Title: | Just Another Latent Space Network Clustering Algorithm |
---|---|
Description: | Fit and simulate latent space network cluster models using an expectation-maximization algorithm. Enables flexible modeling of unweighted network data, supporting both directed and undirected networks, with or without degree heterogeneity. Designed to handle large networks efficiently, it allows users to explore network structure through latent space representations, identify clusters within network data, and simulate models with varying clustering and connectivity patterns. |
Authors: | Alan Arakkal [aut, cre, cph] , Daniel Sewell [aut] |
Maintainer: | Alan Arakkal <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.2.1 |
Built: | 2024-12-19 20:36:49 UTC |
Source: | CRAN |
Fit the latent space cluster model using an EM algorithm.
JANE( A, D = 2, K = 2, model, initialization = "GNN", case_control = FALSE, DA_type = "none", seed = NULL, control = list() )
JANE( A, D = 2, K = 2, model, initialization = "GNN", case_control = FALSE, DA_type = "none", seed = NULL, control = list() )
A |
A square matrix or sparse matrix of class 'dgCMatrix' representing the adjacency matrix of the unweighted network of interest. |
D |
Integer (scalar or vector) specifying the dimension of the latent space (default is 2). |
K |
Integer (scalar or vector) specifying the number of clusters to consider (default is 2). |
model |
A character string specifying the model to fit:
|
initialization |
A character string or a list to specify the initial values for the EM algorithm:
|
case_control |
A logical; if |
DA_type |
A character string to specify the type of deterministic annealing approach to use
|
seed |
(optional) An integer value to specify the seed for reproducibility. |
control |
A list of control parameters. See 'Details'. |
If an unsymmetric adjacency matrix A is supplied for model %in% c('NDH', 'RS')
the user will be asked if they would like to proceed with converting A to a symmetric matrix (i.e., A <- 1.0 * ( (A + t(A)) > 0.0 )
).
control
:
The control
argument is a named list that the user can supply containing the following components:
verbose
A logical; if TRUE
causes additional information to be printed out about the progress of the EM algorithm (default is FALSE
).
max_its
An integer specifying the maximum number of iterations for the EM algorithm (default is 1e3
).
min_its
An integer specifying the minimum number of iterations for the EM algorithm (default is 10
).
priors
A list of prior hyperparameters (default is NULL
). See specify_priors
on how to specify the hyperparameters.
n_interior_knots
(only relevant for model %in% c('RS', 'RSR')
) An integer specifying the number of interior knots used in fitting a natural cubic spline for degree heterogeneity models (default is 5
).
termination_rule
A character string to specify the termination rule to determine the convergence of the EM algorithm:
'prob_mat'
: uses change in the absolute difference in (i.e., the
cluster membership probability matrix) between subsequent iterations (default)
'Q'
: uses change in the absolute difference in the objective function of the E-step evaluated using parameters from subsequent iterations
'ARI'
: comparing the classifications between subsequent iterations using adjusted Rand index
'NMI'
: comparing the classifications between subsequent iterations using normalized mutual information
'CER'
: comparing the classifications between subsequent iterations using classification error rate
tolerance
A numeric specifying the tolerance used for termination_rule %in% c('Q', 'prob_mat')
(default is 1e-3
).
tolerance_ARI
A numeric specifying the tolerance used for termination_rule = 'ARI'
(default is 0.999
).
tolerance_NMI
A numeric specifying the tolerance used for termination_rule = 'NMI'
(default is 0.999
).
tolerance_CER
A numeric specifying the tolerance used for termination_rule = 'CER'
(default is 0.01
).
n_its_start_CA
An integer specifying what iteration to start computing cumulative averages (note: cumulative average of , the latent position matrix, is not tracked when
termination_rule = 'Q'
) (default is 20
).
tolerance_diff_CA
A numeric specifying the tolerance used for the change in cumulative average of termination_rule
metric and (note: cumulative average of
is not tracked when
termination_rule = 'Q'
) (default is 1e-3
).
consecutive_diff_CA
An integer specifying the tolerance for the number of consecutive instances where change in cumulative average is less than tolerance_diff_CA
(default is 5
).
