily plot the estimated level and noise components, which shows
clear trends in three age groups and highly correlated additional variation in all groups:

R> plot(coef(out, states = c("level", "custom")), main = "Smoothed states",
+ yax.flip = TRUE)

Note the large drop in the noise component in Figure 5, which relates to a possible outlier
in 1973 of the mortality series. As an illustration of model diagnostics, we compute recur-
sive residuals for our model and check whether there is autocorrelation left in the residuals
(Figure 6).

R> res <- rstandard(KFS(fit$model, filtering = "mean", smoothing = "none",
+ nsim = 1000))
R> acf(res, na.action = na.pass)

We see occasional lagged cross-correlation between the residuals, but overall we can be rela-
tively satisfied with our model.
We can now predict the intensity eθt of alcohol-related deaths per 100,000 persons for each
age group for years 2008–2013 using our estimated model. As our model is time varying (u
varies), we need to provide the model for the future observations via newdata argument. In
this case we can use the SSMcustom function and provide all the necessary system matrices
at once, together with constant u = 1 (our signal θ is already scaled properly as the original
ut was the population per 100,000 persons).

R> pred <- predict(fit$model,
+ newdata = SSModel(ts(matrix(NA, 6, 4), start = 2008) ~ -1 +
+ SSMcustom(Z = fit$model$Z, T = fit$model$T, R = fit$model$R,
+ Q = fit$model$Q), u = 1, distribution = "poisson"),
+ interval = "confidence", nsim = 10000)

26 KFAS: Exponential Family State Space Models in R

2.
4

2.
6

2.
8

3.
0

le
ve

l.d
ea

th
 a

t a
ge

 3
0−

39

3.
2

3.
4

3.
6

3.
8

4.
0

le
ve

l.d
ea

th
 a

t a
ge

 4
0−

49

3.
0

3.
5

4.
0

4.
5

le
ve

l.d
ea

th
 a

t a
ge

 5
0−

59

3.
0

3.
5

4.
0

4.
5

1970 1980 1990 2000 le
ve

l.d
ea

th
 a

t a
ge

 6
0−

69

Time

−
0.

10
0.

00

cu
st

om
1

−
0.

10
0.

00

cu
st

om
2

−
0.

10
0.

00
0.

05

cu
st

om
3

−
0.

01
5

−
0.

00
5

0.
00

5

1970 1980 1990 2000
cu

st
om

4

Time

Smoothed states

Figure 5: Smoothed level and white noise components.

R> trend <- exp(signal(out, "trend")$signal)
R> par(mfrow = c(2, 2), mar = c(2, 2, 2, 2) + 0.1, oma = c(2, 2, 0, 0))
R> for (i in 1:4) {
+ ts.plot(alcohol[, i]/alcohol[, 4 + i], trend[, i], pred[[i]],
+ col = c(1, 2, rep(3, 3)), xlab = NULL, ylab = NULL,
+ main = colnames(alcohol)[i])
+ }
R> mtext("Number of alcohol related deaths per 100,000 persons in Finland",
+ side = 2, outer = TRUE)
R> mtext("Year", side = 1, outer = TRUE)

Jouni Helske 27

0 2 4 6 8

−
0.

4
0.

2
0.

6
1.

0

Lag

A
C

F

death at age 30−39

0 2 4 6 8
−

0.
4

0.
2

0.
6

1.
0

Lag

daa3 & daa4

0 2 4 6 8

−
0.

4
0.

2
0.

6
1.

0

Lag

daa3 & daa5

0 2 4 6 8

−
0.

4
0.

2
0.

6
1.

0

Lag

daa3 & daa6

−8 −6 −4 −2 0

−
0.

4
0.

2
0.

6
1.

0

Lag

A
C

F

daa4 & daa3

0 2 4 6 8

−
0.

4
0.

2
0.

6
1.

0

Lag

death at age 40−49

0 2 4 6 8
−

0.
4

0.
2

0.
6

1.
0

Lag

daa4 & daa5

0 2 4 6 8

−
0.

4
0.

2
0.

6
1.

0

Lag

daa4 & daa6

−8 −6 −4 −2 0

−
0.

4
0.

2
0.

6
1.

0

Lag

A
C

F

daa5 & daa3

−8 −6 −4 −2 0

−
0.

4
0.

2
0.

6
1.

0

Lag

daa5 & daa4

0 2 4 6 8

−
0.

4
0.

2
0.

6
1.

