
Package: KFAS (via r-universe)
September 20, 2024

Version 1.5.1

Title Kalman Filter and Smoother for Exponential Family State Space
Models

Depends R (>= 3.1.0)

Imports stats

Suggests knitr, lme4, MASS, Matrix, testthat

Description State space modelling is an efficient and flexible
framework for statistical inference of a broad class of time
series and other data. KFAS includes computationally efficient
functions for Kalman filtering, smoothing, forecasting, and
simulation of multivariate exponential family state space
models, with observations from Gaussian, Poisson, binomial,
negative binomial, and gamma distributions. See the paper by
Helske (2017) <doi:10.18637/jss.v078.i10> for details.

License GPL (>= 2)

BugReports https://github.com/helske/KFAS/issues

VignetteBuilder knitr

RoxygenNote 7.2.3

Encoding UTF-8

ByteCompile true

URL https://github.com/helske/KFAS

NeedsCompilation yes

Author Jouni Helske [aut, cre]
(<https://orcid.org/0000-0001-7130-793X>)

Maintainer Jouni Helske <jouni.helske@iki.fi>

Repository CRAN

Date/Publication 2023-09-05 08:20:02 UTC

1

https://doi.org/10.18637/jss.v078.i10
https://github.com/helske/KFAS/issues
https://github.com/helske/KFAS
https://orcid.org/0000-0001-7130-793X

2 alcohol

Contents
alcohol . 2
approxSSM . 3
artransform . 5
boat . 6
coef.SSModel . 7
confint.KFS . 9
fitSSM . 10
fitted.SSModel . 13
GlobalTemp . 14
hatvalues.KFS . 15
importanceSSM . 16
is.SSModel . 18
KFAS . 19
KFS . 30
ldl . 34
logLik.SSModel . 35
mvInnovations . 37
plot.SSModel . 38
predict.SSModel . 39
print.KFS . 41
print.SSModel . 42
rename_states . 42
residuals.KFS . 43
rstandard.KFS . 44
sexratio . 46
signal . 47
simulateSSM . 49
SSMarima . 51
transformSSM . 57
[<-.SSModel . 58

Index 61

alcohol Alcohol related deaths in Finland 1969–2013

Description

A multivariate time series object containing the number of alcohol related deaths and population
sizes (divided by 100000) of Finland in four age groups. See JSS paper for examples.

Format

A multivariate time series object with 45 times 8 observations.

approxSSM 3

Source

Statistics Finland https://statfin.stat.fi/PxWeb/pxweb/en/StatFin/.

approxSSM Linear Gaussian Approximation for Exponential Family State Space
Model

Description

Function approxSMM performs a linear Gaussian approximation of an exponential family state space
model.

Usage

approxSSM(
model,
theta,
maxiter = 50,
tol = 1e-08,
expected = FALSE,
H_tol = 1e+15

)

Arguments

model A non-Gaussian state space model object of class SSModel.

theta Initial values for conditional mode theta.

maxiter The maximum number of iterations used in approximation. Default is 50.

tol Tolerance parameter for convergence checks.

expected Logical value defining the approximation of H_t in case of Gamma and negative
binomial distribution. Default is FALSE which matches the algorithm of Durbin
& Koopman (1997), whereas TRUE uses the expected value of observations in
the equations, leading to results which match with glm (where applicable). The
latter case was the default behaviour of KFAS before version 1.3.8. Essentially
this is the difference between observed and expected information.

H_tol Tolerance parameter for check max(H) > tol_H, which suggests that the approx-
imation converged to degenerate case with near zero signal-to-noise ratio. De-
fault is very generous 1e15.

Details

This function is rarely needed itself, it is mainly available for illustrative and debugging purposes.
The underlying Fortran code is used by other functions of KFAS for non-Gaussian state space
modelling.

https://statfin.stat.fi/PxWeb/pxweb/en/StatFin/

4 approxSSM

The linear Gaussian approximating model is defined by

ỹt = Ztαt + ϵt, ϵt ∼ N(0, H̃t),

αt+1 = Ttαt +Rtηt, ηt ∼ N(0, Qt),

and α1 ∼ N(a1, P1),

where ỹ and H̃ are chosen in a way that the linear Gaussian approximating model has the same
conditional mode of θ = Zα given the observations y as the original non-Gaussian model. Models
also have a same curvature at the mode.

The approximation of the exponential family state space model is based on iterative weighted least
squares method, see McCullagh and Nelder (1983) p.31 and Durbin Koopman (2012) p. 243.

Value

An object of class SSModel which contains the approximating Gaussian state space model with
following additional components:

thetahat Mode of p(θ|y).
iterations Number of iterations used.

difference Relative difference in the last step of approximation algorithm.

References

• McCullagh, P. and Nelder, J. A. (1983). Generalized linear models. Chapman and Hall.

• Koopman, S.J. and Durbin, J. (2012). Time Series Analysis by State Space Methods. Second
edition. Oxford University Press.

See Also

importanceSSM, SSModel, KFS, KFAS.

Examples

A Gamma example modified from ?glm (with log-link)
clotting <- data.frame(

u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))

glmfit1 <- glm(lot1 ~ log(u), data = clotting, family = Gamma(link = "log"))
glmfit2 <- glm(lot2 ~ log(u), data = clotting, family = Gamma(link = "log"))

Model lot1 and lot2 together (they are still assumed independent)
Note that Gamma distribution is parameterized by 1/dispersion i.e. shape parameter
model <- SSModel(cbind(lot1, lot2) ~ log(u),

u = 1/c(summary(glmfit1)$dispersion, summary(glmfit2)$dispersion),
data = clotting, distribution = "gamma")

approxmodel <- approxSSM(model)

artransform 5

Conditional modes of linear predictor:
approxmodel$thetahat
cbind(glmfit1$linear.predictor, glmfit2$linear.predictor)

KFS(approxmodel)
summary(glmfit1)
summary(glmfit2)

approxSSM uses modified step-halving for more robust convergence than glm:
y <- rep (0:1, c(15, 10))
suppressWarnings(glm(formula = y ~ 1, family = binomial(link = "logit"), start = 2))
model <- SSModel(y~1, dist = "binomial")
KFS(model, theta = 2)
KFS(model, theta = 7)

artransform Mapping real valued parameters to stationary region

Description

Function artransform transforms p real valued parameters to stationary region of pth order autore-
gressive process using parametrization suggested by Jones (1980). Fortran code is a converted from
stats package’s C-function partrans.

Usage

artransform(param)

Arguments

param Real valued parameters for the transformation.

Value

transformed The parameters satisfying the stationary constrains.

Note

This should in theory always work, but in practice the initial transformation by tanh can produce
values numerically identical to 1, leading to AR coefficients which do not satisfy the stationarity
constraints. See example in logLik.SSModel on how to scope with those issues.

References

Jones, R. H (1980). Maximum likelihood fitting of ARMA models to time series with missing
observations, Technometrics Vol 22. p. 389–395.

Examples

artransform(1:3)

6 boat

boat Oxford-Cambridge boat race results 1829-2011

Description

Results of the annual boat race between universities of Oxford (0) and Cambridge (1).

Format

A time series object containing 183 observations (including 28 missing observations).

Source

http://www.ssfpack.com/DKbook.html

References

Koopman, S.J. and Durbin J. (2012). Time Series Analysis by State Space Methods. Oxford:
Oxford University Press.

Examples

data("boat")

Model from DK2012, bernoulli response based on random walk
model <- SSModel(boat ~ SSMtrend(1, Q = NA), distribution = "binomial")

fit_nosim <- fitSSM(model, inits = log(0.25), method = "BFGS", hessian = TRUE)
nsim set to small for faster execution of example
doesn't matter here as the model/data is so poor anyway
fit_sim <- fitSSM(model, inits = log(0.25), method = "BFGS", hessian = TRUE, nsim = 100)

Compare with the results from DK2012
model_DK <- SSModel(boat ~ SSMtrend(1, Q = 0.33), distribution = "binomial")

Big difference in variance parameters:
fit_nosim$model["Q"]
fit_sim$model["Q"]

approximate 95% confidence intervals for variance parameter:
very wide, there really isn't enough information in the data
as a comparison, a fully Bayesian approach (using BUGS) with [0, 10] uniform prior for sigma
gives posterior mode for Q as 0.18, and 95% credible interval [0.036, 3.083]

exp(fit_nosim$optim.out$par + c(-1, 1)*qnorm(0.975)*sqrt(1/fit_nosim$optim.out$hessian[1]))
exp(fit_sim$optim.out$par + c(-1, 1)*qnorm(0.975)*sqrt(1/fit_sim$optim.out$hessian[1]))

95% confidence intervals for probability that Cambridge wins
pred_nosim <- predict(fit_nosim$model, interval = "confidence")
pred_sim <- predict(fit_sim$model, interval = "confidence")

coef.SSModel 7

ts.plot(pred_nosim, pred_sim, col = c(1, 2, 2, 3, 4, 4), lty = c(1, 2, 2), ylim = c(0, 1))
points(x = time(boat), y = boat, pch = 15, cex = 0.5)

if we trust the approximation, fit_nosim gives largest log-likelihood:
logLik(fit_nosim$model)
logLik(fit_sim$model)
logLik(model_DK)

and using importance sampling fit_sim is the best:
logLik(fit_nosim$model, nsim = 100)
logLik(fit_sim$model, nsim = 100)
logLik(model_DK, nsim = 100)

Not run:
only one unknown parameter, easy to check the shape of likelihood:
very flat, as was expected based on Hessian
ll_nosim <- Vectorize(function(x) {

model["Q"] <- x
logLik(model)

})
ll_sim <- Vectorize(function(x) {

model["Q"] <- x
logLik(model, nsim = 100)

})
curve(ll_nosim(x), from = 0.1, to = 0.5, ylim = c(-106, -104.5))
curve(ll_sim(x), from = 0.1, to = 0.5, add = TRUE, col = "red")

End(Not run)

coef.SSModel Smoothed Estimates or One-step-ahead Predictions of States

Description

Compute smoothed estimates or one-step-ahead predictions of states of SSModel object or extract
them from output of KFS. For non-Gaussian models without simulation (nsim = 0), these are the
estimates of conditional modes of states. For Gaussian models and non-Gaussian models with
importance sampling, these are the estimates of conditional means of states.

Usage

S3 method for class 'KFS'
coef(
object,
start = NULL,
end = NULL,
filtered = FALSE,
states = "all",
last = FALSE,

8 coef.SSModel

...
)

S3 method for class 'SSModel'
coef(
object,
start = NULL,
end = NULL,
filtered = FALSE,
states = "all",
last = FALSE,
nsim = 0,
...

)

Arguments

object An object of class KFS or SSModel.

start The start time of the period of interest. Defaults to first time point of the object.

end The end time of the period of interest. Defaults to the last time point of the
object.

filtered Logical, return filtered instead of smoothed estimates of state vector. Default is
FALSE.

states Which states to extract? Either a numeric vector containing the indices of
the corresponding states, or a character vector defining the types of the cor-
responding states. Possible choices are "all", "level", "slope", "trend",
"regression", "arima", "custom", "cycle" or "seasonal", where "trend"
extracts all states relating to trend. These can be combined. Default is "all".

last If TRUE, extract only the last time point as numeric vector (ignoring start and
end). Default is FALSE.

... Additional arguments to KFS. Ignored in method for object of class KFS.

nsim Only for method for for non-Gaussian model of class SSModel. The number of
independent samples used in importance sampling. Default is 0, which com-
putes the approximating Gaussian model by approxSSM and performs the usual
Gaussian filtering/smoothing so that the smoothed state estimates equals to the
conditional mode of p(αt|y). In case of nsim = 0, the mean estimates and their
variances are computed using the Delta method (ignoring the covariance terms).

Value

Multivariate time series containing estimates states.

Examples

model <- SSModel(log(drivers) ~ SSMtrend(1, Q = list(1)) +
SSMseasonal(period = 12, sea.type = "trigonometric") +
log(PetrolPrice) + law, data = Seatbelts, H = 1)

confint.KFS 9

coef(model, states = "regression", last = TRUE)
coef(model, start = c(1983, 12), end = c(1984, 2))
out <- KFS(model)
coef(out, states = "regression", last = TRUE)
coef(out, start = c(1983, 12), end = c(1984, 2))

confint.KFS Confidence Intervals of Smoothed States

Description

Extract confidence intervals of the smoothed estimates of states from the output of KFS.

Usage

S3 method for class 'KFS'
confint(object, parm = "all", level = 0.95, ...)

Arguments

object An object of class KFS.

parm Which states to extract? Either a numeric vector containing the indices of
the corresponding states, or a character vector defining the types of the cor-
responding states. Possible choices are "all", "level", "slope", "trend",
"regression", "arima", "custom", "cycle" or "seasonal", where "trend"
extracts all states relating to trend. These can be combined. Default is "all".

level The confidence level required. Defaults to 0.95.

... Ignored.

Value

A list of confidence intervals for each state

Examples

model <- SSModel(log(drivers) ~ SSMtrend(1, Q = list(1)) +
SSMseasonal(period = 12, sea.type = "trigonometric") +
log(PetrolPrice) + law, data = Seatbelts, H = 1)

out <- KFS(model)

confint(out, parm = "regression")

10 fitSSM

fitSSM Maximum Likelihood Estimation of a State Space Model

Description

Function fitSSM finds the maximum likelihood estimates for unknown parameters of an arbitary
state space model, given the user-defined model updating function.