quantile_diff
A numeric in [0,1]
specifying the quantile used in computing the change in the absolute difference of and
between subsequent iterations (default is
1
, i.e., max).
beta_temp_schedule
A numeric vector specifying the temperature schedule for deterministic annealing (default is 1
, i.e., deterministic annealing not utilized).
n_control
An integer specifying the fixed number of controls (i.e., non-links) sampled for each actor; only relevant when case_control = TRUE
(default is 100
when case_control = TRUE
and NULL
when case_control = FALSE
).
n_start
An integer specifying the maximum number of starts for the EM algorithm (default is 5
).
max_retry
An integer specifying the maximum number of re-attempts if starting values cause issues with EM algorithm (default is 5
).
IC_selection
A character string to specify the information criteria used to select the optimal fit based on the combinations of K
, D
, and n_start
considered:
'BIC_logit'
: BIC computed from logistic regression component
'BIC_mbc'
: BIC computed from model based clustering component
'ICL_mbc'
: ICL computed from model based clustering component
'Total_BIC'
: sum of 'BIC_logit'
and 'BIC_mbc'
'Total_ICL'
: sum of 'BIC_logit'
and 'ICL_mbc'
(default)
sd_random_U_GNN
(only relevant when initialization = 'GNN'
) A positive numeric value specifying the standard deviation for the random draws from a normal distribution to initialize (default is
1
).
max_retry_GNN
(only relevant when initialization = 'GNN'
) An integer specifying the maximum number of re-attempts for the GNN
approach before switching to random starting values (default is 10
).
n_its_GNN
(only relevant when initialization = 'GNN'
) An integer specifying the maximum number of iterations for the GNN
approach (default is 10
).
downsampling_GNN
(only relevant when initialization = 'GNN'
) A logical; if TRUE
employs downsampling s.t. the number of links and non-links are balanced for the GNN
approach (default is TRUE
).
Running JANE
in parallel:
JANE
integrates the future and future.apply packages to fit the various combinations of K
, D
, and n_start
in parallel. The 'Examples' section below provides an example of how to run JANE
in parallel. See plan
and future.apply
for more details.
Choosing the number of clusters:
JANE
allows for the following model selection criteria to choose the number of clusters:
'BIC_logit'
: BIC computed from logistic regression component
'BIC_mbc'
: BIC computed from model based clustering component
'ICL_mbc'
: ICL (Biernacki et al. (2000)) computed from model based clustering component
'Total_BIC'
: Sum of 'BIC_logit'
and 'BIC_mbc'
, this is the model selection criterion proposed by Handcock et al. (2007)
'Total_ICL'
: (default) sum of 'BIC_logit'
and 'ICL_mbc'
, this criterion is similar to 'Total_BIC'
, but uses ICL for the model based clustering component which tends to favor more well-separated clusters.
Warning: It is not certain whether it is appropriate to use the model selection criterion above to select D
.
A list of S3 class
"JANE
" containing the following components:
input_params |
A list containing the input parameters for |
A |
The square sparse adjacency matrix of class 'dgCMatrix' used in fitting the latent space cluster model. This matrix can be different than the input A matrix as isolates are removed. |
IC_out |
A matrix containing the relevant information criteria for all combinations of |
all_convergence_ind |
A matrix containing the convergence information (i.e., 1 = converged, 0 = did not converge) and number of iterations for all combinations of |
optimal_res |
A list containing the estimated parameters of interest based on the optimal fit selected. It is recommended to use |
optimal_starting |
A list containing the starting parameters used in the EM algorithm that resulted in the optimal fit selected. It is recommended to use |
Biernacki, C., Celeux, G., Govaert, G., 2000. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 719–725.
Handcock, M.S., Raftery, A.E., Tantrum, J.M., 2007. Model-based clustering for social networks. Journal of the Royal Statistical Society Series A: Statistics in Society 170, 301–354.
