Package: Jaya (via r-universe)

November 19, 2024

Title Gradient-Free Optimization Algorithm for Single and
Multi-Objective Problems

Version 1.0.3

Description An implementation of the Jaya optimization algorithm for
both single-objective and multi-objective problems. Jaya is a
population-based, gradient-free optimization algorithm capable
of solving constrained and unconstrained optimization problems
without hyperparameters. This package includes features such as
multi-objective Pareto optimization, adaptive population
adjustment, and early stopping. For further details, see R.V.

Rao (2016) <doi:10.5267/j.ijiec.2015.8.004>.

Depends R (>=3.5.0)

Imports parallel

Suggests knitr, rmarkdown, evaluate, testthat
License MIT + file LICENSE

Encoding UTF-8

URL https://github.com/neerajdhanraj/Jaya

BugReports https://github.com/neerajdhanraj/Jaya/issues
NeedsCompilation no

RoxygenNote 7.3.2

VignetteBuilder knitr

Author Neeraj Bokde [aut, cre]
(<https://orcid.org/0000-0002-3493-9302>)

Maintainer Neeraj Bokde <neerajdhanraj@gmail.com>
Repository CRAN
Date/Publication 2024-11-18 13:10:02 UTC

https://doi.org/10.5267/j.ijiec.2015.8.004
https://github.com/neerajdhanraj/Jaya
https://github.com/neerajdhanraj/Jaya/issues
https://orcid.org/0000-0002-3493-9302

2 jaya

Contents
JAYA L 2
jayamulti e e e e e 4
plotjaya e 5
plot_jaya_multi_pairwise 6
SUMMATY.JAYA .« v v v v v v e 7

Index 9

jaya Jaya Algorithm for Single-Objective Optimization
Description

Implements the Jaya optimization algorithm for single-objective optimization. The algorithm min-
imizes or maximizes the given objective function over specified bounds.

Usage

jaya(
fun = NULL,
lower,
upper,
popSize = 50,
maxiter,
n_var,
seed = NULL,
suggestions = data.frame(),
opt = "minimize",
objectives = NULL,
constraints = list(),
early_stopping = FALSE,
tolerance = 1e-06,
patience = 10,
adaptive_pop = FALSE,
min_popSize = 20,
max_popSize = 100,
parallel = FALSE,

cores = NULL
)
Arguments
fun Objective function to be minimized or maximized (single-objective).
lower Vector of lower bounds for the decision variables.

upper Vector of upper bounds for the decision variables.

Jaya

popSize
maxiter
n_var

seed
suggestions
opt
objectives
constraints
early_stopping
tolerance
patience
adaptive_pop
min_popSize
max_popSize
parallel

cores

Value

Size of the population for the optimization process.

Maximum number of iterations.

Number of decision variables.

Optional random seed for reproducibility.

Optional data frame of initial population suggestions.

Specify whether to "minimize" or "maximize" the objective function.
(optional) A list of functions for multi-objective optimization.

(optional) A list of constraints as functions returning <= 0 for feasibility.
Logical. If TRUE, stops optimization early based on tolerance and patience.
Numeric. Tolerance for early stopping.

Integer. Number of iterations to wait for improvement before stopping early.
Logical. If TRUE, enables adaptive population size adjustment.

Integer. Minimum population size for adaptive adjustment.

Integer. Maximum population size for adaptive adjustment.

Logical. If TRUE, enables parallel computation for evaluating population.

Integer. Number of cores to use for parallel computation. Defaults to all avail-
able cores minus one.

A list containing the following: - ‘Best’: The best solution found (variable values and objective
function value). - ‘Iterations‘: Best objective function values at each iteration.

Examples

Example: Single-objective optimization
sphere_function <- function(x) sum(x*2)

result <- jaya(

fun = sphere_function,
lower = rep(-5, 3),

upper = rep(5,

popSize = 20,
maxiter = 50,
n_var = 3,

3)’

opt = "minimize”

)

print(summary(result))

plot(result)

4 jaya_multi
jaya_multi Jaya Algorithm for Multi-Objective Optimization
Description
Implements the Jaya optimization algorithm for multi-objective optimization. This algorithm sup-
ports non-dominated sorting and handles constraints and adaptive population sizes.
Usage
jaya_multi(
objectives,
lower,
upper,
popSize = 50,
maxiter,
n_var,
seed = NULL,
suggestions = data.frame(),
constraints = list(),
adaptive_pop = FALSE,
min_popSize = 20,
max_popSize = 100,
early_stopping = FALSE,
tolerance = 1e-06,
patience = 10
)
Arguments
objectives A list of objective functions to optimize.
lower Numeric vector specifying the lower bounds for variables.
upper Numeric vector specifying the upper bounds for variables.
popSize Population size. Default is 50.
maxiter Maximum number of iterations.
n_var Number of variables.
seed Random seed for reproducibility. Default is ‘NULL".
suggestions Data frame of initial suggestions for starting population. Default is an empty
data frame.
constraints A list of constraint functions. Each constraint should return a non-positive value

if satisfied.

adaptive_pop Logical. Whether to adapt population size during optimization. Default is

min_popSize

‘FALSE".