0

Lag

death at age 50−59

0 2 4 6 8
−

0.
4

0.
2

0.
6

1.
0

Lag

daa5 & daa6

−8 −6 −4 −2 0

−
0.

4
0.

2
0.

6
1.

0

Lag

A
C

F

daa6 & daa3

−8 −6 −4 −2 0

−
0.

4
0.

2
0.

6
1.

0

Lag

daa6 & daa4

−8 −6 −4 −2 0

−
0.

4
0.

2
0.

6
1.

0

Lag

daa6 & daa5

0 2 4 6 8

−
0.

4
0.

2
0.

6
1.

0

Lag

death at age 60−69

Figure 6: Autocorrelations and cross-correlations of recursive residuals.

Figure 7 shows the observed deaths, smoothed trends for 1969–2007, and intensity predic-
tions for 2008–2013 together with 95% prediction intervals for intensity. When we compare
our predictions with true observations, we see that in reality the number of deaths slightly
increased in the oldest age group (ages 60–69), whereas at another age they decreased sub-
stantially during the forecasting period. This is partly explained by the fact that during this
period the total alcohol consumption decreased almost monotonically, which in turn might
have been caused by the increase in taxation of alcohol in 2008, 2009 and 2012.

28 KFAS: Exponential Family State Space Models in R

death at age 30−39

1970 1980 1990 2000 2010

10
15

20
25

30

death at age 40−49

1970 1980 1990 2000 2010

20
30

40
50

60
70

80
90

death at age 50−59

1970 1980 1990 2000 2010

50
10

0
15

0
20

0

death at age 60−69

1970 1980 1990 2000 2010

20
40

60
80

10
0

12
0

14
0

N
um

be
r

of
 a

lc
oh

ol
 r

el
at

ed
 d

ea
th

s
pe

r
10

0,
00

0
pe

rs
on

s
in

 F
in

la
nd

Year

Figure 7: Observed number of alcohol related deaths per 100,000 persons in Finland (black),
fitted values (red) and intensity predictions for years the 2008–2013 together with 95% pre-
diction intervals (green).

Jouni Helske 29

8. Other packages for non-Gaussian time series modelling
There are also other packages in CRAN which can be used for modelling non-Gaussian time
series data. Package pomp (King, Ionides, Bretó, Ellner, Ferrari, Kendall, Lavine, Nguyen,
Reuman, Wearing, and Wood 2015; King, Nguyen, and Ionides 2016) offers functions for the
inference of state space models with non-Gaussian and non-linear observation and state equa-
tions via particle filtering methods. The particle filtering approach makes pomp applicable
to an even more broader class of models than KFAS, but the learning curve for using pomp is
relatively high, as the user must write his or her own functions (preferably in C) for measure-
ment and state process simulation as well as likelihood evaluation. Another package suitable
for state space modelling is INLA (Rue, Martino, Lindgren, Simpson, Riebler, and Krainski
2015; Lindgren and Rue 2015) (not available on CRAN), which can be used for Bayesian
analysis via integrated nested Laplace approximation technique. Although it is often used in
spatial modelling via Gaussian random fields, it can also be used for certain temporal state
space models where the state transitions are Gaussian.
KFAS is based on a parameter-driven approach where the latent states αt evolve in time as
stochastic processes with the noise term ηt which does not depend on the past observations or
covariates. This approach offers a flexible and conceptually simple way of introducing multiple
types of latent structures into the model. In contrast, in the observation-driven approach the
state equation is defined using the past observations and possibly other covariates. This
makes the states perfectly predictable (one-step-ahead) given the past information, allowing
closed-form evaluation of the likelihood, and thus leading to computational gains compared to
simulation-based estimation methods used in the parameter-driven approach for non-Gaussian
models. Both approaches have their merits, see, for example, (Koopman, Lucas, and Scharth
2016) for a comparison of parameter-driven and observation-driven approaches in a complex
non-Gaussian non-linear setting.
acp (Vasileios 2015) is a compact package based on the observation-driven approach for count
data regression via Autoregressive Conditional Poisson (ACP) processes. In the ACP models
the mean of the Poisson process is assumed to depend on the previous values of the obser-
vations and the previous values of the mean (which in turn can depend on covariates). A
more general framework to the observation-driven approach for time series regression is im-
plemented in the package glarma (Dunsmuir and Scott 2015), which implements Generalized
Linear Autoregressive Moving Average models (GLARMA) supporting Poisson, binomial and
negative binomial distributions. Package tscount (Liboschik, Fried, Fokianos, and Probst
2016) offers similar functionality using Poisson and negative binomial distributions with a
closely related theoretic framework. All of these three packages assume univariate responses.
The scope of the packages gamlls (Rigby and Stasinopoulos 2005) and VGAM (Yee 2010) is
mainly on complex non-time series data, but they also have some capabilities for non-Gaussian
time series modelling. Package gamlss.util (Stasinopoulos, Rigby, and Eilers 2015) extends
gamlls with the function garmaFit for univariate time series regression via GARMA models,
which are closely related to the GLARMA models of the glarma package. A large number of
distributions are supported. The GARMA models can also be estimated with VGAM (Yee
2010) package, which contains the function garma for the estimation of GARMA models, but
the documentation warns that the function is very unpolished.
Time series of counts often exhibit overdispersion or an excess amount of zeroes. Although
previously mentioned packages can deal with these issues to some extent, there are also