# Simulate network mus <- matrix(c(-1,-1,1,-1,1,1), nrow = 3, ncol = 2, byrow = TRUE) omegas <- array(c(diag(rep(7,2)), diag(rep(7,2)), diag(rep(7,2))), dim = c(2,2,3)) p <- rep(1/3, 3) beta0 <- 1.0 sim_data <- JANE::sim_A(N = 100L, model = "NDH", mus = mus, omegas = omegas, p = p, beta0 = beta0, remove_isolates = TRUE) # Run JANE on simulated data res <- JANE::JANE(A = sim_data$A, D = 2L, K = 3L, initialization = "GNN", model = "NDH", case_control = FALSE, DA_type = "none") # Run JANE on simulated data - consider multiple D and K res <- JANE::JANE(A = sim_data$A, D = 2:5, K = 2:10, initialization = "GNN", model = "NDH", case_control = FALSE, DA_type = "none") # Run JANE on simulated data - parallel with 5 cores future::plan(future::multisession, workers = 5) res <- JANE::JANE(A = sim_data$A, D = 2L, K = 3L, initialization = "GNN", model = "NDH", case_control = FALSE, DA_type = "none") future::plan(future::sequential) # Run JANE on simulated data - case/control approach with 20 controls sampled for each actor res <- JANE::JANE(A = sim_data$A, D = 2L, K = 3L, initialization = "GNN", model = "NDH", case_control = TRUE, DA_type = "none", control = list(n_control = 20)) # Reproducibility res1 <- JANE::JANE(A = sim_data$A, D = 2L, K = 3L, initialization = "GNN", seed = 1234, model = "NDH", case_control = FALSE, DA_type = "none") res2 <- JANE::JANE(A = sim_data$A, D = 2L, K = 3L, initialization = "GNN", seed = 1234, model = "NDH", case_control = FALSE, DA_type = "none") ## Check if results match all.equal(res1, res2) # Another reproducibility example where the seed was not set. # It is possible to replicate the results using the starting values due to # the nature of EM algorithms res3 <- JANE::JANE(A = sim_data$A, D = 2L, K = 3L, initialization = "GNN", model = "NDH", case_control = FALSE, DA_type = "none") ## Extract starting values start_vals <- res3$optimal_start ## Run JANE using extracted starting values, no need to specify D and K ## below as function will determine those values from start_vals res4 <- JANE::JANE(A = sim_data$A, initialization = start_vals, model = "NDH", case_control = FALSE, DA_type = "none") ## Check if optimal_res are identical all.equal(res3$optimal_res, res4$optimal_res)
# Simulate network mus <- matrix(c(-1,-1,1,-1,1,1), nrow = 3, ncol = 2, byrow = TRUE) omegas <- array(c(diag(rep(7,2)), diag(rep(7,2)), diag(rep(7,2))), dim = c(2,2,3)) p <- rep(1/3, 3) beta0 <- 1.0 sim_data <- JANE::sim_A(N = 100L, model = "NDH", mus = mus, omegas = omegas, p = p, beta0 = beta0, remove_isolates = TRUE) # Run JANE on simulated data res <- JANE::JANE(A = sim_data$A, D = 2L, K = 3L, initialization = "GNN", model = "NDH", case_control = FALSE, DA_type = "none") # Run JANE on simulated data - consider multiple D and K res <- JANE::JANE(A = sim_data$A, D = 2:5, K = 2:10, initialization = "GNN", model = "NDH", case_control = FALSE, DA_type = "none") # Run JANE on simulated data - parallel with 5 cores future::plan(future::multisession, workers = 5) res <- JANE::JANE(A = sim_data$A, D = 2L, K = 3L, initialization = "GNN", model = "NDH", case_control = FALSE, DA_type = "none") future::plan(future::sequential) # Run JANE on simulated data - case/control approach with 20 controls sampled for each actor res <- JANE::JANE(A = sim_data$A, D = 2L, K = 3L, initialization = "GNN", model = "NDH", case_control = TRUE, DA_type = "none", control = list(n_control = 20)) # Reproducibility res1 <- JANE::JANE(A = sim_data$A, D = 2L, K = 3L, initialization = "GNN", seed = 1234, model = "NDH", case_control = FALSE, DA_type = "none") res2 <- JANE::JANE(A = sim_data$A, D = 2L, K = 3L, initialization = "GNN", seed = 1234, model = "NDH", case_control = FALSE, DA_type = "none") ## Check if results match all.equal(res1, res2) # Another reproducibility example where the seed was not set. # It is possible to replicate the results using the starting values due to # the nature of EM algorithms res3 <- JANE::JANE(A = sim_data$A, D = 2L, K = 3L, initialization = "GNN", model = "NDH", case_control = FALSE, DA_type = "none") ## Extract starting values start_vals <- res3$optimal_start ## Run JANE using extracted starting values, no need to specify D and K ## below as function will determine those values from start_vals res4 <- JANE::JANE(A = sim_data$A, initialization = start_vals, model = "NDH", case_control = FALSE, DA_type = "none") ## Check if optimal_res are identical all.equal(res3$optimal_res, res4$optimal_res)
S3 plot method for object of class "JANE
".