Minimum population size if adaptive population is enabled. Default is 20.

plot.jaya 5

max_popSize Maximum population size if adaptive population is enabled. Default is 100.

early_stopping Logical. Whether to stop early if no improvement is observed. Default is
‘FALSE".

tolerance Numeric tolerance for early stopping. Default is 1e-6.

patience Number of iterations to wait for improvement before stopping. Default is 10.

Value

A list containing: - ‘Pareto_Front*: A data frame of non-dominated solutions with decision variables
and their corresponding objective values. - ‘Solutions‘: The final population including decision
variables and their objective values.

Examples

Example: Multi-objective optimization
sphere_function_1 <- function(x) sum(x"2)
sphere_function_2 <- function(x) sum((x - 2)*2)
result <- jaya_multi(
objectives = list(sphere_function_1, sphere_function_2),
lower = rep(-5, 3),
upper = rep(5, 3),

popSize = 20,
maxiter = 50,
n_var = 3

)

print(summary(result))

plot.jaya Plot Function for Jaya Algorithm Results

Description

This function generates plots for single-objective optimization results from the Jaya algorithm. It
visualizes the best objective function value against the number of iterations.

Usage
S3 method for class 'jaya'
plot(x, ...)
Arguments
X An object of class jaya containing the optimization results from the jaya func-

tion.

Additional graphical parameters passed to the plot function.

6 plot_jaya_multi_pairwise

Details

This function supports plotting results for single-objective optimization. It creates a plot of the best
objective function value observed across iterations. Ensure that the input object is from the jaya
function.

Examples

Example: Single-objective optimization
sphere_function <- function(x) sum(x*2)

lower_bounds <- rep(-5, 3)
upper_bounds <- rep(5, 3)

pop_size <- 20

max_iterations <- 50

num_variables <- length(lower_bounds)

Run optimization

single_result <- jaya(
fun = sphere_function,
lower = lower_bounds,
upper = upper_bounds,
popSize = pop_size,
maxiter = max_iterations,
n_var = num_variables,
opt = "minimize”

Plot the result
plot(single_result)

plot_jaya_multi_pairwise
Pairwise Plot Function for Multi-Objective Optimization Results

Description

Generates pairwise 2D plots for all combinations of objectives in the Pareto front. This function
visualizes trade-offs between different objectives.

Usage
plot_jaya_multi_pairwise(x, objectives = NULL, ...)
Arguments
X An object of class jaya_multi containing the optimization results, including

the Pareto front.

summary.jaya 7

objectives A vector of objective column names to include in the pairwise plots. If NULL, all
objectives in the Pareto front are used.

Additional graphical parameters passed to the plot function.

Details

The function automatically detects objectives in the Pareto front if not specified. It creates pairwise
plots for all possible combinations of objectives.

Examples

Example usage of plot_jaya_multi_pairwise

Define sample multi-objective optimization problem
objectivel <- function(x) sum(x*2)

objective2 <- function(x) sum(abs(x))

objective3 <- function(x) sum(x*3)

objective4 <- function(x) sum(x*4)

objectives <- list(objectivel, objective2, objective3, objective4)
lower_bounds <- c(-5, -5, -5)
upper_bounds <- c(5, 5, 5)

Run multi-objective optimization using jaya_multi
set.seed(42)
multi_result <- jaya_multi(

objectives = objectives,

lower = lower_bounds,

upper = upper_bounds,

popSize = 50,

maxiter = 100,

n_var = length(lower_bounds)

)

Pairwise plot of objectives
plot_jaya_multi_pairwise(multi_result)

summary. jaya Summary Method for Jaya Algorithm Optimization Results

Description

Provides a summary of optimization results for both single-objective and multi-objective cases. Dis-
plays key parameters, limits, and results such as the best solution for single-objective optimization
or the Pareto front for multi-objective optimization.

Usage

S3 method for class 'jaya'
summary (object, ...)

8 summary.jaya

Arguments
object An object of class jaya or jaya_multi, containing the results of the Jaya opti-
mization.
Additional arguments (currently unused).
Details

- For single-objective optimization, the summary includes the best solution and the associated func-
tion value. - For multi-objective optimization, the summary displays the objectives, decision vari-
able limits, and the first few entries of the Pareto front. - Automatically handles missing or incom-
plete attributes gracefully.

Examples

Single-objective optimization example
sphere_function <- function(x) sum(x*2)
single_result <- jaya(

fun = sphere_function,

lower = c(-5, -5, -5),

upper = c(5, 5, 5),

popSize = 20,

maxiter = 50,

n_var = 3,

opt = "minimize”
)

summary(single_result)

Multi-objective optimization example
objectivel <- function(x) sum(x*2)
objective2 <- function(x) sum(abs(x))
multi_result <- jaya_multi(

objectives = list(objectivel, objective2),

lower = c(-5, -5, -5),

upper = c(5, 5, 5),

popSize = 50,
maxiter = 100,
n_var = 3

)

summary(multi_result)

Index

jaya, 2
jaya_multi, 4

plot. jaya, 5
plot_jaya_multi_pairwise, 6

summary. jaya, 7

	jaya
	jaya_multi
	plot.jaya
	plot_jaya_multi_pairwise
	summary.jaya
	Index