30 KFAS: Exponential Family State Space Models in R

packages on CRAN designed specifically for these type of problems. Package ZIM (Yang,
Zamba, and Cavanaugh 2017) offers functions for both observation-driven and parameter-
driven modelling of zero-inflated count series. For the parameter-driven approach a particle
filtering approach is used. From the very scarce documentation of the package, it is not clear
how the observation-driven approach is implemented. Package tsintermittent (Kourentzes
and Petropoulos 2016) contain forecasting methods for intermittent time series stemming, for
example, from sales of slow moving items. Covariates are not supported.
Overall, there are multiple packages on CRAN which offer different approaches to non-
Gaussian time series modelling, and preferring one package over another is likely dependent
on the current problem in hand. For example, in some cases, time-dependency in the data
can be more thought of as a nuisance which must be taken into account in order to make
reliable inferences regarding the regression coefficients of the model. However, in some cases
it can be that the interest is in the underlying latent time-varying processes itself. Due to the
parameter-driven approach, packages such as KFAS and pomp can be used for the flexible
modelling of, for example, a stochastic trend, seasonal and cyclic components. For packages
such as glarma and tscount options are more limited because of the nature of the general
model specification.
Time-varying regression coefficients and random effects can be incorporated to time series
models with INLA, KFAS and pomp. These packages can also deal with missing observations
in the response variable straightforwardly, whereas other packages do not seem to handle
missing values properly. Most of the packages produce informative or non-informative error
messages in the case of missing observations, whereas some just omit the missing time points
of the data without taking account of the unevenness of the time points during the parameter
estimation.

8.1. Comparison to INLA
As INLA is not available on CRAN, the codes in this section are commented out
in the vignette. See the original paper at Journal of Statistical Software.
I will now briefly compare KFAS and INLA. As an illustration, we reanalyze the salmonella
data analyzed by Margolin, Kaplan, and Zeiger (1981) which is available from INLA. The
data consists of the number of revertant colonies of TA98 Salmonella with different doses
of quinoline. We model the number of colonies as a Poisson GLMM with two explanatory
variables and a random intercept term which tries to capture the overdispersion in the data.
The codes for inference with INLA used here can be found from http://www.r-inla.org/
examples/volume-1/code-for-salm-example. The INLA is not available at CRAN but can
be downloaded from http://www.math.ntnu.no/inla/R/stable.

R> # library("INLA", quietly = TRUE)
R> # data("Salm")
R> # mod.salm <- inla(y ~ log(dose + 10) + dose +
R> # f(rand, model = "iid", param = c(0.001, 0.001)),
R> # family = "poisson", data = Salm)
R> # h.salm <- inla.hyperpar(mod.salm)

There are two ways to define the random intercept component in KFAS. The first one uses the
SSMregression function and constructs a factor with 18 levels (one for each case) with non-

http://www.r-inla.org/examples/volume-1/code-for-salm-example
http://www.r-inla.org/examples/volume-1/code-for-salm-example
http://www.math.ntnu.no/inla/R/stable

Jouni Helske 31

diffuse initial variance σ2. This gives 18 identically distributed time-invariant states, where
each state corresponds to the random effect of one observation. Another option would be
to use the SSMcustom function and define just one time-varying state as SSMcustom(Z = 1,
T = 0, R = 1, Q = sigma2, a1 = 0, P1 = sigma2, P1inf = 0). Both approaches give
identical results. However, for large data the former approach is less efficient as the number
of states depends on the number of observations. Nevertheless, we use the former approach
here for illustration.