Usage

fitSSM(model, inits, updatefn, checkfn, update_args = NULL, ...)

Arguments

model Model object of class SSModel.

inits Initial values for optim.

updatefn User defined function which updates the model given the parameters. Must
be of form updatefn(pars, model, ...), where ... correspond to optional
additional arguments. Function should return the original model with updated
parameters. See details for description of the default updatefn.

checkfn Optional function of form checkfn(model) for checking the validity of the
model. Should return TRUE if the model is valid, and FALSE otherwise. See
details.

update_args Optional list containing additional arguments to updatefn.

... Further arguments for functions optim and logLik.SSModel, such as nsim =
1000, marginal = TRUE, and method = "BFGS".

Details

Note that fitSSM actually minimizes -logLik(model), so for example the Hessian matrix returned
by hessian = TRUE has an opposite sign than expected.

This function is simple wrapper around optim. For optimal performance in complicated problems,
it is more efficient to use problem specific codes with calls to logLik method directly.

In fitSSM, the objective function for optim first updates the model based on the current values of
the parameters under optimization, using function updatefn. Then function checkfn is used for
checking that the resulting model is valid (the default checkfn checks for non-finite values and
overly large (>1e7) values in covariance matrices). If checkfn returns TRUE, the log-likelihood
is computed using a call -logLik(model,check.model = FALSE). Otherwise objective function
returns value corresponding to .Machine$double.xmax^0.75.

The default updatefn can be used to estimate the values marked as NA in unconstrained time-
invariant covariance matrices Q and H. Note that the default updatefn function cannot be used
with trigonometric seasonal components as its covariance structure is of form σI, i.e. not all NA’s
correspond to unique value.

The code for the default updatefn can be found in the examples. As can be seen from the function
definition, it is assumed that unconstrained optimization method such as BFGS is used.

fitSSM 11

Note that for non-Gaussian models derivative-free optimization methods such as Nelder-Mead
might be more reliable than methods which use finite difference approximations. This is due to
noise caused by the relative stopping criterion used for finding approximating Gaussian model. In
most cases this does not seem to cause any problems though.

Value

A list with elements

optim.out Output from function optim.

model Model with estimated parameters.

See Also

logLik, KFAS, boat, sexratio, GlobalTemp, SSModel, importanceSSM, approxSSM for more ex-
amples.

Examples

Example function for updating covariance matrices H and Q
(also used as a default function in fitSSM)

updatefn <- function(pars, model){
if(any(is.na(model$Q))){
Q <- as.matrix(model$Q[,,1])
naQd <- which(is.na(diag(Q)))
naQnd <- which(upper.tri(Q[naQd,naQd]) & is.na(Q[naQd,naQd]))
Q[naQd,naQd][lower.tri(Q[naQd,naQd])] <- 0
diag(Q)[naQd] <- exp(0.5 * pars[1:length(naQd)])
Q[naQd,naQd][naQnd] <- pars[length(naQd)+1:length(naQnd)]
model$Q[naQd,naQd,1] <- crossprod(Q[naQd,naQd])

}
if(!identical(model$H,'Omitted') && any(is.na(model$H))){#'

H<-as.matrix(model$H[,,1])
naHd <- which(is.na(diag(H)))
naHnd <- which(upper.tri(H[naHd,naHd]) & is.na(H[naHd,naHd]))
H[naHd,naHd][lower.tri(H[naHd,naHd])] <- 0
diag(H)[naHd] <-

exp(0.5 * pars[length(naQd)+length(naQnd)+1:length(naHd)])
H[naHd,naHd][naHnd] <-

pars[length(naQd)+length(naQnd)+length(naHd)+1:length(naHnd)]
model$H[naHd,naHd,1] <- crossprod(H[naHd,naHd])
}

model
}

Example function for checking the validity of covariance matrices.

checkfn <- function(model){
#test positive semidefiniteness of H and Q
!inherits(try(ldl(model$H[,,1]),TRUE),'try-error') &&
!inherits(try(ldl(model$Q[,,1]),TRUE),'try-error')

12 fitSSM

}

model <- SSModel(Nile ~ SSMtrend(1, Q = list(matrix(NA))), H = matrix(NA))

#function for updating the model
update_model <- function(pars, model) {

model["H"] <- pars[1]
model["Q"] <- pars[2]
model

}

#check that variances are non-negative
check_model <- function(model) {

(model["H"] > 0 && model["Q"] > 0)
}

fit <- fitSSM(inits = rep(var(Nile)/5, 2), model = model,
updatefn = update_model, checkfn = check_model)

More complex model

set.seed(1)

n <- 1000

x1 <- rnorm(n)
x2 <- rnorm(n)
beta1 <- 1 + cumsum(rnorm(n, sd = 0.1)) # time-varying regression effect
beta2 <- -0.3 # time-invariant effect

ARMA(2, 1) errors
z <- arima.sim(model = list(ar = c(0.7, -0.4), ma = 0.5), n = n, sd = 0.5)

generate data, regression part + ARMA errors
y <- beta1 * x1 + beta2 * x2 + z
ts.plot(y)

build the model using just zeros for now
But note no extra white noise term so H is fixed to zero
model <- SSModel(y ~ SSMregression(~ x1 + x2, Q = 0, R = matrix(c(1, 0), 2, 1)) +

SSMarima(rep(0, 2), 0, Q = 0), H = 0)

update function for fitSSM

update_function <- function(pars, model){

separate calls for model components, use exp to ensure positive variances
tmp_reg <- SSMregression(~ x1 + x2, Q = exp(pars[1]), R = matrix(c(1, 0), 2, 1))
tmp_arima <- try(SSMarima(artransform(pars[2:3]),
artransform(pars[4]), Q = exp(pars[5])), silent = TRUE)

stationary check, see note in artransform docs

fitted.SSModel 13

if(inherits(tmp_arima, "try-error")) {
model$Q[] <- NA # set something to NA just in case original model is ok
return(model) # this goes to checkfn and causes rejection due to NA values

}

model["Q", etas = "regression"] <- tmp_reg$Q
model["Q", etas = "arima"] <- tmp_arima$Q

model["T", "arima"] <- tmp_arima$T
model["R", states = "arima", etas = "arima"] <- tmp_arima$R
model["P1", "arima"] <- tmp_arima$P1

you could also directly build the whole model here again, i.e.
model <- SSModel(y ~
SSMregression(~ x1 + x2, Q = exp(pars[1]), R = matrix(c(1, 0), 2, 1)) +
SSMarima(artransform(pars[2:3]), artransform(pars[4]), Q = exp(pars[5])),
H = 0)

model

}
fit <- fitSSM(model = model,

inits = rep(0.1, 5),
updatefn = update_function, method = "BFGS")

ts.plot(cbind(beta1, KFS(fit$model)$alphahat[, "x1"]), col = 1:2)

fitted.SSModel Smoothed Estimates or One-step-ahead Predictions of Fitted Values

Description

Computes fitted values from output of KFS (or using the SSModel object), i.e. one-step-ahead pre-
dictions f(θt|yt−1, . . . , y1) (m) or smoothed estimates f(θt|yn, . . . , y1) (muhat), where f is the
inverse of the link function (identity in Gaussian case), except in case of Poisson distribution where
f is multiplied with the exposure ut.

Usage

S3 method for class 'KFS'
fitted(object, start = NULL, end = NULL, filtered = FALSE, ...)

S3 method for class 'SSModel'
fitted(object, start = NULL, end = NULL, filtered = FALSE, nsim = 0, ...)

Arguments

object An object of class KFS or SSModel.

14 GlobalTemp

start The start time of the period of interest. Defaults to first time point of the object.

end The end time of the period of interest. Defaults to the last time point of the
object.

filtered Logical, return filtered instead of smoothed estimates of state vector. Default is
FALSE.

... Additional arguments to KFS. Ignored in method for object of class KFS.

nsim Only for method for for non-Gaussian model of class SSModel. The number of
independent samples used in importance sampling. Default is 0, which com-
putes the approximating Gaussian model by approxSSM and performs the usual
Gaussian filtering/smoothing so that the smoothed state estimates equals to the
conditional mode of p(αt|y). In case of nsim = 0, the mean estimates and their
variances are computed using the Delta method (ignoring the covariance terms).

Value

Multivariate time series containing fitted values.

See Also

signal for partial signals and their covariances.

Examples

data("sexratio")
model <- SSModel(Male ~ SSMtrend(1,Q = list(NA)),u = sexratio[, "Total"],

data = sexratio, distribution = "binomial")
model <- fitSSM(model,inits = -15, method = "BFGS")$model
out <- KFS(model)
identical(drop(out$muhat), fitted(out))

fitted(model)

GlobalTemp Two series of average global temperature deviations for years 1880-
1987

Description

This data set contains two series of average global temperature deviations for years 1880-1987.
These series are same as used in Shumway and Stoffer (2006), where they are known as HL and
Folland series. For more details, see Shumway and Stoffer (2006, p. 327).

Format

A time series object containing 108 times 2 observations.

hatvalues.KFS 15

Source

http://lib.stat.cmu.edu/general/stoffer/tsa2/

References

Shumway, Robert H. and Stoffer, David S. (2006). Time Series Analysis and Its Applications: With
R examples.

Examples

Example of multivariate local level model with only one state
Two series of average global temperature deviations for years 1880-1987
See Shumway and Stoffer (2006), p. 327 for details

data("GlobalTemp")

model_temp <- SSModel(GlobalTemp ~ SSMtrend(1, Q = NA, type = "common"),
H = matrix(NA, 2, 2))

Estimating the variance parameters
inits <- chol(cov(GlobalTemp))[c(1, 4, 3)]
inits[1:2] <- log(inits[1:2])
fit_temp <- fitSSM(model_temp, c(0.5*log(.1), inits), method = "BFGS")

out_temp <- KFS(fit_temp$model)

ts.plot(cbind(model_temp$y, coef(out_temp)), col = 1:3)
legend("bottomright",

legend = c(colnames(GlobalTemp), "Smoothed signal"), col = 1:3, lty = 1)

hatvalues.KFS Extract Hat Values from KFS Output

Description

Extract hat values from KFS output, when KFS was run with signal (non-Gaussian case) or mean
smoothing (Gaussian case).

Usage

S3 method for class 'KFS'
hatvalues(model, ...)

Arguments

model An object of class KFS.

... Additional arguments to approxSSM.

16 importanceSSM

Details

Hat values in KFAS are defined as the diagonal elements of V_t/H_t where V_t is the covariance
matrix of signal/mean at time t and H_t is the covariance matrix of disturbance vector ϵ of (approxi-
mating) Gaussian model at time t. This definition gives identical results with the standard definition
in case of GLMs. Note that it is possible to construct a state space model where this definition is
not meaningful (for example the covariance matrix H_t can contain zeros on diagonal).

Value

Multivariate time series containing hat values.

Examples

model <- SSModel(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
out <- KFS(model, filtering = "state", smoothing = "none")
estimate sigma2
model["H"] <- mean(c(out$v[1:out$d][out$Finf==0]^2/out$F[1:out$d][out$Finf==0],

out$v[-(1:out$d)]^2/out$F[-(1:out$d)]))
c(hatvalues(KFS(model)))

importanceSSM Importance Sampling of Exponential Family State Space Model

Description

Function importanceSSM simulates states or signals of the exponential family state space model
conditioned with the observations, returning the simulated samples of the states/signals with the
corresponding importance weights.

Usage

importanceSSM(
model,
type = c("states", "signals"),
filtered = FALSE,
nsim = 1000,
save.model = FALSE,
theta,
antithetics = FALSE,
maxiter = 50,
expected = FALSE,
H_tol = 1e+15

)

importanceSSM 17

Arguments

model Exponential family state space model of class SSModel.

type What to simulate, "states" or "signals". Default is "states"

filtered Simulate from p(αt|yt−1, ..., y1) instead of p(α|y). Note that for large models
this can be very slow. Default is FALSE.

nsim Number of independent samples. Default is 1000.

save.model Return the original model with the samples. Default is FALSE.

theta Initial values for the conditional mode theta.

antithetics Logical. If TRUE, two antithetic variables are used in simulations, one for loca-
tion and another for scale. Default is FALSE.

maxiter Maximum number of iterations used in linearisation. Default is 50.

expected Logical value defining the approximation of H_t in case of Gamma and negative
binomial distribution. Default is FALSE which matches the algorithm of Durbin
& Koopman (1997), whereas TRUE uses the expected value of observations in
the equations, leading to results which match with glm (where applicable). The
latter case was the default behaviour of KFAS before version 1.3.8. Essentially
this is the difference between observed and expected information.

H_tol Tolerance parameter for check max(H) > H_tol, which suggests that the approx-
imation converged to degenerate case with near zero signal-to-noise ratio. De-
fault is very generous 1e15.

Details

Function can use two antithetic variables, one for location and other for scale, so output contains
four blocks of simulated values which correlate which each other (ith block correlates negatively
with (i+1)th block, and positively with (i+2)th block etc.).

Value

A list containing elements

samples Simulated samples.

weights Importance weights.

model Original model in case of save.model==TRUE.