## S3 method for class 'JANE' plot( x, type = "lsnc", true_labels, initial_values = FALSE, zoom = 100, density_type = "contour", rotation_angle = 0, alpha_edge = 0.1, alpha_node = 1, swap_axes = FALSE, main, xlab, ylab, cluster_cols, ... )
## S3 method for class 'JANE' plot( x, type = "lsnc", true_labels, initial_values = FALSE, zoom = 100, density_type = "contour", rotation_angle = 0, alpha_edge = 0.1, alpha_node = 1, swap_axes = FALSE, main, xlab, ylab, cluster_cols, ... )
x |
An object of S3 |
type |
A character string to select the type of plot:
|
true_labels |
(optional) A numeric, character, or factor vector of known true cluster labels. Must have the same length as number of actors in the fitted network. Need to account for potential isolates removed. |
initial_values |
A logical; if |
zoom |
A numeric value > 0 that controls the % magnification of the plot (default is 100%). |
density_type |
Choose from one of the following three options: 'contour' (default), 'hdr', 'image', and 'persp' indicating the density plot type. |
rotation_angle |
A numeric value that rotates the estimated latent positions and contours of the multivariate normal distributions clockwise (or counterclockwise if |
alpha_edge |
A numeric value in |
alpha_node |
A numeric value in |
swap_axes |
A logical; if |
main |
An optional overall title for the plot. |
xlab |
An optional title for the x axis. |
ylab |
An optional title for the y axis. |
cluster_cols |
An optional vector of colors for the clusters. Must have a length of at least |
... |
Unused. |
The classification of actors into specific clusters is based on a hard clustering rule of . Additionally, the actor-specific classification uncertainty is derived as 1 -
.
The trace plot contains up to five unique plots tracking various metrics across the iterations of the EM algorithm, depending on the JANE
control parameter termination_rule
:
termination_rule = 'prob_mat'
: Five plots will be presented. Specifically, in the top panel, the plot on the left presents the change in the absolute difference in (i.e., the
cluster membership probability matrix) between subsequent iterations. The exact quantile of the absolute difference plotted are presented in parentheses and determined by the
JANE
control parameter quantile_diff
. For example, the default control parameter quantile_diff
= 1, so the values being plotted are the max absolute difference in between subsequent iterations. The plot on the right of the top panel presents the absolute difference in the cumulative average of the absolute change in
and
(i.e., the
matrix of latent positions) across subsequent iterations (absolute change in
and
computed in an identical manner as described above). This metric is only tracked beginning at an iteration determined by the
n_its_start_CA
control parameter in JANE
. Note, this plot may be empty if the EM algorithm converges before the n_its_start_CA
-th iteration. Finally, the bottom panel presents ARI, NMI, and CER values comparing the classifications between subsequent iterations, respectively. Specifically, at a given iteration we determine the classification of actors in clusters based on a hard clustering rule of and given these labels from two subsequent iterations, we compute and plot the ARI, NMI and CER.
termination_rule = 'Q'
: Plots generated are similar to those described in the previous bullet point. However, instead of tracking the change in over iterations, here the absolute difference in the objective function of the E-step evaluated using parameters from subsequent iterations is tracked. Furthermore, the cumulative average of the absolute change in
is no longer tracked.
termination_rule %in% c('ARI', 'NMI', 'CER')
: Four plots will be presented. Specifically, the top left panel presents a plot of the absolute difference in the cumulative average of the absolute change in the specific termination_rule
employed and across iterations. As previously mentioned, if the EM algorithm converges before the
n_its_start_CA
-th iteration then this will be an empty plot. Furthermore, the other three plots present ARI, NMI, and CER values comparing the classifications between subsequent iterations, respectively.