R> # Salm$rand <- as.factor(Salm$rand)
R> # model <- SSModel(y ~ log(dose + 10) + dose +
R> # SSMregression(~ -1 + rand, P1 = diag(NA, 18),
R> # remove.intercept = FALSE),
R> # data = Salm, distribution = "poisson")
R> #
R> # updatefn <- function(pars,model,...){
R> # diag(model["P1", states = 4:21]) <- exp(pars)
R> # model
R> # }
R> #
R> # fit <- fitSSM(model, updatefn = updatefn, inits = -3, method = "BFGS",
R> # nsim = 1000)

R> # out <- KFS(fit$model, nsim = 10000)
R> # out
R> # h.salm$summary.fixed[, 1:2]
R> # h.salm$summary.random$rand[, 2:3]
R> # 1 / h.salm$summary.hyper[1]
R> # fit$model["P1", states = 4]

Although INLA uses a Bayesian approach, which takes account of the parameter estimation
uncertainty, the results from INLA and KFAS are practically the same, even with such small
data. The Kalman filtering with diffuse initialization still takes account of the uncertainty
of the estimation of regression coefficients, so the differences here are related to the different
prior definitions and the estimation of the hyperparameter σ2, which is estimated as precision
1/σ2 by INLA. The estimate of σ2 by KFAS is 0.066 whereas INLA gives σ2 = 0.048. Note
that changing the estimated σ2 from INLA into the model estimated by KFAS produces a
slightly lower log-likelihood value (-73.50 versus -73.66).
As INLA and KFAS are based on a different (although related) theoretical framework, the
extensive study of their performances in terms of the computational efficiency and accuracy of
results is somewhat pointless. Nevertheless, some remarks can be made. I feel that the biggest
advantage of INLA is the Bayesian framework which allows us to take account of the parameter
uncertainty in predictions and other inference. On the other hand, the computational burden
related to the numerical integration over the hyperparameters can become infeasible as the
number of hyperparameters increases. It is not uncommon to have a time series model with
tens (or even hundreds) of parameters (such as multivariate structural time series or dynamic
factor models). Of course, these same models can cause problems also to the maximum

32 KFAS: Exponential Family State Space Models in R

likelihood estimation, as noted in the Section 7. Also the Bayesian approach eliminates the
need for defining good initial values for the maximum likelihood estimation but the problem
transforms into defining good priors for the same hyperparameters, which again is a non-trivial
task in practice.

9. Discussion
State space models offer tools for solving a large class of statistical problems. Here I introduced
an R package KFAS for linear state space modelling where the observations are from an
exponential family. With such a general framework, different aspects of the modelling need
to be taken into account. Therefore the focus of the package has been to provide reliable and
relatively fast tools for multiple inference problems, such as maximum likelihood estimation,
filtering, smoothing and simulation. Compared with the early versions of KFAS, constructing
a state space model with simple components is now possible without an explicit definition of
the system matrices by using the auxiliary functions and symbolic descriptions with the help
of formula objects, which should greatly ease the use of the package.
Currently all the time consuming parts of KFAS are written in Fortran, which makes it
relatively fast, given the general nature of the problems KFAS can handle. Still, converting
the package to C++ and S4 classes with the help of Rcpp (Eddelbuettel and François 2011;
Eddelbuettel 2013) could result in potential improvements in terms of memory management,
scalability and maintenance.

Acknowledgments
The author wishes to thank Jukka Nyblom, Patricia Menendez, Spencer Graves, as well as
the editor and two anonymous reviewers for the valuable comments and suggestions regarding
the paper and the package. Comments, suggestions and bug reports from various users of
KFAS over the years are also highly appreciated. The author has been financially supported
by the Emil Aaltonen Foundation and the Academy of Finland research grant 284513.

Jouni Helske 33

A. Appendix: Filtering and smoothing recursions
The following formulas summarize the Kalman filtering and smoothing formulas for diffuse and
sequential case andare based on Durbin and Koopman (2012) and related articles. The original
formulas are somewhat scattered between the references with slightly different notations.
Therefore I have collected the equations used in KFAS to this Appendix.

A.1. Filtering
Denote

at+1 = E(αt+1|yt, . . . , y1) and
Pt+1 = VAR(αt+1|yt, . . . , y1).