Examples

data("sexratio")
model <- SSModel(Male ~ SSMtrend(1, Q = list(NA)), u = sexratio[,"Total"], data = sexratio,

distribution = "binomial")
fit <- fitSSM(model, inits = -15, method = "BFGS")
fit$model$Q #1.107652e-06
Computing confidence intervals for sex ratio
Uses importance sampling on response scale (1000 samples with antithetics)
set.seed(1)
imp <- importanceSSM(fit$model, nsim = 250, antithetics = TRUE)

18 is.SSModel

sexratio.smooth <- numeric(length(model$y))
sexratio.ci <- matrix(0, length(model$y), 2)
w <- imp$w/sum(imp$w)
for(i in 1:length(model$y)){

sexr <- exp(imp$sample[i,1,])
sexratio.smooth[i]<-sum(sexr*w)
oo <- order(sexr)
sexratio.ci[i,] <- c(sexr[oo][which.min(abs(cumsum(w[oo]) - 0.05))],

sexr[oo][which.min(abs(cumsum(w[oo]) - 0.95))])
}

Not run:
Filtered estimates
impf <- importanceSSM(fit$model, nsim = 250, antithetics = TRUE,filtered=TRUE)
sexratio.filter <- rep(NA,length(model$y))
sexratio.fci <- matrix(NA, length(model$y), 2)
w <- impf$w/rowSums(impf$w)
for(i in 2:length(model$y)){

sexr <- exp(impf$sample[i,1,])
sexratio.filter[i] <- sum(sexr*w[i,])
oo<-order(sexr)
sexratio.fci[i,] <- c(sexr[oo][which.min(abs(cumsum(w[i,oo]) - 0.05))],

sexr[oo][which.min(abs(cumsum(w[i,oo]) - 0.95))])
}

ts.plot(cbind(sexratio.smooth,sexratio.ci,sexratio.filter,sexratio.fci),
col=c(1,1,1,2,2,2),lty=c(1,2,2,1,2,2))

End(Not run)

is.SSModel Test whether object is a valid SSModel object

Description

Function is.SSModel tests whether the object is a valid SSModel object.

Usage

is.SSModel(object, na.check = FALSE, return.logical = TRUE)

Arguments

object An object to be tested.
na.check Test the system matrices for NA and infinite values. Also checks for large values

(> 1e7) in covariance matrices H and Q which could cause large rounding errors
in filtering. Positive semidefiniteness of these matrices is not checked. Default
is FALSE.

return.logical If FALSE (default), an error is given if the the model is not a valid SSModel
object. Otherwise logical value is returned.

KFAS 19

Details

Note that the validity of the values in y and Z are not tested. These can contain NA values (but not
infinite values), with condition that when Z[i,,t] contains NA value, the corresponding y[t,i]
must also have NA value. In this case Z[i,,t] is not referenced in filtering and smoothing, and
algorithms works properly.

Value

Logical value or nothing, depending on the value of return.logical.

Examples

model <- SSModel(rnorm(10) ~ 1)
is.SSModel(model)
model['H'] <- 1
is.SSModel(model)
model$H[] <- 1
is.SSModel(model)
model$H[,,1] <- 1
is.SSModel(model)
model$H <- 1
is.SSModel(model)

KFAS KFAS: Functions for Exponential Family State Space Models

Description

Package KFAS contains functions for Kalman filtering, smoothing and simulation of linear state
space models with exact diffuse initialization.

Details

Note, this help page might be more readable in pdf format due to the mathematical formulas con-
taining subscripts.

The linear Gaussian state space model is given by

yt = Ztαt + ϵt, (observation equation)

αt+1 = Ttαt +Rtηt, (transition equation)

where ϵt ∼ N(0, Ht), ηt ∼ N(0, Qt) and α1 ∼ N(a1, P1) independently of each other.

All system and covariance matrices Z, H, T, R and Q can be time-varying, and partially or totally
missing observations yt are allowed.

Covariance matrices H and Q has to be positive semidefinite (although this is not checked).

Model components in KFAS are defined as

20 KFAS

y A n x p matrix containing the observations.

Z A p x m x 1 or p x m x n array corresponding to the system matrix of observation equation.

H A p x p x 1 or p x p x n array corresponding to the covariance matrix of observational disturbances
epsilon.

T A m x m x 1 or m x m x n array corresponding to the first system matrix of state equation.

R A m x k x 1 or m x k x n array corresponding to the second system matrix of state equation.

Q A k x k x 1 or k x k x n array corresponding to the covariance matrix of state disturbances eta

a1 A m x 1 matrix containing the expected values of the initial states.

P1 A m x m matrix containing the covariance matrix of the nondiffuse part of the initial state vector.

P1inf A m x m matrix containing the covariance matrix of the diffuse part of the initial state vector.

u A n x p matrix of an additional parameters in case of non-Gaussian model.

In case of any of the series in model is defined as non-Gaussian, the observation equation is of form

p∏
i

pi(yt,p|θt)

with θt,i = Zi,tαt being one of the following:

• yt ∼ N(µt, ut), with identity link θt = µt. Note that now variances are defined using ut,
not Ht. If the correlation between Gaussian observation equations is needed, one can use
ut = 0 and add correlating disturbances into state equation (although care is then needed
when making inferences about signal which contains the error terms also).

• yt ∼ Poisson(utλt), where ut is an offset term, with θt = log(λt).

• yt ∼ binomial(ut, πt), with θt = log[πt/(1 − πt)], where πt is the probability of success at
time t.

• yt ∼ gamma(ut, µt), with θt = log(µt), where µt is the mean parameter and ut is the shape
parameter.

• yt ∼ negative binomial(ut, µt), with expected value µt and variance µt+µ2
t/ut (see dnbinom),

then θt = log(µt).

For exponential family models ut = 1 as a default. For completely Gaussian models, parameter is
omitted. Note that series can have different distributions in case of multivariate models.

For the unknown elements of initial state vector a1, KFAS uses exact diffuse initialization by Koop-
man and Durbin (2000, 2012, 2003), where the unknown initial states are set to have a zero mean
and infinite variance, so

P1 = P∗,1 + κP∞,1,

with κ going to infinity and P∞,1 being diagonal matrix with ones on diagonal elements corre-
sponding to unknown initial states.

This method is basically a equivalent of setting uninformative priors for the initial states in a
Bayesian framework.

Diffuse phase is continued until rank of P∞,t becomes zero. Rank of P∞,t decreases by 1, if F∞,t >
ξt > 0, where ξt is by default .Machine$double.eps^0.5*min(X)^2), where X is absolute values
of non-zero elements of array Z. Usually the number of diffuse time points equals the number

KFAS 21

unknown elements of initial state vector, but missing observations or time-varying system matrices
can affect this. See Koopman and Durbin (2000, 2012, 2003) for details for exact diffuse and non-
diffuse filtering. If the number of diffuse states is large compared to the data, it is possible that
the model is degenerate in a sense that not enough information is available for leaving the diffuse
phase.

To lessen the notation and storage space, KFAS uses letters P, F and K for non-diffuse part of the
corresponding matrices, omitting the asterisk in diffuse phase.

All functions of KFAS use the univariate approach (also known as sequential processing, see Ander-
son and Moore (1979)) which is from Koopman and Durbin (2000, 2012). In univariate approach
the observations are introduced one element at the time. Therefore the prediction error variance
matrices F and Finf do not need to be non-singular, as there is no matrix inversions in univariate
approach algorithm. This provides possibly more faster filtering and smoothing than normal mul-
tivariate Kalman filter algorithm, and simplifies the formulas for diffuse filtering and smoothing.
If covariance matrix H is not diagonal, it is possible to transform the model by either using LDL
decomposition on H, or augmenting the state vector with ϵ disturbances (this is done automatically
in KFAS if needed). See transformSSM for more details.

References

Helske J. (2017). KFAS: Exponential Family State Space Models in R, Journal of Statistical Soft-
ware, 78(10), 1-39. doi:10.18637/jss.v078.i10

Koopman, S.J. and Durbin J. (2000). Fast filtering and smoothing for non-stationary time series
models, Journal of American Statistical Assosiation, 92, 1630-38.

Koopman, S.J. and Durbin J. (2012). Time Series Analysis by State Space Methods. Second edition.
Oxford: Oxford University Press.

Koopman, S.J. and Durbin J. (2003). Filtering and smoothing of state vector for diffuse state space
models, Journal of Time Series Analysis, Vol. 24, No. 1.

Shumway, Robert H. and Stoffer, David S. (2006). Time Series Analysis and Its Applications: With
R examples.

See Also

See also logLik, fitSSM, boat, sexratio, GlobalTemp, SSModel, importanceSSM, approxSSM
for more examples.

Examples

##
Example of local level model for Nile series
##
See Durbin and Koopman (2012) and also ?SSModel for another Nile example

model_Nile <- SSModel(Nile ~
SSMtrend(1, Q = list(matrix(NA))), H = matrix(NA))

model_Nile
model_Nile <- fitSSM(model_Nile, c(log(var(Nile)), log(var(Nile))),

method = "BFGS")$model

22 KFAS

Filtering and state smoothing
out_Nile <- KFS(model_Nile, filtering = "state", smoothing = "state")
out_Nile

Confidence and prediction intervals for the expected value and the observations.
Note that predict uses original model object, not the output from KFS.
conf_Nile <- predict(model_Nile, interval = "confidence", level = 0.9)
pred_Nile <- predict(model_Nile, interval = "prediction", level = 0.9)

ts.plot(cbind(Nile, pred_Nile, conf_Nile[, -1]), col = c(1:2, 3, 3, 4, 4),
ylab = "Predicted Annual flow", main = "River Nile")

Missing observations, using the same parameter estimates

NileNA <- Nile
NileNA[c(21:40, 61:80)] <- NA
model_NileNA <- SSModel(NileNA ~ SSMtrend(1, Q = list(model_Nile$Q)),
H = model_Nile$H)

out_NileNA <- KFS(model_NileNA, "mean", "mean")

Filtered and smoothed states
ts.plot(NileNA, fitted(out_NileNA, filtered = TRUE), fitted(out_NileNA),

col = 1:3, ylab = "Predicted Annual flow",
main = "River Nile")

Not run:
##################
Seatbelts data
##################
See Durbin and Koopman (2012)

model_drivers <- SSModel(log(drivers) ~ SSMtrend(1, Q = list(NA))+
SSMseasonal(period = 12, sea.type = "trigonometric", Q = NA) +
log(PetrolPrice) + law, data = Seatbelts, H = NA)

As trigonometric seasonal contains several disturbances which are all
identically distributed, default behaviour of fitSSM is not enough,
as we have constrained Q. We can either provide our own
model updating function with fitSSM, or just use optim directly:

option 1:
ownupdatefn <- function(pars, model){

model$H[] <- exp(pars[1])
diag(model$Q[, , 1]) <- exp(c(pars[2], rep(pars[3], 11)))
model #for optim, replace this with -logLik(model) and call optim directly

}

fit_drivers <- fitSSM(model_drivers,
log(c(var(log(Seatbelts[, "drivers"])), 0.001, 0.0001)),

KFAS 23

ownupdatefn, method = "BFGS")

out_drivers <- KFS(fit_drivers$model, smoothing = c("state", "mean"))
out_drivers
ts.plot(out_drivers$model$y, fitted(out_drivers), lty = 1:2, col = 1:2,

main = "Observations and smoothed signal with and without seasonal component")
lines(signal(out_drivers, states = c("regression", "trend"))$signal,

col = 4, lty = 1)
legend("bottomleft", col = c(1, 2, 4), lty = c(1, 2, 1),

legend = c("Observations", "Smoothed signal", "Smoothed level"))

Multivariate model with constant seasonal pattern,
using the the seat belt law dummy only for the front seat passangers,
and restricting the rank of the level component by using custom component

model_drivers2 <- SSModel(log(cbind(front, rear)) ~ -1 +
log(PetrolPrice) + log(kms) +
SSMregression(~law, data = Seatbelts, index = 1) +
SSMcustom(Z = diag(2), T = diag(2), R = matrix(1, 2, 1),

Q = matrix(1), P1inf = diag(2)) +
SSMseasonal(period = 12, sea.type = "trigonometric"),

data = Seatbelts, H = matrix(NA, 2, 2))

An alternative way for defining the rank deficient trend component:

model_drivers2 <- SSModel(log(cbind(front, rear)) ~ -1 +
log(PetrolPrice) + log(kms) +
SSMregression(~law, data = Seatbelts, index = 1) +
SSMtrend(degree = 1, Q = list(matrix(0, 2, 2))) +
SSMseasonal(period = 12, sea.type = "trigonometric"),
data = Seatbelts, H = matrix(NA, 2, 2))
#
Modify model manually:
model_drivers2$Q <- array(1, c(1, 1, 1))
model_drivers2$R <- model_drivers2$R[, -2, , drop = FALSE]
attr(model_drivers2, "k") <- 1L
attr(model_drivers2, "eta_types") <- attr(model_drivers2, "eta_types")[1]

likfn <- function(pars, model, estimate = TRUE){
diag(model$H[, , 1]) <- exp(0.5 * pars[1:2])
model$H[1, 2, 1] <- model$H[2, 1, 1] <-

tanh(pars[3]) * prod(sqrt(exp(0.5 * pars[1:2])))
model$R[28:29] <- exp(pars[4:5])
if(estimate) return(-logLik(model))
model

}

fit_drivers2 <- optim(f = likfn, p = c(-8, -8, 1, -1, -3), method = "BFGS",
model = model_drivers2)

model_drivers2 <- likfn(fit_drivers2$p, model_drivers2, estimate = FALSE)
model_drivers2$R[28:29, , 1]%*%t(model_drivers2$R[28:29, , 1])
model_drivers2$H