A plot of the network or trace plot of the EM run.
surfacePlot
, adjustedRandIndex
, classError
, NMI
# Simulate network mus <- matrix(c(-1,-1,1,-1,1,1), nrow = 3, ncol = 2, byrow = TRUE) omegas <- array(c(diag(rep(7,2)), diag(rep(7,2)), diag(rep(7,2))), dim = c(2,2,3)) p <- rep(1/3, 3) beta0 <- 1.0 sim_data <- JANE::sim_A(N = 100L, model = "NDH", mus = mus, omegas = omegas, p = p, beta0 = beta0, remove_isolates = TRUE) # Run JANE on simulated data res <- JANE::JANE(A = sim_data$A, D = 2L, K = 3L, initialization = "GNN", model = "NDH", case_control = FALSE, DA_type = "none") # plot trace plot plot(res, type = "trace_plot") # plot network plot(res) # plot network - misclassified plot(res, type = "misclassified", true_labels = apply(sim_data$Z, 1, which.max)) # plot network - uncertainty and swap axes plot(res, type = "uncertainty", swap_axes = TRUE) # plot network - but only show contours of MVNs plot(res, swap_axes = TRUE, alpha_edge = 0, alpha_node = 0) # plot using starting values of EM algorithm plot(res, initial_values = TRUE)
# Simulate network mus <- matrix(c(-1,-1,1,-1,1,1), nrow = 3, ncol = 2, byrow = TRUE) omegas <- array(c(diag(rep(7,2)), diag(rep(7,2)), diag(rep(7,2))), dim = c(2,2,3)) p <- rep(1/3, 3) beta0 <- 1.0 sim_data <- JANE::sim_A(N = 100L, model = "NDH", mus = mus, omegas = omegas, p = p, beta0 = beta0, remove_isolates = TRUE) # Run JANE on simulated data res <- JANE::JANE(A = sim_data$A, D = 2L, K = 3L, initialization = "GNN", model = "NDH", case_control = FALSE, DA_type = "none") # plot trace plot plot(res, type = "trace_plot") # plot network plot(res) # plot network - misclassified plot(res, type = "misclassified", true_labels = apply(sim_data$Z, 1, which.max)) # plot network - uncertainty and swap axes plot(res, type = "uncertainty", swap_axes = TRUE) # plot network - but only show contours of MVNs plot(res, swap_axes = TRUE, alpha_edge = 0, alpha_node = 0) # plot using starting values of EM algorithm plot(res, initial_values = TRUE)
Simulate an unweighted network from a -dimensional latent space cluster model with
clusters and
actors. The squared euclidean distance is used (i.e.,
), where
and
are the respective actor's positions in an unobserved social space.