The Kalman filter recursions for the general Gaussian model of form (1) are

vt = yt − Ztat

Ft = ZtPtZ
⊤
t + Ht

Kt = PtZ
⊤
t

at+1 = Tt(at + KtF
−1
t vt)

Pt+1 = Tt(Pt − KtF
−1
t K⊤

t)T ⊤
t + RtQtRt,

For the univariate approach, the filtering equations are
vt,i = yt,i − Zt,iat,i

Ft,i = Zt,iPt,iZ
⊤
t,i + σ2

t,i

Kt,i = Pt,iZ
⊤
t,i

at,i+1 = at,i + Kt,iF
−1
t,i vt,i

Pt,i+1 = Pt,i − Kt,iK
⊤
t,iF

−1
t,i

at+1,1 = Ttat,pt+1

Pt+1,1 = TtPt,pt+1T ⊤
t + RtQtRt,

for t = 1, . . . , n and i = 1, . . . , pt, where vt,i and Ft,i are scalars, Kt,i is a column vector and
σ2

t,i is the ith diagonal element of Ht. It is possible that Ft,i = 0, which case at,i+1 = at,i,
Pt,i+1 = Pt,i, and vt,i is computed as usual.
The diffuse filtering equations for univariate approach are

vt,i = yt,i − Zt,iat,i

F∗,t,i = Zt,iP∗,t,iZ
⊤
t,i + σ2

t,i

F∞,t,i = Zt,iP∞,t,iZ
⊤
t,i

K∗,t,i = P∗,t,iZ
⊤
t,i

K∞,t,i = P∞,t,iZ
⊤
t,i,

and
at,i+1 = at,i + K∞,t,ivt,iF

−1
∞,t,i

P∗,t,i+1 = P∗,t,i + K∞,t,iK
⊤
∞,t,iF∗,t,iF

−2
∞,t,i − (K∗,t,iK

⊤
∞,t,i + K∗,t,iK

⊤
∞,t,i)F −1

∞,t,i

P∞,t,i+1 = P∞,t,i − K∞,t,iK
⊤
∞,t,iF

−1
∞,t,i

34 KFAS: Exponential Family State Space Models in R

if F∞,t,i > 0, and

at,i+1 = at,i + K∗,t,ivt,iF
−1
∗,t,i

P∗,t,i+1 = P∗,t,i − K∗,t,iK
⊤
∗,t,iF

−1
∗,t,i

P∞,t,i+1 = P∞,t,i,

if F∞,t,i = 0. The transition equations from t to t + 1 are

at+1,1 = Ttat,pt+1

P∗,t+1,1 = TtP∗,t,pt+1T ⊤
t + RtQtRt

P∞,t+1,1 = TtP∞,t,pt+1T ⊤
t .

A.2. Smoothing

Denote
α̂t = E(αt|yn, . . . , y1) and
Vt = VAR(αt|yn, . . . , y1).

The smoothing algorithms of KFAS are based on the following recursions:

rt,i−1 = Z⊤
t,ivt,iF

−1
t,i + L⊤

t,irt,i,

rt−1,pt = T ⊤
t−1rt,0,

Nt,i−1 = Z⊤
t,iZt,iF

−1
t,i + L⊤

t,iNt,iLt,i,

Nt−1,pt = T ⊤
t−1Nt,0Tt−1,

Lt,i = I − Kt,iZ
⊤
t,iF

−1
t,i ,

for t = n, . . . , 1 and i = pt, . . . , 1, with rn,pn = 0 and Nn,pn = 0. From these recursions, we
get state smoothing recursions

α̂t = at,1 + Pt,1rt,0

Vt = Pt,1 − Pt,1Nt,0Pt,1,

and disturbance smoothing recursions

ϵ̂t,i = σ2
t,iF

−1
t,i (vt,i − K⊤

t,irt,i),
VAR(ϵ̂t,i) = σ2

t,i − σ4
t,i(F −1

t,i − K⊤
t,iNt,iKt,iF

−2
t,i),

η̂t = QtR
⊤
t rt,0,

VAR(η̂t,i) = QtR
⊤
t Nt,0RtQt.

The recursions for diffuse phase are as follows.