24 KFAS

out_drivers2 <- KFS(model_drivers2)
out_drivers2
ts.plot(signal(out_drivers2, states = c("custom", "regression"))$signal,

model_drivers2$y, col = 1:4)

For confidence or prediction intervals, use predict on the original model
pred <- predict(model_drivers2,

states = c("custom", "regression"), interval = "prediction")

Note that even though the intervals were computed without seasonal pattern,
PetrolPrice induces seasonal pattern to predictions
ts.plot(pred$front, pred$rear, model_drivers2$y,

col = c(1, 2, 2, 3, 4, 4, 5, 6), lty = c(1, 2, 2, 1, 2, 2, 1, 1))

End(Not run)

######################
ARMA(2, 2) process
######################
set.seed(1)
y <- arima.sim(n = 1000, list(ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488)),

innov = rnorm(1000) * sqrt(0.5))

model_arima <- SSModel(y ~ SSMarima(ar = c(0, 0), ma = c(0, 0), Q = 1), H = 0)

likfn <- function(pars, model, estimate = TRUE){
tmp <- try(SSMarima(artransform(pars[1:2]), artransform(pars[3:4]),
Q = exp(pars[5])), silent = TRUE)

if(!inherits(tmp, "try-error")){
model["T", "arima"] <- tmp$T
model["R", states = "arima", etas = "arima"] <- tmp$R
model["P1", "arima"] <- tmp$P1
model["Q", etas = "arima"] <- tmp$Q
if(estimate){

-logLik(model)
} else model

} else {
if(estimate){

1e100
} else model

}
}

fit_arima <- optim(par = c(rep(0, 4), log(1)), fn = likfn, method = "BFGS",
model = model_arima)

model_arima <- likfn(fit_arima$par, model_arima, FALSE)

AR coefficients:
model_arima$T[2:3, 2, 1]
MA coefficients:
model_arima$R[3:4]

KFAS 25

sigma2:
model_arima$Q[1]
intercept
KFS(model_arima)
same with arima:
arima(y, c(2, 0, 2))
small differences because the intercept is handled differently in arima

Not run:
#################
Poisson model
#################
See Durbin and Koopman (2012)
model_van <- SSModel(VanKilled ~ law + SSMtrend(1, Q = list(matrix(NA)))+

SSMseasonal(period = 12, sea.type = "dummy", Q = NA),
data = Seatbelts, distribution = "poisson")

Estimate variance parameters
fit_van <- fitSSM(model_van, c(-4, -7), method = "BFGS")

model_van <- fit_van$model

use approximating model, gives posterior modes
out_nosim <- KFS(model_van, nsim = 0)
State smoothing via importance sampling
out_sim <- KFS(model_van, nsim = 1000)

out_nosim
out_sim

End(Not run)

using deterministic inputs in observation and state equations
model_Nile <- SSModel(Nile ~
SSMcustom(Z=1, T = 1, R = 0, a1 = 100, P1inf = 0, P1 = 0, Q = 0, state_names = "d_t") +
SSMcustom(Z=0, T = 1, R = 0, a1 = 100, P1inf = 0, P1 = 0, Q = 0, state_names = "c_t") +
SSMtrend(1, Q = 1500), H = 15000)

model_Nile$T
model_Nile$T[1, 3, 1] <- 1 # add c_t to level
model_Nile0 <- SSModel(Nile ~

SSMtrend(2, Q = list(1500, 0), a1 = c(0, 100), P1inf = diag(c(1, 0))),
H = 15000)

ts.plot(KFS(model_Nile0)$mu, KFS(model_Nile)$mu, col = 1:2)

##
Examples of generalized linear modelling with KFAS
##

Same example as in ?glm
counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12)
outcome <- gl(3, 1, 9)
treatment <- gl(3, 3)

26 KFAS

glm_D93 <- glm(counts ~ outcome + treatment, family = poisson())

model_D93 <- SSModel(counts ~ outcome + treatment,
distribution = "poisson")

out_D93 <- KFS(model_D93)
coef(out_D93, last = TRUE)
coef(glm_D93)

summary(glm_D93)$cov.s
out_D93$V[, , 1]

approximating model as in GLM
out_D93_nosim <- KFS(model_D93, smoothing = c("state", "signal", "mean"),

expected = TRUE)

with importance sampling. Number of simulations is too small here,
with large enough nsim the importance sampling actually gives
very similar results as the approximating model in this case
set.seed(1)
out_D93_sim <- KFS(model_D93,

smoothing = c("state", "signal", "mean"), nsim = 1000)

linear predictor
GLM
glm_D93$linear.predictor
approximate model, this is the posterior mode of p(theta|y)
c(out_D93_nosim$thetahat)
importance sampling on theta, gives E(theta|y)
c(out_D93_sim$thetahat)

predictions on response scale
GLM
fitted(glm_D93)
approximate model with backtransform, equals GLM
fitted(out_D93_nosim)
importance sampling on exp(theta)
fitted(out_D93_sim)

prediction variances on link scale
GLM
as.numeric(predict(glm_D93, type = "link", se.fit = TRUE)$se.fit^2)
approx, equals to GLM results
c(out_D93_nosim$V_theta)
importance sampling on theta
c(out_D93_sim$V_theta)

prediction variances on response scale
GLM
as.numeric(predict(glm_D93, type = "response", se.fit = TRUE)$se.fit^2)

KFAS 27

approx, equals to GLM results
c(out_D93_nosim$V_mu)
importance sampling on theta
c(out_D93_sim$V_mu)

A Gamma example modified from ?glm
Now with log-link, and identical intercept terms
clotting <- data.frame(
u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))

model_gamma <- SSModel(cbind(lot1, lot2) ~ -1 + log(u) +
SSMregression(~ 1, type = "common", remove.intercept = FALSE),

data = clotting, distribution = "gamma")

update_shapes <- function(pars, model) {
model$u[, 1] <- pars[1]
model$u[, 2] <- pars[2]
model

}
fit_gamma <- fitSSM(model_gamma, inits = c(1, 1), updatefn = update_shapes,
method = "L-BFGS-B", lower = 0, upper = 100)
logLik(fit_gamma$model)
KFS(fit_gamma$model)
fit_gamma$model["u", times = 1]

Not run:
####################################
Linear mixed model with KFAS
####################################

example from ?lmer of lme4 package
data("sleepstudy", package = "lme4")

model_lmm <- SSModel(Reaction ~ Days +
SSMregression(~ Days, Q = array(0, c(2, 2, 180)),

P1 = matrix(NA, 2, 2), remove.intercept = FALSE), sleepstudy, H = NA)

The first 10 time points the third and fouth state
defined with SSMregression correspond to the first subject, and next 10 time points
are related to second subject and so on.

need to use ordinary $ assignment as [assignment operator for SSModel
object guards against dimension altering
model_lmm$T <- array(model_lmm["T"], c(4, 4, 180))
attr(model_lmm, "tv")[3] <- 1L #needs to be integer type!

"cut the connection" between the subjects
times <- seq(10, 180, by = 10)
model_lmm["T",states = 3:4, times = times] <- 0

28 KFAS

for the first subject the variance of the random effect is defined via P1
for others, we use Q
model_lmm["Q", times = times] <- NA

update_lmm <- function(pars = init, model){
P1 <- diag(exp(pars[1:2]))
P1[1, 2] <- pars[3]
model["P1", states = 3:4] <- model["Q", times = times] <-
crossprod(P1)

model["H"] <- exp(pars[4])
model

}

inits <- c(0, 0, 0, 3)

fit_lmm <- fitSSM(model_lmm, inits, update_lmm, method = "BFGS")
out_lmm <- KFS(fit_lmm$model)
unconditional covariance matrix of random effects
fit_lmm$model["P1", states = 3:4]

conditional covariance matrix of random effects
same for each subject and time point due to model structure
these differ from the ones obtained from lmer as these are not conditioned
on the fixed effects
out_lmm$V[3:4,3:4,1]

End(Not run)
Not run:
###
Example of cubic spline smoothing
###
See Durbin and Koopman (2012)
require("MASS")
data("mcycle")

model <- SSModel(accel ~ -1 +
SSMcustom(Z = matrix(c(1, 0), 1, 2),

T = array(diag(2), c(2, 2, nrow(mcycle))),
Q = array(0, c(2, 2, nrow(mcycle))),
P1inf = diag(2), P1 = diag(0, 2)), data = mcycle)

model$T[1, 2,] <- c(diff(mcycle$times), 1)
model$Q[1, 1,] <- c(diff(mcycle$times), 1)^3/3
model$Q[1, 2,] <- model$Q[2, 1,] <- c(diff(mcycle$times), 1)^2/2
model$Q[2, 2,] <- c(diff(mcycle$times), 1)

updatefn <- function(pars, model, ...){
model["H"] <- exp(pars[1])
model["Q"] <- model["Q"] * exp(pars[2])
model

}

KFAS 29

fit <- fitSSM(model, inits = c(4, 4), updatefn = updatefn, method = "BFGS")

pred <- predict(fit$model, interval = "conf", level = 0.95)
plot(x = mcycle$times, y = mcycle$accel, pch = 19)
lines(x = mcycle$times, y = pred[, 1])
lines(x = mcycle$times, y = pred[, 2], lty = 2)
lines(x = mcycle$times, y = pred[, 3], lty = 2)

End(Not run)

Not run:
##
Example of multivariate model with common parameters
and unknown intercept terms in state and observation equations
##
set.seed(1)
n1 <- 20
n2 <- 30
z1 <- sin(1:n1)
z2 <- cos(1:n2)

C <- 0.6
D <- -0.4
random walk with drift D
x1 <- cumsum(rnorm(n1) + D)
x2 <- cumsum(rnorm(n2) + D)

y1 <- rnorm(n1, z1 * x1 + C * 1)
y2 <- rnorm(n2, z2 * x2 + C * 2)

n <- max(n1, n2)
Y <- matrix(NA, n, 2)
Y[1:n1, 1] <- y1
Y[1:n2, 2] <- y2

Z <- array(0, c(2, 4, n))
Z[1, 1, 1:n1] <- z1
Z[2, 2, 1:n2] <- z2 # trailing zeros are ok, as corresponding y is NA
Z[1, 3,] <- 1 # x = 1
Z[2, 3,] <- 2 # x = 2
last state is only used in state equation so zeros in Z

T <- diag(4) # a1_t for y1, a2_t for y2, C, D
T[1, 4] <- 1 # D affects a_t
T[2, 4] <- 1 # D affects a_t
Q <- diag(c(NA, NA, 0, 0))
P1inf <- diag(4)
model <- SSModel(Y ~ -1 + SSMcustom(Z = Z, T = T, Q = Q, P1inf = P1inf,

state_names = c("a1", "a2", "C", "D")), H = diag(NA, 2))

updatefn <- function(pars, model) {
model$Q[] <- diag(c(exp(pars[1]), exp(pars[1]), 0, 0))

30 KFS

model$H[] <- diag(exp(pars[2]), 2)
model

}

fit <- fitSSM(model, inits = rep(-1, 2), updatefn = updatefn)

fit$model$H[1]
fit$model$Q[1]
KFS(fit$model)

End(Not run)

KFS Kalman Filter and Smoother with Exact Diffuse Initialization for Ex-
ponential Family State Space Models

Description

Performs Kalman filtering and smoothing with exact diffuse initialization using univariate approach
for exponential family state space models.

Usage

KFS(
model,
filtering,
smoothing,
simplify = TRUE,
transform = c("ldl", "augment"),
nsim = 0,
theta,
maxiter = 50,
convtol = 1e-08,
return_model = TRUE,
expected = FALSE,
H_tol = 1e+15,
transform_tol

)

Arguments

model Object of class SSModel.
filtering Types of filtering. Possible choices are "state", "signal", "mean", and "none".

Default is "state" for Gaussian and "none" for non-Gaussian models. Multi-
ple values are allowed. For Gaussian models, the signal is the mean. Note that
filtering for non-Gaussian models with importance sampling can be very slow
with large models.

KFS 31

smoothing Types of smoothing. Possible choices are "state", "signal", "mean", "disturbance",
and "none". Default is "state" and "mean". For non-Gaussian models, option
"disturbance" is not supported, and for Gaussian models option "mean" is
identical to "signal". Multiple values are allowed.

simplify If FALSE and the model is completely Gaussian, KFS returns some generally not
so interesting variables from filtering and smoothing. Default is TRUE.

transform How to transform the model in case of non-diagonal covariance matrix H. De-
faults to "ldl". See function transformSSM for details.

nsim The number of independent samples used in importance sampling. Only used for
non-Gaussian models. Default is 0, which computes the approximating Gaus-
sian model by approxSSM and performs the usual Gaussian filtering/smoothing
so that the smoothed state estimates equals to the conditional mode of p(αt|y).
In case of nsim = 0, the mean estimates and their variances are computed using
the Delta method (ignoring the covariance terms).

theta Initial values for conditional mode theta. Only used for non-Gaussian models.

maxiter The maximum number of iterations used in Gaussian approximation. Default is
50. Only used for non-Gaussian models.

convtol Tolerance parameter for convergence checks for Gaussian approximation. Only
used for non-Gaussian models.

return_model Logical, indicating whether the original input model should be returned as part
of the output. Defaults to TRUE, but for large models can be set to FALSE in
order to save memory. However, many of the methods operating on the output
of KFS use this model so this will not work if return_model=FALSE.

expected Logical value defining the approximation of H_t in case of Gamma and negative
binomial distribution. Default is FALSE which matches the algorithm of Durbin
& Koopman (1997), whereas TRUE uses the expected value of observations in
the equations, leading to results which match with glm (where applicable). The
latter case was the default behaviour of KFAS before version 1.3.8. Essentially
this is the difference between observed and expected information in the GLM
context. Only used for non-Gaussian model.