sim_A( N, mus, omegas, p, beta0, model, precision_R_effects, remove_isolates = TRUE )
sim_A( N, mus, omegas, p, beta0, model, precision_R_effects, remove_isolates = TRUE )
N |
An integer specifying the number of actors in the network. |
mus |
A numeric |
omegas |
A numeric |
p |
A numeric vector of length |
beta0 |
A numeric value specifying the intercept parameter for the logistic regression model. |
model |
A character string to specify the model to simulate the network from:
|
precision_R_effects |
Precision parameters for random degree heterogeneity effects:
|
remove_isolates |
A logical; if |
A list containing the following components:
A |
A sparse adjacency matrix of class 'dgCMatrix' representing the simulated network. |
Z |
A numeric |
U |
A numeric |
RE |
A numeric |
precision_R_effects |
The specific precision_R_effects used to simulate |
model |
A character string representing the specific |
mus <- matrix(c(-1,-1,1,-1,1,1), nrow = 3, ncol = 2, byrow = TRUE) omegas <- array(c(diag(rep(7,2)), diag(rep(7,2)), diag(rep(7,2))), dim = c(2,2,3)) p <- rep(1/3, 3) beta0 <- 1.0 JANE::sim_A(N = 100L, model = "NDH", mus = mus, omegas = omegas, p = p, beta0 = beta0, remove_isolates = TRUE)
mus <- matrix(c(-1,-1,1,-1,1,1), nrow = 3, ncol = 2, byrow = TRUE) omegas <- array(c(diag(rep(7,2)), diag(rep(7,2)), diag(rep(7,2))), dim = c(2,2,3)) p <- rep(1/3, 3) beta0 <- 1.0 JANE::sim_A(N = 100L, model = "NDH", mus = mus, omegas = omegas, p = p, beta0 = beta0, remove_isolates = TRUE)
A function that allows the user to specify starting values for the EM algorithm in a structure accepted by JANE
.
specify_initial_values( A, D, K, model, n_interior_knots = NULL, U, omegas, mus, p, Z, beta )
specify_initial_values( A, D, K, model, n_interior_knots = NULL, U, omegas, mus, p, Z, beta )
A |
A square matrix or sparse matrix of class 'dgCMatrix' representing the adjacency matrix of the unweighted network of interest. |
D |
An integer specifying the dimension of the latent positions. |
K |
An integer specifying the total number of clusters. |
model |
A character string specifying the model:
|
n_interior_knots |
An integer specifying the number of interior knots used in fitting a natural cubic spline for degree heterogeneity models (i.e., 'RS' and 'RSR' only; default is |
U |
A numeric |
omegas |
A numeric |
mus |
A numeric |
p |
A numeric vector of length |
Z |
A numeric |
beta |
A numeric vector specifying the regression coefficients for the logistic regression model. Specifically, a vector of length |
To match JANE
, this function will remove isolates from the adjacency matrix A and determine the total number of actors after excluding isolates. If this is not done, errors with respect to incorrect dimensions in the starting values will be generated when executing JANE
.
Similarly to match JANE
, if an unsymmetric adjacency matrix A is supplied for model %in% c('NDH', 'RS')
the user will be asked if they would like to proceed with converting A to a symmetric matrix (i.e., A <- 1.0 * ( (A + t(A)) > 0.0 )
).
A list of starting values for the EM algorithm generated from the input values in a structure accepted by JANE
.
# Simulate network mus <- matrix(c(-1,-1,1,-1,1,1), nrow = 3, ncol = 2, byrow = TRUE) omegas <- array(c(diag(rep(7,2)), diag(rep(7,2)), diag(rep(7,2))), dim = c(2,2,3)) p <- rep(1/3, 3) beta0 <- -1 sim_data <- JANE::sim_A(N = 100L, model = "RSR", mus = mus, omegas = omegas, p = p, beta0 = beta0, remove_isolates = TRUE) # Specify starting values D <- 3L K <- 5L N <- nrow(sim_data$A) n_interior_knots <- 5L U <- matrix(stats::rnorm(N*D), nrow = N, ncol = D) omegas <- stats::rWishart(n = K, df = D+1, Sigma = diag(D)) mus <- matrix(stats::rnorm(K*D), nrow = K, ncol = D) p <- extraDistr::rdirichlet(n = 1, rep(3,K))[1,] Z <- extraDistr::rdirichlet(n = N, alpha = rep(1, K)) beta <- stats::rnorm(n = 1 + 2*(1 + n_interior_knots)) my_starting_values <- JANE::specify_initial_values(A = sim_data$A, D = D, K = K, model = "RSR", n_interior_knots = n_interior_knots, U = U, omegas = omegas, mus = mus, p = p, Z = Z, beta = beta) # Run JANE using my_starting_values (no need to specify D and K as function will # determine those values from my_starting_values) res <- JANE::JANE(A = sim_data$A, initialization = my_starting_values, model = "RSR")
# Simulate network mus <- matrix(c(-1,-1,1,-1,1,1), nrow = 3, ncol = 2, byrow = TRUE) omegas <- array(c(diag(rep(7,2)), diag(rep(7,2)), diag(rep(7,2))), dim = c(2,2,3)) p <- rep(1/3, 3) beta0 <- -1 sim_data <- JANE::sim_A(N = 100L, model = "RSR", mus = mus, omegas = omegas, p = p, beta0 = beta0, remove_isolates = TRUE) # Specify starting values D <- 3L K <- 5L N <- nrow(sim_data$A) n_interior_knots <- 5L U <- matrix(stats::rnorm(N*D), nrow = N, ncol = D) omegas <- stats::rWishart(n = K, df = D+1, Sigma = diag(D)) mus <- matrix(stats::rnorm(K*D), nrow = K, ncol = D) p <- extraDistr::rdirichlet(n = 1, rep(3,K))[1,] Z <- extraDistr::rdirichlet(n = N, alpha = rep(1, K)) beta <- stats::rnorm(n = 1 + 2*(1 + n_interior_knots)) my_starting_values <- JANE::specify_initial_values(A = sim_data$A, D = D, K = K, model = "RSR", n_interior_knots = n_interior_knots, U = U, omegas = omegas, mus = mus, p = p, Z = Z, beta = beta) # Run JANE using my_starting_values (no need to specify D and K as function will # determine those values from my_starting_values) res <- JANE::JANE(A = sim_data$A, initialization = my_starting_values, model = "RSR")
A function that allows the user to specify the prior hyperparameters for the EM algorithm in a structure accepted by JANE
.
specify_priors(D, K, model, n_interior_knots = NULL, a, b, c, G, nu, e, f)
specify_priors(D, K, model, n_interior_knots = NULL, a, b, c, G, nu, e, f)
D |
An integer specifying the dimension of the latent positions. |
K |
An integer specifying the total number of clusters. |
model |
A character string specifying the model:
|
n_interior_knots |
An integer specifying the number of interior knots used in fitting a natural cubic spline for degree heterogeneity models (i.e., 'RS' and 'RSR' only; default is |
a |
A numeric vector of length |
b |
A numeric value specifying the scaling factor on the precision of the multivariate normal prior on |
c |
A numeric value specifying the degrees of freedom of the Wishart prior on |
G |
A numeric |
nu |
A numeric vector of length |
e |
A numeric vector of length |
f |
A numeric square matrix of dimension |
Prior on and
(note: the same prior is used for
) :
, thus
Prior on :
For the current implementation we require that all elements of the nu vector be >= 1 to prevent against negative mixture weights for empty clusters.
Prior on :
A list of prior hyperparameters for the EM algorithm generated from the input values in a structure accepted by JANE
.
# Simulate network mus <- matrix(c(-1,-1,1,-1,1,1), nrow = 3, ncol = 2, byrow = TRUE) omegas <- array(c(diag(rep(7,2)), diag(rep(7,2)), diag(rep(7,2))), dim = c(2,2,3)) p <- rep(1/3, 3) beta0 <- 1.0 sim_data <- JANE::sim_A(N = 100L, model = "RS", mus = mus, omegas = omegas, p = p, beta0 = beta0, remove_isolates = TRUE) # Specify prior hyperparameters D <- 3L K <- 5L n_interior_knots <- 5L a <- rep(1, D) b <- 3 c <- 4 G <- 10*diag(D) nu <- rep(2, K) e <- rep(0.5, 1 + (n_interior_knots + 1)) f <- diag(c(0.1, rep(0.5, n_interior_knots + 1))) my_prior_hyperparameters <- specify_priors(D = D, K = K, model = "RS", n_interior_knots = n_interior_knots, a = a, b = b, c = c, G = G, nu = nu, e = e, f = f) # Run JANE on simulated data using supplied prior hyperparameters res <- JANE::JANE(A = sim_data$A, D = D, K = K, initialization = "GNN", model = "RS", case_control = FALSE, DA_type = "none", control = list(priors = my_prior_hyperparameters))
# Simulate network mus <- matrix(c(-1,-1,1,-1,1,1), nrow = 3, ncol = 2, byrow = TRUE) omegas <- array(c(diag(rep(7,2)), diag(rep(7,2)), diag(rep(7,2))), dim = c(2,2,3)) p <- rep(1/3, 3) beta0 <- 1.0 sim_data <- JANE::sim_A(N = 100L, model = "RS", mus = mus, omegas = omegas, p = p, beta0 = beta0, remove_isolates = TRUE) # Specify prior hyperparameters D <- 3L K <- 5L n_interior_knots <- 5L a <- rep(1, D) b <- 3 c <- 4 G <- 10*diag(D) nu <- rep(2, K) e <- rep(0.5, 1 + (n_interior_knots + 1)) f <- diag(c(0.1, rep(0.5, n_interior_knots + 1))) my_prior_hyperparameters <- specify_priors(D = D, K = K, model = "RS", n_interior_knots = n_interior_knots, a = a, b = b, c = c, G = G, nu = nu, e = e, f = f) # Run JANE on simulated data using supplied prior hyperparameters res <- JANE::JANE(A = sim_data$A, D = D, K = K, initialization = "GNN", model = "RS", case_control = FALSE, DA_type = "none", control = list(priors = my_prior_hyperparameters))
S3 summary method for object of class "JANE
".
## S3 method for class 'JANE' summary(object, true_labels = NULL, initial_values = FALSE, ...)
## S3 method for class 'JANE' summary(object, true_labels = NULL, initial_values = FALSE, ...)
object |
An object of S3 |
true_labels |
(optional) A numeric, character, or factor vector of known true cluster labels. Must have the same length as number of actors in the fitted network (default is |
initial_values |
A logical; if |
... |
Unused. |
A list of S3 class
"summary.JANE
" containing the following components (Note: is the number of actors in the network,
is the number of clusters, and
is the dimension of the latent space):
coefficients |
A numeric vector representing the estimated coefficients from the logistic regression model. |
p |
A numeric vector of length |
U |
A numeric |
mus |
A numeric |
omegas |
A numeric |
Z |
A numeric |
uncertainty |
A numeric vector of length |
cluster_labels |
A numeric vector of length |
input_params |
A list with the following components:
|
clustering_performance |
(only if
|
# Simulate network mus <- matrix(c(-1,-1,1,-1,1,1), nrow = 3, ncol = 2, byrow = TRUE) omegas <- array(c(diag(rep(7,2)), diag(rep(7,2)), diag(rep(7,2))), dim = c(2,2,3)) p <- rep(1/3, 3) beta0 <- 1.0 sim_data <- JANE::sim_A(N = 100L, model = "NDH", mus = mus, omegas = omegas, p = p, beta0 = beta0, remove_isolates = TRUE) # Run JANE on simulated data res <- JANE::JANE(A = sim_data$A, D = 2L, K = 3L, initialization = "GNN", model = "NDH", case_control = FALSE, DA_type = "none") # Summarize fit summary(res) # Summarize fit and compare to true cluster labels summary(res, true_labels = apply(sim_data$Z, 1, which.max)) # Summarize fit using starting values of EM algorithm summary(res, initial_values = TRUE)
# Simulate network mus <- matrix(c(-1,-1,1,-1,1,1), nrow = 3, ncol = 2, byrow = TRUE) omegas <- array(c(diag(rep(7,2)), diag(rep(7,2)), diag(rep(7,2))), dim = c(2,2,3)) p <- rep(1/3, 3) beta0 <- 1.0 sim_data <- JANE::sim_A(N = 100L, model = "NDH", mus = mus, omegas = omegas, p = p, beta0 = beta0, remove_isolates = TRUE) # Run JANE on simulated data res <- JANE::JANE(A = sim_data$A, D = 2L, K = 3L, initialization = "GNN", model = "NDH", case_control = FALSE, DA_type = "none") # Summarize fit summary(res) # Summarize fit and compare to true cluster labels summary(res, true_labels = apply(sim_data$Z, 1, which.max)) # Summarize fit using starting values of EM algorithm summary(res, initial_values = TRUE)