Jouni Helske 35

L∞,t,i = I − K∞,t,iZt,iF
−1
∞,t,i,

Lt,i = (K∞,t,iFt,iF
−1
∞,t,i − Kt,i)Zt,iF

−1
∞,t,i,

r0,t,i−1 = L⊤
∞,t,ir0,t,i,

r1,t,i−1 = Z⊤
t,ivt,iF

−1
∞,t,i + L⊤

∞,t,ir1,t,i + L⊤
t,ir0,t,i,

N0,t,i−1 = L⊤
∞,t,iN0,t,iL∞,t,i

N1,t,i−1 = L⊤
t,iN0,t,iL∞,t,i + L⊤

∞,t,iN1,t,iL∞,t,i + Z⊤
t,iZt,iF

−1
∞,t,i,

N2,t,i−1 = L⊤
t,iN0,t,iLt,i + L⊤

∞,t,iN1,t,iLt,i + (L⊤
∞,t,iN1,t,iLt,i)⊤ + L∞,t,iN

⊤
2,t,iL∞,t,i

− Z⊤
t,iZt,iFt,iF

−2
∞,t,i,

Nt−1,pt = T ⊤
t−1Nt,0Tt−1,

if F∞,t,i > 0, and
Lt,i = I − Kt,iZt,iF

−1
t,i ,

r0,t,i−1 = Z⊤
t,ivt,iF

−1
t,i + L⊤

t,ir0,t,i,

r1,t,i−1 = L⊤
t,ir1,t,i,

N0,t,i−1 = L⊤
t,iN0,t,iLt,i + Z⊤

t,iZt,iF
−1
t,i

N1,t,i−1 = N1,t,iLt,i

N2,t,i−1 = N2,t,iLt,i,

otherwise. The transition from time t to t − 1 is by Nj,t−1,pt = T ⊤
t−1Nj,t,0Tt−1 for j = 0, 1, 2,

and rj,t−1,pt = T ⊤
t−1rj,t,0 for j = 0, 1, with r0,d,j = rd,j , r1,d,j = 0, N0,d,j = Nd,j , and N1,d,j =

N2,d,j = 0, where (d, j) is the last point of diffuse phase. From these basic recursions, we get
state smoothing recursions for diffuse phase as

α̂t = at,1 + Pt,1r0,t,0 + P∞,t,1r1,t,0,

Vt = Pt,1 − Pt,1N0,t,0Pt,1 − (P∞,t,1N1,t,0Pt,1)⊤ − P∞,t,1N1,t,0Pt,1 − P∞,t,1N2,t,0P∞,t,1,

and disturbance smoothing recursions

ϵ̂t,i = −σ2
t,iK

⊤
∞,t,ir0,t,i,

VAR(ϵ̂t,i) = σ2
t,i − σ4

t,iK
⊤
∞,t,iN0,t,iK∞,t,iF

−2
∞,t,i,

if F∞,t,i > 0, and
ϵ̂t,i = −σ2

t,i(vt,iF
−1
∞,t,i − K⊤

t,ir0,t,i),
VAR(ϵ̂t,i) = σ2

t,i − σ4
t,i(F −1

t,i − K⊤
t,iN0,t,iKt,iF

−2
t,i),

if F∞,t,i = 0. For η̂, recursions are

η̂t = QtR
⊤
t r0,t,0,

VAR(η̂t,i) = QtR
⊤
t N0,t,0RtQt.

36 KFAS: Exponential Family State Space Models in R

References

Anderson BDO, Moore JB (1979). Optimal Filtering. Prentice-Hall, Englewood Cliffs.

Bates D, Mächler M (2017). Matrix: Sparse and Dense Matrix Classes and Methods. R pack-
age version 1.2-10, URL https://CRAN.R-project.org/package=Matrix.

Bates D, Mächler M, Bolker B, Walker S (2015). “Fitting Linear Mixed-Effects Models Using
lme4.” Journal of Statistical Software, 67(1), 1–48. doi:10.18637/jss.v067.i01.

Bates D, Mächler M, Bolker BM, Walker S (2017). lme4: Linear Mixed-Effects Models Using
Eigen and S4. R package version 1.1-13, URL https://CRAN.R-project.org/package=
lme4.

Chowdhury KR (2015). rucm: Implementation of Unobserved Components Model (UCM) in
R. R package version 0.6, URL https://CRAN.R-project.org/package=rucm.

Dunsmuir WTM, Scott DJ (2015). “The glarma Package for Observation-Driven Time Series
Regression of Counts.” Journal of Statistical Software, 67(7), 1–36. doi:10.18637/jss.
v067.i07.

Durbin J, Koopman SJ (2000). “Time Series Analysis of Non-Gaussian Observations Based
on State Space Models from Both Classical and Bayesian Perspectives.” Journal of Royal
Statistical Society B, 62(1), 3–56. doi:10.1111/1467-9868.00218.