H_tol Tolerance parameter for check max(H) > tol_H, which suggests that the approx-
imation converged to degenerate case with near zero signal-to-noise ratio. De-
fault is very generous 1e15. Only used for non-Gaussian model.

transform_tol Tolerance parameter for LDL decomposition in case of a non-diagonal H and
transform = "ldl". See transformSSM and ldl for details.

Details

Notice that in case of multivariate Gaussian observations, v, F, Finf, K and Kinf are usually not the
same as those calculated in usual multivariate Kalman filter. As filtering is done one observation
element at the time, the elements of the prediction error vt are uncorrelated, and F, Finf, K and Kinf
contain only the diagonal elemens of the corresponding covariance matrices. The usual multivariate
versions of F and v can be obtained from the output of KFS using the function mvInnovations.

In rare cases (typically with regression components with high multicollinearity or long cyclic pat-
terns), the cumulative rounding errors in Kalman filtering and smoothing can cause the diffuse

32 KFS

phase end too early, or the backward smoothing gives negative variances (in diffuse and nondiffuse
cases). Since version 1.4.0, filtering and smoothing algorithms truncate these values to zero dur-
ing the recursions, but this can still leads some numerical problems. In these cases, redefining the
prior state variances more informative is often helpful. Changing the tolerance parameter tol of the
model (see SSModel) to smaller (or larger), or scaling the model input can sometimes help as well.
These numerical issues are well known in Kalman filtering/smoothing in general (there are other
numerically more stable versions available, but these are in general slower).

Fon non-Gaussian models the components corresponding to diffuse filtering (Finf, Pinf, d, Kinf)
are not returned even when filtering is used. Results based on approximating Gaussian model
can be obtained by running KFS using the output of approxSSM.

In case of non-Gaussian models with nsim = 0, the smoothed estimates relate to the conditional
mode of p(α|y). When using importance sampling (nsim>0), results correspond to the conditional
mean of p(α|y).

Value

What KFS returns depends on the arguments filtering, smoothing and simplify, and whether
the model is Gaussian or not:

model Original state space model.

KFS_transform How the non-diagonal H was handled.

logLik Value of the log-likelihood function. Only returned for fully Gaussian models.

a One-step-ahead predictions of states, at = E(αt|yt−1, . . . , y1).

P Non-diffuse parts of the error covariance matrix of predicted states, Pt = V ar(αt|yt−1, . . . , y1).

Pinf Diffuse part of the error covariance matrix of predicted states. Only returned for
Gaussian models.

att Filtered estimates of states, att = E(αt|yt, . . . , y1).
Ptt Non-diffuse parts of the error covariance matrix of filtered states, Ptt = V ar(αt|yt, . . . , y1).
t One-step-ahead predictions of signals, E(Ztαt|yt−1, . . . , y1).

P_theta Non-diffuse part of V ar(Ztαt|yt−1, . . . , y1).

m One-step-ahead predictions f(θt)|yt−1, . . . , y1), where f is the inverse link func-
tion. In case of Poisson distribution these predictions are multiplied with expo-
sure ut.

P_mu Non-diffuse part of V ar(f(θt)|yt−1, . . . , y1). In case of Poisson distribution
this is V ar(utf(θt)|yt−1, . . . , y1). If nsim = 0, only diagonal elements (vari-
ances) are computed, using the Delta method.

alphahat Smoothed estimates of states, E(αt|y1, . . . , yn).
V Error covariance matrices of smoothed states, V ar(αt|y1, . . . , yn).
thetahat Smoothed estimates of signals, E(Ztαt|y1, . . . , yn).
V_theta Error covariance matrices of smoothed signals V ar(Z[t]αt|y1, . . . , yn)..
muhat Smoothed estimates of f(θt)|y1, . . . , yn), where f is the inverse link function,

or in Poisson case utf(θt)|y1, . . . , yn), where u is the exposure term.

KFS 33

V_mu Error covariances Cov(f(θt)|y1, . . . , yn) (or the covariances of utf(θt) given
the data in case of Poisson distribution). If nsim = 0, only diagonal elements
(variances) are computed, using the Delta method.

etahat Smoothed disturbance terms E(ηt|y1, . . . , yn). Only for Gaussian models.

V_eta Error covariances V ar(ηt|y1, . . . , yn). Note that for computing auxiliary resid-
uals you shoud use method rstandard.KFS.

epshat Smoothed disturbance terms E(ϵt,i|y1, . . . , yn). Note that due to the possible
diagonalization these are on transformed scale. Only for Gaussian models.

V_eps Diagonal elements of V ar(ϵt|y1, . . . , yn). Note that due to the diagonalization
the off-diagonal elements are zero. Only for Gaussian models. Note that for
computing auxiliary residuals you shoud use method rstandard.KFS.

iterations The number of iterations used in linearization of non-Gaussian model.

v Prediction errors vt,i = yt,i − Zi,tat,i, i = 1, . . . , p, where

at,i = E(αt|yt,i−1, . . . , yt,1, . . . , y1,1)

. Only returned for Gaussian models.

F Prediction error variances V ar(vt,i). Only returned for Gaussian models.

Finf Diffuse part of prediction error variances. Only returned for Gaussian models.

d The last time index of diffuse phase, i.e. the non-diffuse phase began at time
d+ 1. Only returned for Gaussian models.

j The last observation index i of yi,t of the diffuse phase. Only returned for Gaus-
sian models.

In addition, if argument simplify = FALSE, list contains following components:

K Covariances Cov(αt,i, yt,i|yt,i−1, . . . , yt,1, yt−1, . . . , y1), i = 1, . . . , p.

Kinf Diffuse part of Kt.

r Weighted sums of innovations vt+1, . . . , vn. Notice that in literature t in rt goes
from 0, . . . , n. Here t = 1, . . . , n+ 1. Same applies to all r and N variables.

r0, r1 Diffuse phase decomposition of rt.

N Covariances V ar(rt).

N0, N1, N2 Diffuse phase decomposition of Nt.

References

Koopman, S.J. and Durbin J. (2000). Fast filtering and smoothing for non-stationary time series
models, Journal of American Statistical Assosiation, 92, 1630-38.

Koopman, S.J. and Durbin J. (2001). Time Series Analysis by State Space Methods. Oxford: Ox-
ford University Press.

Koopman, S.J. and Durbin J. (2003). Filtering and smoothing of state vector for diffuse state space
models, Journal of Time Series Analysis, Vol. 24, No. 1.

34 ldl

See Also

KFAS for examples

logLik, KFAS, fitSSM, boat, sexratio, GlobalTemp, SSModel, importanceSSM, approxSSM for
examples.

Examples

set.seed(1)
x <- cumsum(rnorm(100, 0, 0.1))
y <- rnorm(100, x, 0.1)
model <- SSModel(y ~ SSMtrend(1, Q = 0.01), H = 0.01)
out <- KFS(model)
ts.plot(ts(x), outa, outatt, out$alpha, col = 1:4)

ldl LDL Decomposition of a Matrix

Description

Function ldl computes the LDL decomposition of a positive semidefinite matrix.

Usage

ldl(x, tol)

Arguments

x Symmetrix matrix.

tol Tolerance parameter for LDL decomposition, determines which diagonal values
are counted as zero. Same value is used in isSymmetric function. Default is
max(100, max(abs(diag(as.matrix(x))))) * .Machine$double.eps.

Value

Transformed matrix with D in diagonal, L in strictly lower diagonal and zeros on upper diagonal.

Examples

Positive semidefinite matrix, example matrix taken from ?chol
x <- matrix(c(1:5, (1:5)^2), 5, 2)
x <- cbind(x, x[, 1] + 3*x[, 2])
m <- crossprod(x)
l <- ldl(m, tol = 1e-8) # arm64 Mac setup in CRAN fails with default tolerance
d <- diag(diag(l))
diag(l) <- 1
all.equal(l %*% d %*% t(l), m, tol = 1e-15)

logLik.SSModel 35

logLik.SSModel Log-likelihood of the State Space Model.

Description

Function logLik.SSmodel computes the log-likelihood value of a state space model.

Usage

S3 method for class 'SSModel'
logLik(
object,
marginal = FALSE,
nsim = 0,
antithetics = TRUE,
theta,
check.model = TRUE,
transform = c("ldl", "augment"),
maxiter = 50,
seed,
convtol = 1e-08,
expected = FALSE,
H_tol = 1e+15,
transform_tol,
...

)

Arguments

object State space model of class SSModel.

marginal Logical. Compute marginal instead of diffuse likelihood (see details). Default
is FALSE.

nsim Number of independent samples used in estimating the log-likelihood of the
non-Gaussian state space model. Default is 0, which gives good starting value
for optimization. Only used for non-Gaussian model.

antithetics Logical. If TRUE, two antithetic variables are used in simulations, one for loca-
tion and another for scale. Default is TRUE. Only used for non-Gaussian model.

theta Initial values for conditional mode theta. Only used for non-Gaussian model.

check.model Logical. If TRUE, function is.SSModel is called before computing the likeli-
hood. Default is TRUE.

transform How to transform the model in case of non-diagonal covariance matrix H . De-
faults to "ldl". See function transformSSM for details.

maxiter The maximum number of iterations used in linearisation. Default is 50. Only
used for non-Gaussian model.

36 logLik.SSModel

seed The value is used as a seed via set.seed function. Only used for non-Gaussian
model.

convtol Tolerance parameter for convergence checks for Gaussian approximation. Only
used for non-Gaussian model.

expected Logical value defining the approximation of H_t in case of Gamma and negative
binomial distribution. Default is FALSE which matches the algorithm of Durbin
& Koopman (1997), whereas TRUE uses the expected value of observations in
the equations, leading to results which match with glm (where applicable). The
latter case was the default behaviour of KFAS before version 1.3.8. Essentially
this is the difference between observed and expected information. Only used for
non-Gaussian model.

H_tol Tolerance parameter for check max(H) > tol_H, which suggests that the approx-
imation converged to degenerate case with near zero signal-to-noise ratio. De-
fault is very generous 1e15. Only used for non-Gaussian model.

transform_tol Tolerance parameter for LDL decomposition in case of a non-diagonal H and
transform = "ldl". See transformSSM and ldl for details.

... Ignored.

Details

As KFAS is based on diffuse initialization, the log-likelihood is also diffuse, which coincides with
restricted likelihood (REML) in an appropriate (mixed) models. However, in typical REML esti-
mation constant term log|X ′X| is omitted from the log-likelihood formula. Similar term is also
missing in diffuse log-likelihood formulations of state space models, but unlike in simpler linear
models this term is not necessarily constant. Therefore omitting this term can lead to suboptimal
results in model estimation if there is unknown parameters in diffuse parts of Zt or Tt (Francke et
al. 2011). Therefore so called marginal log-likelihood (diffuse likelihood + extra term) is recom-
mended. See also Gurka (2006) for model comparison in mixed model settings using REML with
and without the additional (constant) term. The marginal log-likelihood can be computed by setting
marginal = TRUE.

Note that for non-Gaussian models with importance sampling derivative-free optimization methods
such as Nelder-Mead might be more reliable than methods which use finite difference approxima-
tions. This is due to noise caused by the relative stopping criterion used for finding approximating
Gaussian model.

Value

Log-likelihood of the model.

References

Francke, M. K., Koopman, S. J. and De Vos, A. F. (2010), Likelihood functions for state space
models with diffuse initial conditions. Journal of Time Series Analysis, 31: 407–414.

Gurka, M. J (2006), Selecting the Best Linear Mixed Model Under REML. The American Statisti-
cian, Vol. 60.

mvInnovations 37

Casals, J., Sotoca, S., Jerez, M. (2014), Minimally conditioned likelihood for a nonstationary state
space model. Mathematics and Computers in Simulation, Vol. 100.

Examples

Example of estimating AR model with covariates, and how to deal with possible
non-stationarity in optimization.

set.seed(1)
x <- rnorm(100)
y <- 2 * x + arima.sim(n = 100, model = list(ar = c(0.5, -0.3)))

model<- SSModel(y ~ SSMarima(ar = c(0.5, -0.3), Q = 1) + x, H = 0)

obj <- function(pars, model, estimate = TRUE) {
#guard against stationarity
armamod <- try(SSMarima(ar = artransform(pars[1:2]), Q = exp(pars[3])), silent = TRUE)
if(class(armamod) == "try-error") {
return(Inf)

} else {
use advanced subsetting method for SSModels, see ?`[.SSModel`
model["T", states = "arima"] <- armamod$T
model["Q", eta = "arima"] <- armamod$Q
model["P1", states = "arima"] <- armamod$P1
if(estimate) {

-logLik(model)
} else {

model
}

}
}
fit <- optim(p = c(0.5,-0.5,1), fn = obj, model = model, method ="BFGS")

model <- obj(fit$par, model, FALSE)
model$T
model$Q
coef(KFS(model), last = TRUE)

mvInnovations Multivariate Innovations

Description

Function mvInnovations computes the multivariate versions of one step-ahead prediction errors
and their variances using the output of KFS.

Usage

mvInnovations(x)

38 plot.SSModel

Arguments

x Object of class KFS.

Value

v Multivariate prediction errors vt = yt − Ztat

F Prediction error variances V ar(vt).

