Package 'JAGStree'

Title: Automatically Write 'JAGS' Code for Hierarchical Bayesian Models on Trees
Description: When relationships between sources of data can be represented by a tree, the generation of appropriate Markov Chain Monte Carlo modeling code to be used with 'JAGS' to run a Bayesian hierarchical model can be automatically generated by this package. Any admissible tree-structured data can be used, under the assumption that node counts are multinomial and branching probabilities are Dirichlet among sibling groups. The methodological basis used to create this package can be found in Flynn (2023) <http://hdl.handle.net/2429/86174>.
Authors: Mallory J Flynn [cre, aut]
Maintainer: Mallory J Flynn <[email protected]>
License: GPL (>= 2)
Version: 1.0.1
Built: 2024-12-12 06:45:59 UTC
Source: CRAN

Help Index


Simple Tree Data 1

Description

Small, artificially generated toy data set to demonstrate package functionality

Usage

data(data1)

Format

An object of class "data.frame"

from

A node label and started point of directed edge (parent node)

to

A node label and endpoint of directed edge (child node)

Estimate

A numerical value assumed to be survey count belonging to 'to' node (integer)

Total

A numerical value assumed to be survey sample size (integer)

Count

A numerical value for marginal count if leaf node (integer)

Population

A boolean value for if survey size is entire population (logical)

Description

A string describing 'to' node (string)

References

This data set was artificially created for the JAGStree package.

Examples

data(data1)
head(data1)

Simple Tree Data 2

Description

Small, artificially generated toy data set to demonstrate package functionality with a simpler data frame

Usage

data(data2)

Format

An object of class "data.frame"

from

A node label and started point of directed edge (parent node)

to

A node label and endpoint of directed edge (child node)

References

This data set was artificially created for the JAGStree package.

Examples

data(data2)
head(data2)

Simple Tree Data 3

Description

Small, artificially generated toy data set to demonstrate package functionality with a multinomial distribution among node branching

Usage

data(data3)

Format

An object of class "data.frame"

from

A node label and started point of directed edge (parent node)

to

A node label and endpoint of directed edge (child node)

Estimate

A numerical value assumed to be survey count belonging to 'to' node (integer)

Total

A numerical value assumed to be survey sample size (integer)

Count

A numerical value for marginal count if leaf node (integer)

Population

A boolean value for if survey size is entire population (logical)

Description

A string describing 'to' node (string)

References

This data set was artificially created for the JAGStree package.

Examples

data(data3)
head(data3)

makeJAGStree

Description

Generates a .mod or .txt file with 'JAGS' code for Bayesian hierarchical model on tree structured data

Usage

makeJAGStree(data, prior = "lognormal", filename = "JAGSmodel.mod")

Arguments

data

A dataframe object representing tree-structure

prior

A string representing the choice of prior for the root node population size; can be set to "lognormal" (default) or "uniform"

filename

A string containing the file name for resulting output 'JAGS' model file; must end in .mod or .txt

Value

A .mod or .txt file that contains code ready to run a Bayesian hierarchical model in 'JAGS' based on the input tree-structured data

Examples

# optional use of the AutoWMM package to show tree structure
  Sys.setenv("RGL_USE_NULL" = TRUE)
  tree <- makeTree(data1)
  drawTree(tree)

  makeJAGStree(data1, filename=file.path(tempdir(), "data1_JAGSscript.mod"))
  makeJAGStree(data1, filename=file.path(tempdir(), "data1_JAGSscript.txt"))

  # second example
  makeJAGStree(data2, filename=file.path(tempdir(), "data2_JAGSscript.mod"))
  makeJAGStree(data2, filename=file.path(tempdir(), "data2_JAGSscript.mod", prior = "uniform"))

  # third example, showing optional execution with MCMC in R
  makeJAGStree(data3, filename=file.path(tempdir(), "multiScript.mod"))
  makeJAGStree(data3, filename=file.path(tempdir(), "multiScript.txt"))

  mcmc.data <- list( "DE" = c(50, NA),
  "ABC" = c(NA, 500, NA),
  "pZ1" = 4,     # dirichlet parameters for prior on u
  "pZ2" = 5,      # last parameter to sample U
  "pZ3" = 1,
  "pA1" = 10,      # beta parameters for prior on p
  "pA2" = 1,
  "mu" = log(1000),    # lognormal mean Z
  "tau" = 1/(0.1^2))    # lognormal precision (1/variance) of Z

  ## define parameters whose posteriors we are interested in
  mod.params <- c("Z",  "ABC", "DE", "pZ", "pA")

  ## modify initial values
  mod.inits.cont <- function(){ list("Z.cont" = runif(1, 700, 1500),
                                  "ABC" = c(round(runif(1, 100, 200)), NA, NA),
                                  "pA" = as.vector(rbeta(1,1,1)),
                                  "pZ" = as.vector(rdirichlet(1, c(1,1,1))))
                               }

  ## Generate list of initial values to match number of chains
  numchains <- 6
  mod.initial.cont <- list()
  i <- 1
  while(i <= numchains){
  mod.initial.cont[[i]] <- mod.inits.cont()
  i = i+1
  }

  ## now fit the model in JAGS
  mod.fit <- jags(data = mcmc.data,
                inits = mod.initial.cont,
                parameters.to.save = mod.params,
                n.chains = numchains,
                n.iter = 500, n.burnin = 200,
                model.file = "multiScript.mod")
  print(mod.fit)

  ## plots using mcmcplots library
  mod.fit.mcmc <- as.mcmc(mod.fit)
  denplot(mod.fit.mcmc, parms = c("Z", "ABC[1]", "ABC[3]"))
  denplot(mod.fit.mcmc, parms = c("pZ", "pA"))
  traplot(mod.fit.mcmc, parms = c("Z", "ABC[1]", "ABC[3]"))
  traplot(mod.fit.mcmc, parms = c("pZ", "pA"))