Durbin J, Koopman SJ (2002). “A Simple and Efficient Simulation Smoother for State Space
Time Series Analysis.” Biometrika, 89(3), 603–615. doi:10.1093/biomet/89.3.603.

Durbin J, Koopman SJ (2012). Time Series Analysis by State Space Methods. 2nd edition.
Oxford University Press, New York.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer-Verlag, New
York.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Francke MK, Koopman SJ, De Vos AF (2010). “Likelihood Functions for State Space Models
with Diffuse Initial Conditions.” Journal of Time Series Analysis, 31(6), 407–414. doi:
10.1111/j.1467-9892.2010.00673.x.

Harvey AC (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-
bridge University Press.

Harvey AC, Koopman SJ (1992). “Diagnostic Checking of Unobserved-Components Time
Series Models.” Journal of Business & Economic Statistics, 10(4), 377–89. doi:10.2307/
1391813.

Holmes E, Ward E, Wills K (2013). MARSS: Multivariate Autoregressive State-Space Mod-
eling. R package version 3.9, URL https://CRAN.R-project.org/package=MARSS.

https://CRAN.R-project.org/package=Matrix
https://doi.org/10.18637/jss.v067.i01
https://CRAN.R-project.org/package=lme4
https://CRAN.R-project.org/package=lme4
https://CRAN.R-project.org/package=rucm
https://doi.org/10.18637/jss.v067.i07
https://doi.org/10.18637/jss.v067.i07
https://doi.org/10.1111/1467-9868.00218
https://doi.org/10.1093/biomet/89.3.603
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1111/j.1467-9892.2010.00673.x
https://doi.org/10.1111/j.1467-9892.2010.00673.x
https://doi.org/10.2307/1391813
https://doi.org/10.2307/1391813
https://CRAN.R-project.org/package=MARSS

Jouni Helske 37

Holmes EE, Ward EJ, Wills K (2012). “MARSS: Multivariate Autoregressive State-Space
Models for Analyzing Time-Series Data.” The R Journal, 4(1), 30.

King AA, Ionides EL, Bretó CM, Ellner SP, Ferrari MJ, Kendall BE, Lavine M, Nguyen
D, Reuman DC, Wearing H, Wood SN (2015). pomp: Statistical Inference for Partially
Observed Markov Processes. R package, version 1.2.1.1, URL http://kingaa.github.io/
pomp.

King AA, Nguyen D, Ionides EL (2016). “Statistical Inference for Partially Observed Markov
Processes via the R Package pomp.” Journal of Statistical Software, 69(12), 1–43. doi:
10.18637/jss.v069.i12.

Koopman SJ, Durbin J (2000). “Fast Filtering and Smoothing for Multivariate State Space
Models.” Journal of Time Series Analysis, 21(3), 281–296. doi:10.1111/1467-9892.
00186.

Koopman SJ, Durbin J (2003). “Filtering and Smoothing of State Vector for Diffuse State-
Space Models.” Journal of Time Series Analysis, 24(1), 85–98. doi:10.1111/1467-9892.
00294.

Koopman SJ, Lucas A, Scharth M (2016). “Predicting Time-Varying Parameters with
Parameter-Driven and Observation-Driven Models.” The Review of Economics and Statis-
tics, 98(1), 97–110. doi:10.1162/rest_a_00533.

Kourentzes N, Petropoulos F (2016). tsintermittent: Intermittent Time Series Forecasting.
R package version 1.9, URL https://CRAN.R-project.org/package=tsintermittent.

Liboschik T, Fried R, Fokianos K, Probst P (2016). tscount: Analysis of Count Time Series.
R package version 1.3.0, URL https://CRAN.R-project.org/src/contrib/Archive/
tscount/.

Lindgren F, Rue H (2015). “Bayesian Spatial Modelling with R-INLA.” Journal of Statistical
Software, 63(19), 1–25. doi:10.18637/jss.v063.i19.

Margolin BH, Kaplan N, Zeiger E (1981). “Statistical Analysis of the Ames
Salmonella/Microsome Test.” Proceedings of the National Academy of Sciences of the United
States of America, 78(6), 3779–3783. doi:10.1073/pnas.78.6.3779.

McCullagh P, Nelder JA (1989). Generalized Linear Models. 2nd edition. Chapman and Hall,
London.