Finf Diffuse part of Ft.

Examples

Compute the filtered estimates based on the KFS output

filtered <- function(x) {
innov <- mvInnovations(x)
att <- window(x$a, end = end(x$a) - 1)
tvz <- attr(x$model,"tv")[1]

for (i in 1:nrow(att)) {
att[i,] <- att[i,] +

x$P[,,i] %*%
t(solve(innov$F[,,i], x$model$Z[, , tvz * (i - 1) + 1, drop = FALSE])) %*%
innov$v[i,]

}
att

}

plot.SSModel Diagnostic Plots of State Space Models

Description

Diagnostic plots based on standardized residuals for objects of class SSModel.

Usage

S3 method for class 'SSModel'
plot(x, nsim = 0, zerotol = 0, expected = FALSE, ...)

Arguments

x Object of class SSModel.

nsim The number of independent samples used in importance sampling. Only used for
non-Gaussian model. Default is 0, which computes the approximating Gaussian
model by approxSSM and performs the usual Gaussian filtering/smoothing so
that the smoothed state estimates equals to the conditional mode of p(αt|y). In
case of nsim = 0, the mean estimates and their variances are computed using the
Delta method (ignoring the covariance terms).

predict.SSModel 39

zerotol Tolerance parameter for positivity checking in standardization. Default is zero.
The values of D <= zerotol * max(D, 0) are deemed to zero.

expected Logical value defining the approximation of H_t in case of Gamma and negative
binomial distribution. Default is FALSE which matches the algorithm of Durbin
& Koopman (1997), whereas TRUE uses the expected value of observations in
the equations, leading to results which match with glm (where applicable). The
latter case was the default behaviour of KFAS before version 1.3.8. Essentially
this is the difference between observed and expected information.

... Ignored.

Examples

modelNile <- SSModel(Nile ~ SSMtrend(1, Q = list(matrix(NA))), H = matrix(NA))
modelNile <- fitSSM(inits = c(log(var(Nile)),log(var(Nile))), model = modelNile,
method = "BFGS")$model

if (interactive()) {
plot(modelNile)

}

predict.SSModel State Space Model Predictions

Description

Function predict.SSModel predicts the future observations of a state space model of class SSModel.

Usage

S3 method for class 'SSModel'
predict(
object,
newdata,
n.ahead,
interval = c("none", "confidence", "prediction"),
level = 0.95,
type = c("response", "link"),
states = NULL,
se.fit = FALSE,
nsim = 0,
prob = TRUE,
maxiter = 50,
filtered = FALSE,
expected = FALSE,
...

)

40 predict.SSModel

Arguments

object Object of class SSModel.

newdata A compatible SSModel object to be added in the end of the old object for which
the predictions are required. If omitted, predictions are either for the past data
points, or if argument n.ahead is given, n.ahead time steps ahead.

n.ahead Number of steps ahead at which to predict. Only used if newdata is omitted.
Note that when using n.ahead, object cannot contain time varying system ma-
trices.

interval Type of interval calculation.

level Confidence level for intervals.

type Scale of the prediction, "response" or "link".

states Which states are used in computing the predictions. Either a numeric vector
containing the indices of the corresponding states, or a character vector defining
the types of the corresponding states. Possible choices are "all", "level",
"slope" (which does not make sense as the corresponding Z is zero.), "trend",
"regression", "arima", "custom", "cycle" or "seasonal", where "trend"
extracts all states relating to trend. These can be combined. Default is "all".

se.fit If TRUE, standard errors of fitted values are computed. Default is FALSE.

nsim Number of independent samples used in importance sampling. Used only for
non-Gaussian models.

prob if TRUE (default), the predictions in binomial case are probabilities instead of
counts.

maxiter The maximum number of iterations used in approximation Default is 50. Only
used for non-Gaussian model.

filtered If TRUE, compute predictions based on filtered (one-step-ahead) estimates. De-
fault is FALSE i.e. predictions are based on all available observations given by
user. For diffuse phase, interval bounds and standard errors of fitted values are
set to -Inf/Inf (If the interest is in the first time points it might be useful to use
non-exact diffuse initialization.).

expected Logical value defining the approximation of H_t in case of Gamma and negative
binomial distribution. Default is FALSE which matches the algorithm of Durbin
& Koopman (1997), whereas TRUE uses the expected value of observations in the
equations, leading to results which match with glm (where applicable). The lat-
ter case was the default behaviour of KFAS before version 1.3.8. Essentially this
is the difference between observed and expected information in GLM context.

... Ignored.

Details

For non-Gaussian models, the results depend whether importance sampling is used (nsim>0). with-
out simulations, the confidence intervals are based on the Gaussian approximation of p(α|y). Con-
fidence intervals in response scale are computed in linear predictor scale, and then transformed to
response scale. The prediction intervals are not supported. With importance sampling, the con-
fidence intervals are computed as the empirical quantiles from the weighted sample, whereas the

print.KFS 41

prediction intervals contain additional step of simulating the response variables from the sampling
distribution p(y|θi).
Predictions take account the uncertainty in state estimation (given the prior distribution for the initial
states), but not the uncertainty of estimating the parameters in the system matrices (i.e. Z, Q etc.).
Thus the obtained confidence/prediction intervals can underestimate the true uncertainty for short
time series and/or complex models.

If no simulations are used, the standard errors in response scale are computed using the Delta
method.

Value

A matrix or list of matrices containing the predictions, and optionally standard errors.

Examples

set.seed(1)
x <- runif(n=100,min=1,max=3)
y <- rpois(n=100,lambda=exp(x-1))
model <- SSModel(y~x,distribution="poisson")
xnew <- seq(0.5,3.5,by=0.1)
newdata <- SSModel(rep(NA,length(xnew))~xnew,distribution="poisson")
pred <- predict(model,newdata=newdata,interval="prediction",level=0.9,nsim=100)
plot(x=x,y=y,pch=19,ylim=c(0,25),xlim=c(0.5,3.5))
matlines(x=xnew,y=pred,col=c(2,2,2),lty=c(1,2,2),type="l")

model <- SSModel(Nile~SSMtrend(1,Q=1469),H=15099)
pred <- predict(model,n.ahead=10,interval="prediction",level=0.9)
pred

print.KFS Print Ouput of Kalman Filter and Smoother

Description

Print Ouput of Kalman Filter and Smoother

Usage

S3 method for class 'KFS'
print(x, type = "state", digits = max(3L, getOption("digits") - 3L), ...)

Arguments

x output object from function KFS.
type What to print. Possible values are "state" (default), "signal", and "mean".

Multiple choices are allowed.
digits minimum number of digits to be printed.
... Ignored.

42 rename_states

print.SSModel Print SSModel Object

Description

Print SSModel Object

Usage

S3 method for class 'SSModel'
print(x, ...)

Arguments

x SSModel object
... Ignored.

rename_states Rename the States of SSModel Object

Description

A simple function for renaming the states of SSModel object. Note that since KFAS version 1.2.3 the
auxiliary functions such as SSMtrend have argument state_names which can be used to overwrite
the default state names when building the model with SSModel.

Usage

rename_states(model, state_names)

Arguments

model Object of class SSModel
state_names Character vector giving new names for the states.

Value

Original model with dimnames corresponding to states renamed.

Examples

custom_model <- SSModel(1:10 ~ -1 +
SSMcustom(Z = 1, T = 1, R = 1, Q = 1, P1inf = 1), H = 1)
custom_model <- rename_states(custom_model, "level")
ll_model <- SSModel(1:10 ~ SSMtrend(1, Q = 1), H = 1)
test_these <- c("y", "Z", "H", "T", "R", "Q", "a1", "P1", "P1inf")
identical(custom_model[test_these], ll_model[test_these])

residuals.KFS 43

residuals.KFS Extract Residuals of KFS output

Description

Extract Residuals of KFS output

Usage

S3 method for class 'KFS'
residuals(object, type = c("recursive", "pearson", "response", "state"), ...)

Arguments

object KFS object

type Character string defining the type of residuals.

... Ignored.

Details

For object of class KFS, several types of residuals can be computed:

• "recursive": One-step-ahead prediction residuals vt,i = yt,i − Zt,iat,i. For non-Gaussian
case recursive residuals are computed as yt − f(Ztat), i.e. non-sequentially. Computing re-
cursive residuals for large non-Gaussian models can be time consuming as filtering is needed.

• "pearson":

(yt,i − θt,i)/
√

V (µt,i), i = 1, . . . , p, t = 1, . . . , n,

where V (µt,i) is the variance function of the series i

• "response": Data minus fitted values, y − E(y).

• "state": Residuals based on the smoothed disturbance terms η are defined as

η̂t, t = 1, . . . , n.

Only defined for fully Gaussian models.

44 rstandard.KFS

rstandard.KFS Extract Standardized Residuals from KFS output

Description

Extract Standardized Residuals from KFS output

Usage

S3 method for class 'KFS'
rstandard(
model,
type = c("recursive", "pearson", "state"),
standardization_type = c("marginal", "cholesky"),
zerotol = 0,
expected = FALSE,
...

)

Arguments

model KFS object

type Type of residuals. See details.
standardization_type

Type of standardization. Either "marginal" (default) for marginal standardiza-
tion or "cholesky" for Cholesky-type standardization.

zerotol Tolerance parameter for positivity checking in standardization. Default is zero.
The values of D <= zerotol * max(D, 0) are deemed to zero.

expected Logical value defining the approximation of H_t in case of Gamma and negative
binomial distribution. Default is FALSE which matches the algorithm of Durbin
& Koopman (1997), whereas TRUE uses the expected value of observations in
the equations, leading to results which match with glm (where applicable). The
latter case was the default behaviour of KFAS before version 1.3.8. Essentially
this is the difference between observed and expected information.

... Ignored.

Details

For object of class KFS with fully Gaussian observations, several types of standardized residuals
can be computed. Also the standardization for multivariate residuals can be done either by Cholesky
decomposition L−1

t residualt, or component-wise residualt/sd(residualt),.

• "recursive": For Gaussian models the vector standardized one-step-ahead prediction residuals
are defined as

vt,i/
√

Fi,t,

rstandard.KFS 45

with residuals being undefined in diffuse phase. Note that even in multivariate case these stan-
dardized residuals coincide with the ones obtained from the Kalman filter without the sequen-
tial processing (which is not true for the non-standardized innovations). For non-Gaussian
models the vector standardized recursive residuals are obtained as

L−1
t (yt − µt),

where Lt is the lower triangular matrix from Cholesky decomposition of V ar(yt|yt−1, . . . , y1).
Computing these for large non-Gaussian models can be time consuming as filtering is needed.
For Gaussian models the component-wise standardized one-step-ahead prediction residuals
are defined as

vt/
√
diag(Ft),

where vt and Ft are based on the standard multivariate processing. For non-Gaussian models
these are obtained as

(yt − µt)/
√

diag(Ft),

where Ft = V ar(yt|yt−1, . . . , y1).

• "state": Residuals based on the smoothed state disturbance terms η are defined as

L−1
t η̂t, t = 1, . . . , n,

where Lt is either the lower triangular matrix from Cholesky decomposition of V ar(η̂t) =
Qt − Vη,t, or the diagonal of the same matrix.

• "pearson": Standardized Pearson residuals

L−1
t (yt − θi), t = 1, . . . , n,

where Lt is the lower triangular matrix from Cholesky decomposition of V ar(µ̂t) = Ht −
Vµ,t, or the diagonal of the same matrix. For Gaussian models, these coincide with the stan-
dardized smoothed ϵ disturbance residuals (as Vµ,t = Vϵ,t), and for generalized linear models
these coincide with the standardized Pearson residuals (hence the name).

Note that the variance estimates from KFS are of form Var(x | y), e.g., V_eps from KFS is V ar(ϵt|Y)
and matches with equation 4.69 in Section 4.5.3 of Durbin and Koopman (2012). (in case of uni-
variate Gaussian model). But for the standardization we need Var(E(x | y)) (e.g., Var(epshat) which
we get with the law of total variance as Ht − Veps for example.

Examples

Replication of residual plot of Section 8.2 of Durbin and Koopman (2012)
model <- SSModel(log(drivers) ~ SSMtrend(1, Q = list(NA))+

SSMseasonal(period = 12, sea.type = "trigonometric", Q = NA),
data = Seatbelts, H = NA)

updatefn <- function(pars, model){
model$H[] <- exp(pars[1])
diag(model$Q[, , 1]) <- exp(c(pars[2], rep(pars[3], 11)))
model

}

fit <- fitSSM(model = model,

46 sexratio

inits = log(c(var(log(Seatbelts[, "drivers"])), 0.001, 0.0001)),
updatefn = updatefn)

tiny differences due to different optimization algorithms
setNames(c(diag(fit$model$Q[,,1])[1:2], fit$model$H[1]),

c("level", "seasonal", "irregular"))

out <- KFS(fit$model, smoothing = c("state", "mean", "disturbance"))

plot(cbind(
recursive = rstandard(out),
irregular = rstandard(out, "pearson"),
state = rstandard(out, "state")[,1]),
main = "recursive and state residuals", type = "h")

Figure 2.8 in DK2012
model_Nile <- SSModel(Nile ~

SSMtrend(1, Q = list(matrix(NA))), H = matrix(NA))
model_Nile <- fitSSM(model_Nile, c(log(var(Nile)), log(var(Nile))),

method = "BFGS")$model

out_Nile <- KFS(model_Nile, smoothing = c("state", "mean", "disturbance"))

par(mfrow = c(2, 2))
res_p <- rstandard(out_Nile, "pearson")
ts.plot(res_p)
abline(a = 0, b= 0, lty = 2)
hist(res_p, freq = FALSE)
lines(density(res_p))
res_s <- rstandard(out_Nile, "state")
ts.plot(res_s)
abline(a = 0, b= 0, lty = 2)
hist(res_s, freq = FALSE)
lines(density(res_s))

sexratio Number of males and females born in Finland from 1751 to 2011

Description

A time series object containing the number of males and females born in Finland from 1751 to
2011.

Format

A time series object containing the number of males and females born in Finland from 1751 to
2011.

signal 47

Source

Statistics Finland https://statfin.stat.fi/PxWeb/pxweb/en/StatFin/.

Examples

data("sexratio")
model <- SSModel(Male ~ SSMtrend(1, Q = NA), u = sexratio[, "Total"],

data = sexratio, distribution = "binomial")
fit <- fitSSM(model, inits = -15, method = "BFGS")
fit$model["Q"]

Computing confidence intervals in response scale
Uses importance sampling on response scale (400 samples with antithetics)

pred <- predict(fit$model, type = "response", interval = "conf", nsim = 100)

ts.plot(cbind(model$y/model$u, pred), col = c(1, 2, 3, 3), lty = c(1, 1, 2, 2))

Not run:
Now with sex ratio instead of the probabilities:
imp <- importanceSSM(fit$model, nsim = 1000, antithetics = TRUE)
sexratio.smooth <- numeric(length(model$y))
sexratio.ci <- matrix(0, length(model$y), 2)
w <- imp$w/sum(imp$w)
for(i in 1:length(model$y)){
sexr <- exp(imp$sample[i, 1,])
sexratio.smooth[i] <- sum(sexr*w)
oo <- order(sexr)
sexratio.ci[i,] <- c(sexr[oo][which.min(abs(cumsum(w[oo]) - 0.05))],

sexr[oo][which.min(abs(cumsum(w[oo]) - 0.95))])
}

Same by direct transformation:
out <- KFS(fit$model, smoothing = "signal", nsim = 1000)
sexratio.smooth2 <- exp(out$thetahat)
sexratio.ci2 <- exp(c(out$thetahat) + qnorm(0.025) *

sqrt(drop(out$V_theta))%o%c(1, -1))

ts.plot(cbind(sexratio.smooth, sexratio.ci, sexratio.smooth2, sexratio.ci2),
col = c(1, 1, 1, 2, 2, 2), lty = c(1, 2, 2, 1, 2, 2))

End(Not run)

signal Extracting the Partial Signal Of a State Space Model

Description

Function signal returns the signal of a state space model using only subset of states.

https://statfin.stat.fi/PxWeb/pxweb/en/StatFin/

48 signal

Usage

signal(object, states = "all", filtered = FALSE)

Arguments

object Object of class KFS.

states Which states are combined? Either a numeric vector containing the indices of
the corresponding states, or a character vector defining the types of the cor-
responding states. Possible choices are "all", "level", "slope", "trend",
"regression", "arima", "custom", "cycle" or "seasonal", where "trend"
extracts states relating to trend. These can be combined. Default is "all".

filtered If TRUE, filtered signal is used. Otherwise smoothed signal is used.

Value

signal Time series object of filtered signal Ztat or smoothed signal Ztα̂t using only
the defined states.

variance Cov(Ztat) or Cov(Ztα̂t) using only the defined states. For the covariance ma-
trices of the filtered signal, only the non-diffuse part of P is used.

Examples

model <- SSModel(log(drivers) ~ SSMtrend(1, NA) +
SSMseasonal(12, sea.type = 'trigonometric', Q = NA) +
log(PetrolPrice) + law,data = Seatbelts, H = NA)

ownupdatefn <- function(pars,model,...){
model$H[] <- exp(pars[1])
diag(model$Q[,,1]) <- exp(c(pars[2], rep(pars[3], 11)))
model

}

fit <- fitSSM(inits = log(c(var(log(Seatbelts[,'drivers'])), 0.001, 0.0001)),
model = model, updatefn = ownupdatefn, method = 'BFGS')

out <- KFS(fit$model, smoothing = c('state', 'mean'))
ts.plot(cbind(out$model$y, fitted(out)),lty = 1:2, col = 1:2,

main = 'Observations and smoothed signal with and without seasonal component')
lines(signal(out, states = c('regression', 'trend'))$signal, col = 4, lty = 1)
legend('bottomleft',

legend = c('Observations', 'Smoothed signal','Smoothed level'),
col = c(1, 2, 4), lty = c(1, 2, 1))

simulateSSM 49

simulateSSM Simulation of a Gaussian State Space Model

Description

Function simulateSMM simulates states, signals, disturbances or missing observations of the Gaus-
sian state space model either conditional on the data (simulation smoother) or unconditionally.

Usage

simulateSSM(
object,
type = c("states", "signals", "disturbances", "observations", "epsilon", "eta"),
filtered = FALSE,
nsim = 1,
antithetics = FALSE,
conditional = TRUE

)

Arguments

object Gaussian state space object of class SSModel.

type What to simulate.

filtered Simulate from p(αt|yt−1, ..., y1) instead of p(α|y).

nsim Number of independent samples. Default is 1.

antithetics Use antithetic variables in simulation. Default is FALSE.

conditional Simulations are conditional to data. If FALSE, the states having exact diffuse
initial distribution (as defined by P1inf are fixed to corresponding values of a1.
See details.

Details

Simulation smoother algorithm is based on article by J. Durbin and S.J. Koopman (2002). The
simulation filter (filtered = TRUE) is a straightforward modification of the simulations smoother,
where only filtering steps are performed.

Function can use two antithetic variables, one for location and other for scale, so output contains
four blocks of simulated values which correlate which each other (ith block correlates negatively
with (i+1)th block, and positively with (i+2)th block etc.).

Note that KFAS versions 1.2.0 and older, for unconditional simulation the initial distribution of
states was fixed so that a1 was set to the smoothed estimates of the first state and the initial variance
was set to zero. Now original a1 and P1 are used, and P1inf is ignored (i.e. diffuse states are fixed
to corresponding elements of a1).

50 simulateSSM

Value

An n x k x nsim array containing the simulated series, where k is number of observations, signals,
states or disturbances.

References

Durbin J. and Koopman, S.J. (2002). A simple and efficient simulation smoother for state space
time series analysis, Biometrika, Volume 89, Issue 3

Examples

set.seed(123)
simulate new observations from the "fitted" model
model <- SSModel(Nile ~ SSMtrend(1, Q = 1469), H = 15099)
signal conditional on the data i.e. samples from p(theta | y)
unconditional simulation is not reasonable as the model is nonstationary
signal_sim <- simulateSSM(model, type = "signals", nsim = 10)
and add unconditional noise term i.e samples from p(epsilon)
epsilon_sim <- simulateSSM(model, type = "epsilon", nsim = 10,

conditional = FALSE)
observation_sim <- signal_sim + epsilon_sim

ts.plot(observation_sim[,1,], Nile, col = c(rep(2, 10), 1),
lty = c(rep(2, 10), 1), lwd = c(rep(1, 10), 2))

fully unconditional simulation:
observation_sim2 <- simulateSSM(model, type = "observations", nsim = 10,

conditional = FALSE)
ts.plot(observation_sim[,1,], observation_sim2[,1,], Nile,
col = c(rep(2:3, each = 10), 1), lty = c(rep(2, 20), 1),
lwd = c(rep(1, 20), 2))

illustrating use of antithetics
model <- SSModel(matrix(NA, 100, 1) ~ SSMtrend(1, 1, P1inf = 0), H = 1)

set.seed(123)
sim <- simulateSSM(model, "obs", nsim = 2, antithetics = TRUE)
first time points
sim[1,,]
correlation structure between simulations with two antithetics
cor(sim[,1,])

out_NA <- KFS(model, filtering = "none", smoothing = "state")
model["y"] <- sim[, 1, 1]
out_obs <- KFS(model, filtering = "none", smoothing = "state")

set.seed(40216)
simulate states from the p(alpha | y)
sim_conditional <- simulateSSM(model, nsim = 10, antithetics = TRUE)

mean of the simulated states is exactly correct due to antithetic variables
mean(sim_conditional[2, 1,])

SSMarima 51

out_obs$alpha[2]
for variances more simulations are needed
var(sim_conditional[2, 1,])
out_obs$V[2]

set.seed(40216)
no data, simulations from p(alpha)
sim_unconditional <- simulateSSM(model, nsim = 10, antithetics = TRUE,

conditional = FALSE)
mean(sim_unconditional[2, 1,])
out_NA$alpha[2]
var(sim_unconditional[2, 1,])
out_NA$V[2]

ts.plot(cbind(sim_conditional[,1,1:5], sim_unconditional[,1,1:5]),
col = rep(c(2,4), each = 5))

lines(out_obs$alpha, lwd=2)

SSMarima Create a State Space Model Object of Class SSModel

Description

Function SSModel creates a state space object object of class SSModel which can be used as an input
object for various functions of KFAS package.

Usage

SSMarima(
ar = NULL,
ma = NULL,
d = 0,
Q,
stationary = TRUE,
index,
n = 1,
state_names = NULL,
ynames

)

SSMcustom(Z, T, R, Q, a1, P1, P1inf, index, n = 1, state_names = NULL)

SSMcycle(
period,
Q,
type,
index,

52 SSMarima

a1,
P1,
P1inf,
damping = 1,
n = 1,
state_names = NULL,
ynames

)

SSModel(formula, data, H, u, distribution, tol = .Machine$double.eps^0.5)

SSMregression(
rformula,
data,
type,
Q,
index,
R,
a1,
P1,
P1inf,
n = 1,
remove.intercept = TRUE,
state_names = NULL,
ynames

)

SSMseasonal(
period,
Q,
sea.type = c("dummy", "trigonometric"),
type,
index,
a1,
P1,
P1inf,
n = 1,
state_names = NULL,
ynames,
harmonics

)

SSMtrend(
degree = 1,
Q,
type,
index,
a1,

SSMarima 53

P1,
P1inf,
n = 1,
state_names = NULL,
ynames

)

Arguments

ar For arima component, a numeric vector containing the autoregressive coeffients.

ma For arima component, a numericvector containing the moving average coeffients.

d For arima component, a degree of differencing.

Q For arima, cycle and seasonal component, a p × p covariance matrix of the
disturbances (or in the time varying case p × p × n array), where where p
= length(index). For trend component, list of length degree containing the
p × p or p × p × n covariance matrices. For a custom component, arbitrary
covariance matrix or array of disturbance terms ηt

stationary For arima component, logical value indicating whether a stationarity of the
arima part is assumed. Defaults to TRUE.

index A vector indicating for which series the corresponding components are con-
structed.

n Length of the series, only used internally for dimensionality check.

state_names A character vector giving the state names.

ynames names of the times series, used internally.

Z For a custom component, system matrix or array of observation equation.

T For a custom component, system matrix or array of transition equation.

R For a custom and regression components, optional m×k system matrix or array
of transition equation.

a1 Optional m× 1 matrix giving the expected value of the initial state vector α1.

P1 Optional m ×m matrix giving the covariance matrix of α1. In the diffuse case
the non-diffuse part of P1.

P1inf Optional m × m matrix giving the diffuse part of P1. Diagonal matrix with
ones on diagonal elements which correspond to the diffuse initial states. If
P1inf[i,i]>0, corresponding row and column of P1 should be zero.

period For a cycle and seasonal components, the length of the cycle/seasonal pattern.

type For cycle, seasonal, trend and regression components, character string defining
if "distinct" or "common" states are used for different series.

damping A damping factor for cycle component. Defaults to 1. Note that there are no
checks for the range of the factor.

formula An object of class formula containing the symbolic description of the model.
The intercept term can be removed with -1 as in lm. In case of trend or differ-
enced arima component the intercept is removed automatically in order to keep
the model identifiable. See package vignette and examples in KFAS for special
functions used in model construction.

54 SSMarima

data An optional data frame, list or environment containing the variables in the model.

H Covariance matrix or array of disturbance terms ϵt of observation equation. De-
faults to an identity matrix. Omitted in case of non-Gaussian distributions (aug-
ment the state vector if you want to add additional noise).

u Additional parameters for non-Gaussian models. See details in KFAS.

distribution A vector of distributions of the observations. Default is rep("gaussian", p),
where p is the number of series.

tol A tolerance parameter used in checking whether Finf or F is numerically zero.
Defaults to .Machine$double.eps^0.5. If F < tol * max(abs(Z[Z > 0]))^2,
then F is deemed to be zero (i.e. differences are due to numerical precision).
This has mostly effect only on determining when to end exact diffuse phase.
Tweaking this and/or scaling model parameters/observations can sometimes help
with numerical issues.

rformula For regression component, right hand side formula or list of of such formulas
defining the custom regression part.

remove.intercept

Remove intercept term from regression model. Default is TRUE. This tries to
ensure that there are no extra intercept terms in the model.

sea.type For seasonal component, character string defining whether to use "dummy" or
"trigonometric" form of the seasonal component.

harmonics For univariate trigonometric seasonal, argument harmonics can be used to spec-
ify which subharmonics are added to the model. Note that for multivariate model
you can call SSMseasonal multiple times with different values of index.

degree For trend component, integer defining the degree of the polynomial trend. 1
corresponds to local level, 2 for local linear trend and so forth.