Petris G, Petrone S (2011). “State Space Models in R.” Journal of Statistical Software, 41(4),
1–25. doi:10.18637/jss.v041.i04.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rigby RA, Stasinopoulos DM (2005). “Generalized Additive Models for Location, Scale and
Shape.” Applied Statistics, 54(3), 507–554. doi:10.1111/j.1467-9876.2005.00510.x.

http://kingaa.github.io/pomp
http://kingaa.github.io/pomp
https://doi.org/10.18637/jss.v069.i12
https://doi.org/10.18637/jss.v069.i12
https://doi.org/10.1111/1467-9892.00186
https://doi.org/10.1111/1467-9892.00186
https://doi.org/10.1111/1467-9892.00294
https://doi.org/10.1111/1467-9892.00294
https://doi.org/10.1162/rest_a_00533
https://CRAN.R-project.org/package=tsintermittent
https://CRAN.R-project.org/src/contrib/Archive/tscount/
https://CRAN.R-project.org/src/contrib/Archive/tscount/
https://doi.org/10.18637/jss.v063.i19
https://doi.org/10.1073/pnas.78.6.3779
https://doi.org/10.18637/jss.v041.i04
https://www.R-project.org/
https://doi.org/10.1111/j.1467-9876.2005.00510.x

38 KFAS: Exponential Family State Space Models in R

Rue H, Martino S, Lindgren F, Simpson D, Riebler A, Krainski ET (2015). INLA: Func-
tions Which Allow to Perform Full Bayesian Analysis of Latent Gaussian Models Us-
ing Integrated Nested Laplace Approximaxion. R package version 0.0-145253558, URL
http://www.R-INLA.org/.

Stasinopoulos M, Rigby B, Eilers P (2015). gamlss.util: GAMLSS Utilities. R package
version 4.3-2, URL https://CRAN.R-project.org/package=gamlss.util.

Statistics Finland (2014a). “Deaths by Gender, Age and Underlying Cause of Death 1969–
2013.” URL http://pxnet2.stat.fi/PXWeb/pxweb/en/StatFin/.

Statistics Finland (2014b). “Population According to Age (5-Year) and Sex in the Whole
Country 1865–2014.” URL http://pxnet2.stat.fi/PXWeb/pxweb/en/StatFin/.

Szymanski C (2014). dlmodeler: Generalized Dynamic Linear Modeler. R package version 1.4-
2, URL https://CRAN.R-project.org/package=dlmodeler.

Tusell F (2011). “Kalman Filtering in R.” Journal of Statistical Software, 39(2), 1–27. doi:
10.18637/jss.v039.i02.

Vasileios S (2015). acp: Autoregressive Conditional Poisson. R package version 2.1, URL
https://CRAN.R-project.org/package=acp.

Yang M, Zamba GKD, Cavanaugh JE (2017). ZIM: Zero-Inflated Models for Count Time
Series with Excess Zeros. R package version 1.0.3, URL https://CRAN.R-project.org/
package=ZIM.

Yee TW (2010). “The VGAM Package for Categorical Data Analysis.” Journal of Statistical
Software, 32(10), 1–34. doi:10.18637/jss.v032.i10.

Affiliation:
Jouni Helske
University of Jyväskylä
Department of Mathematics and Statistics
40014 Jyväskylä, Finland
E-mail: Jouni.Helske@iki.fi

http://www.R-INLA.org/
https://CRAN.R-project.org/package=gamlss.util
http://pxnet2.stat.fi/PXWeb/pxweb/en/StatFin/
http://pxnet2.stat.fi/PXWeb/pxweb/en/StatFin/
https://CRAN.R-project.org/package=dlmodeler
https://doi.org/10.18637/jss.v039.i02
https://doi.org/10.18637/jss.v039.i02
https://CRAN.R-project.org/package=acp
https://CRAN.R-project.org/package=ZIM
https://CRAN.R-project.org/package=ZIM
https://doi.org/10.18637/jss.v032.i10
mailto:Jouni.Helske@iki.fi

	Introduction
	Gaussian state space model
	Log-likelihood of the Gaussian state space model
	Example of Gaussian state space model

	State space models for the exponential family
	Log-likelihood of the non-Gaussian state space model
	Example of non-Gaussian state space model

	Residuals
	Functionality of KFAS
	Constructing common state space models with KFAS
	Structural time series
	ARIMA models
	Linear and generalized linear models
	Generalized linear mixed models
	Arbitrary state space models

	Illustration
	Other packages for non-Gaussian time series modelling
	Comparison to INLA

	Discussion
	Appendix: Filtering and smoothing recursions
	Filtering
	Smoothing