Details

Formula of the model can contain the usual regression part and additional functions defining differ-
ent types of components of the model, named as SSMarima, SSMcustom, SSMcycle, SSMregression,
SSMseasonal and SSMtrend.

For more details, see package vignette (the mathematical notation is somewhat non-readable in
ASCII).

Value

Object of class SSModel, which is a list with the following components:

y A n x p matrix containing the observations.

Z A p x m x 1 or p x m x n array corresponding to the system matrix of observation
equation.

H A p x p x 1 or p x p x n array corresponding to the covariance matrix of obser-
vational disturbances epsilon.

T A m x m x 1 or m x m x n array corresponding to the first system matrix of state
equation.

SSMarima 55

R A m x k x 1 or m x k x n array corresponding to the second system matrix of
state equation.

Q A k x k x 1 or k x k x n array corresponding to the covariance matrix of state
disturbances eta

a1 A m x 1 matrix containing the expected values of the initial states.

P1 A m x m matrix containing the covariance matrix of the nondiffuse part of the
initial state vector.

P1inf A m x m matrix containing the covariance matrix of the diffuse part of the initial
state vector. If P1[i,i] is non-zero then P1inf[i,i] is automatically set to
zero.

u A n x p matrix of an additional parameters in case of non-Gaussian model.

distribution A vector of length p giving the distributions of the observations.

tol A tolerance parameter for Kalman filtering.

call Original call to the function.

In addition, object of class SSModel contains following attributes:

names Names of the list components.

p, m, k, n Integer valued scalars defining the dimensions of the model components.

state_types Types of the states in the model.

eta_types Types of the state disturbances in the model.

tv Integer vector stating whether Z,H,T,R or Q is time-varying (indicated by 1 in tv
and 0 otherwise). If you manually change the dimensions of the matrices you
must change this attribute also.

See Also

artransform

KFAS for more examples.

Examples

add intercept to state equation by augmenting the state vector:
diffuse initialization for the intercept, gets estimated like other states:
for known fixed intercept, just set P1 = P1inf = 0 (default in SSMcustom).
intercept <- 0
model_int <- SSModel(Nile ~ SSMtrend(1, Q = 1469) +
SSMcustom(Z = 0, T = 1, Q = 0, a1 = intercept, P1inf = 1), H = 15099)

model_int$T
model_int$T[1, 2, 1] <- 1 # add the intercept value to level
out <- KFS(model_int)

An example of a time-varying variance

model_drivers <- SSModel(log(cbind(front, rear)) ~ SSMtrend(1, Q = list(diag(2))),
data = Seatbelts, H = array(NA, c(2, 2, 192)))

56 SSMarima

ownupdatefn <- function(pars, model){
diag(model$Q[, , 1]) <- exp(pars[1:2])
model$H[,,1:169] <- diag(exp(pars[3:4])) # break in variance
model$H[,,170:192] <- diag(exp(pars[5:6]))
model

}

fit_drivers <- fitSSM(model_drivers, inits = rep(-1, 6),
updatefn = ownupdatefn, method = "BFGS")

fit_drivers$model$H[,,1]
fit_drivers$model$H[,,192]

An example of shift in the level component

Tt <- array(diag(2), c(2, 2, 100))
Tt[1,2,28] <- 1
Z <- matrix(c(1,0), 1, 2)
Q <- diag(c(NA, 0), 2)
model <- SSModel(Nile ~ -1 + SSMcustom(Z, Tt, Q = Q, P1inf = diag(2)),

H = matrix(NA))

model <- fitSSM(model, c(10,10), method = "BFGS")$model
model$Q
model$H

conf_Nile <- predict(model, interval = "confidence", level = 0.9)
pred_Nile <- predict(model, interval = "prediction", level = 0.9)

ts.plot(cbind(Nile, pred_Nile, conf_Nile[, -1]), col = c(1:2, 3, 3, 4, 4),
ylab = "Predicted Annual flow", main = "River Nile")

dynamic regression model

set.seed(1)
x1 <- rnorm(100)
x2 <- rnorm(100)
b1 <- 1 + cumsum(rnorm(100, sd = 1))
b2 <- 2 + cumsum(rnorm(100, sd = 0.1))
y <- 1 + b1 * x1 + b2 * x2 + rnorm(100, sd = 0.1)

model <- SSModel(y ~ SSMregression(~ x1 + x2, Q = diag(NA,2)), H = NA)

fit <- fitSSM(model, inits = c(0,0,0), method = "BFGS")

model <- fit$model
model$Q
model$H
out <- KFS(model)

ts.plot(out$alphahat[,-1], b1, b2, col = 1:4)

SSMregression with multivariate observations

transformSSM 57

x <- matrix(rnorm(30), 10, 3) # one variable per each series
y <- x + rnorm(30)
model <- SSModel(y ~ SSMregression(list(~ X1, ~ X2, ~ X3), data = data.frame(x)))
more generally SSMregression(sapply(1:3, function(i) formula(paste0("~ X",i))), ...)

three covariates per series, with same coefficients:
y <- x[,1] + x[,2] + x[,3] + matrix(rnorm(30), 10, 3)
model <- SSModel(y ~ -1 + SSMregression(~ X1 + X2 + X3, remove.intercept = FALSE,

type = "common", data = data.frame(x)))

the above cases can be combined in various ways, you can call SSMregression multiple times:
model <- SSModel(y ~ SSMregression(~ X1 + X2, type = "common") +

SSMregression(~ X2), data = data.frame(x))

examples of using data argument
y <- x <- rep(1, 3)
data1 <- data.frame(x = rep(2, 3))
data2 <- data.frame(x = rep(3, 3))

f <- formula(~ -1 + x)
With data missing the environment of formula is checked,
and if not found in there a calling environment via parent.frame is checked.

c(SSModel(y ~ -1 + x)["Z"]) # 1
c(SSModel(y ~ -1 + x, data = data1)["Z"]) # 2

c(SSModel(y ~ -1 + SSMregression(~ -1 + x))["Z"]) # 1
c(SSModel(y ~ -1 + SSMregression(~ -1 + x, data = data1))["Z"]) # 2
c(SSModel(y ~ -1 + SSMregression(~ -1 + x), data = data1)["Z"]) # 2
SSModel(y ~ -1 + x + SSMregression(~ -1 + x, data = data1))["Z"] # 1 and 2
SSModel(y ~ -1 + x + SSMregression(~ -1 + x), data = data1)["Z"] # both are 2
SSModel(y ~ -1 + x + SSMregression(~ -1 + x, data = data1), data = data2)["Z"] # 3 and 2

SSModel(y ~ -1 + x + SSMregression(f))["Z"] # 1 and 1
SSModel(y ~ -1 + x + SSMregression(f), data = data1)["Z"] # 2 and 1
SSModel(y ~ -1 + x + SSMregression(f,data = data1))["Z"] # 1 and 2

rm(x)
c(SSModel(y ~ -1 + SSMregression(f, data = data1))$Z) # 2
Not run:
This fails as there is no x in the environment of f
try(c(SSModel(y ~ -1 + SSMregression(f), data = data1)$Z))

End(Not run)

transformSSM Transform Multivariate State Space Model for Sequential Processing

58 [<-.SSModel

Description

transformSSM transforms the general multivariate Gaussian state space model to form suitable for
sequential processing.

Usage

transformSSM(object, type = c("ldl", "augment"), tol)

Arguments

object State space model object from function SSModel.

type Option "ldl" performs LDL decomposition for covariance matrix Ht, and mul-
tiplies the observation equation with the L−1

t , so ϵ∗t ∼ N(0, Dt). Option
"augment" adds ϵt to the state vector, so Qt becomes block diagonal with blocks
Qt and Ht.

tol Tolerance parameter for LDL decomposition (see ldl). Default is max(100,
max(abs(apply(object$H, 3, diag)))) * .Machine$double.eps.

Details

As all the functions in KFAS use univariate approach i.e. sequential processing, the covariance ma-
trix Ht of the observation equation needs to be either diagonal or zero matrix. Function transformSSM
performs either the LDL decomposition of Ht, or augments the state vector with the disturbances
of the observation equation.

In case of a LDL decomposition, the new Ht contains the diagonal part of the decomposition,
whereas observations yt and system matrices Zt are multiplied with the inverse of Lt. Note that
although the state estimates and their error covariances obtained by Kalman filtering and smoothing
are identical with those obtained from ordinary multivariate filtering, the one-step-ahead errors vt
and their variances Ft do differ. The typical multivariate versions can be obtained from output of
KFS using mvInnovations function.

In case of augmentation of the state vector, some care is needed interpreting the subsequent fil-
tering/smoothing results: For example the muhat from the output of KFS now contains also the
smoothed observational level noise as that is part of the state vector.

Value

model Transformed model.

[<-.SSModel Extract or Replace Parts of a State Space Model

Description

S3 methods for getting and setting parts of object of class SSModel. These methods ensure that
dimensions of system matrices are not altered.

[<-.SSModel 59

Usage

S3 replacement method for class 'SSModel'
x[element, states, etas, series, times, ...] <- value

S3 method for class 'SSModel'
x[element, states, etas, series, times, drop = TRUE, ...]

Arguments

x Object of class SSModel.

element Which element(s) is chosen. Typical values are "y", "Z", "H", "T", "R", "Q",
"a1", "P1", "P1inf", and "u". See details.

states Which states are chosen. Either a numeric vector containing the indices of the
states, or a character vector defining the types of the states. Possible choices
are "all", "level", "slope", "trend", "regression", "arima", "custom",
"cycle" or "seasonal", where "trend" extracts all states relating to trend.
These can be combined. Default is "all".

etas Which disturbances eta are chosen. Used for elements "R" and "Q". Either a
numeric vector containing the indices of the etas, or a character vector defining
the types of the etas. Possible choices are "all", "level", "slope", "trend",
"regression", "arima", "custom", "cycle" or "seasonal", where "trend"
extracts all etas relating to trend. These can be combined. Default is "all".

series Numeric. Which series are chosen. Used for elements "y", "Z", and "u".

times Numeric. Which time points are chosen.

... Ignored.

value A value to be assigned to x.

drop Logical. If TRUE (default) the result is coerced to the lowest possible dimension.

Details

If element is not one of "y", "Z", "H", "T", "R", "Q", "a1", "P1", "P1inf", "u", the default
single bracket list extraction and assignments (x[element] and x[element] <- value) are used
(and other arguments are ignored).

If element is one of "y", "Z", "H", "T", "R", "Q", "a1", "P1", "P1inf", "u" and if the arguments
states, etas, times and series are all missing, the double bracket list extraction x[[element]]
and modified double bracket list assignment x[[element]][] <- value are used.

If neither of above holds, then for example in case of element = Z the extraction is of form x$Z[series,
states, times, drop].

Value

A selected subset of the chosen element or a value.

60 [<-.SSModel

Examples

set.seed(1)
model <- SSModel(rnorm(10) ~ 1)
model["H"]
model["H"] <- 10
H is still an array:
model["H"]
logLik(model)
model$H <- 1
model["H"] throws an error as H is now scalar:
model$H
logLik(model, check.model = TRUE) #with check.model = FALSE R crashes!

Index

∗ datasets
alcohol, 2
boat, 6
GlobalTemp, 14
sexratio, 46

[.SSModel ([<-.SSModel), 58
[<-.SSModel, 58

alcohol, 2
approxSSM, 3, 8, 11, 14, 21, 31, 34, 38
artransform, 5

boat, 6, 11, 21, 34

coef.KFS (coef.SSModel), 7
coef.SSModel, 7
confint.KFS, 9

dnbinom, 20

fitSSM, 10, 21, 34
fitted.KFS (fitted.SSModel), 13
fitted.SSModel, 13
formula, 53

GlobalTemp, 11, 14, 21, 34

hatvalues.KFS, 15

importanceSSM, 4, 11, 16, 21, 34
is.SSModel, 18

KFAS, 4, 11, 19, 34, 53–55
KFAS-package (KFAS), 19
KFS, 4, 8, 14, 30, 37, 58

ldl, 31, 34, 36, 58
logLik, 11, 21, 34
logLik (logLik.SSModel), 35
logLik.SSModel, 35

mvInnovations, 31, 37, 58

optim, 10

plot.SSModel, 38
predict (predict.SSModel), 39
predict.SSModel, 39
print.KFS, 41
print.SSModel, 42

rename_states, 42
residuals.KFS, 43
rstandard.KFS, 33, 44

sexratio, 11, 21, 34, 46
signal, 14, 47
simulateSSM, 49
SSMarima, 51
SSMcustom (SSMarima), 51
SSMcycle (SSMarima), 51
SSModel, 4, 11, 21, 32, 34, 39, 42, 58
SSModel (SSMarima), 51
SSMregression (SSMarima), 51
SSMseasonal (SSMarima), 51
SSMtrend, 42
SSMtrend (SSMarima), 51

transformSSM, 21, 31, 35, 36, 57

61

	alcohol
	approxSSM
	artransform
	boat
	coef.SSModel
	confint.KFS
	fitSSM
	fitted.SSModel
	GlobalTemp
	hatvalues.KFS
	importanceSSM
	is.SSModel
	KFAS
	KFS
	ldl
	logLik.SSModel
	mvInnovations
	plot.SSModel
	predict.SSModel
	print.KFS
	print.SSModel
	rename_states
	residuals.KFS
	rstandard.KFS
	sexratio
	signal
	simulateSSM
	SSMarima
	transformSSM
	[<-.SSModel
	Index

