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Abstract

This introduction to the R packages JADE and BSSasymp is a (slightly) modi�ed version of
Miettinen et al. [2017], published in the Journal of Statistical Software. Blind source separation
(BSS) is a well-known signal processing tool which is used to solve practical data analysis problems
in various �elds of science. In BSS, we assume that the observed data consists of linear mixtures of
latent variables. The mixing system and the distributions of the latent variables are unknown. The
aim is to �nd an estimate of an unmixing matrix which then transforms the observed data back to
latent sources. In this paper we present the R packages JADE and BSSasymp. The package JADE
o�ers several BSS methods which are based on joint diagonalization. Package BSSasymp contains
functions for computing the asymptotic covariance matrices as well as their data-based estimates for
most of the BSS estimators included in package JADE. Several simulated and real datasets are used
to illustrate the functions in these two packages.

1 Introduction

The blind source separation (BSS) problem is, in its most simple form, the following: Assume that
observations x1, . . . , xn are p-variate vectors whose components are linear combinations of the components
of p-variate unobservable zero mean vectors z1, . . . , zn. If we consider p-variate vectors x and z as row
vectors (to be consistent with the programming language R), the BSS model can be written as

x = zA⊤ + µ, (1)

where A is an unknown full rank p × p mixing matrix and µ is a p-variate location vector. The goal is
then to estimate an unmixing matrix, W = A−1, based on the n×p data matrix X = [x⊤

1 , . . . , x
⊤
n ]

⊤, such
that zi = (xi − µ)W⊤, i = 1, . . . , n. Notice that BSS can also be applied in cases where the dimension
of x is larger than that of z by applying a dimension reduction method at �rst stage. In this paper we,
however, restrict to the case where A is a square matrix.

The unmixing matrix W cannot be estimated without further assumptions on the model. There are
three major BSS models which di�er in their assumptions made upon z: In the independent component
analysis (ICA), which is the most popular BSS approach, it is assumed that the components of z are
mutually independent and at most one of them is Gaussian. ICA applies best to cases where also
z1, . . . , zn are independent and identically distributed (iid). The two other main BSS models, the second
order source separation (SOS) model and the second order nonstationary source separation (NSS) model,
utilize temporal or spatial dependence within each component. In the SOS model, the components are
assumed to be uncorrelated weakly (second-order) stationary time series with di�erent time dependence
structures. The NSS model di�ers from the SOS model in that the variances of the time series components
are allowed to be nonstationary. All these three models will be de�ned in detail later in this paper.

None of the three models has a unique solution. This can be seen by choosing any p × p matrix C
from the set

C = {C : each row and column of C has exactly one non-zero element}. (2)

Then C is invertible, A∗ = AC−1 is of full rank, the components of z∗ = zC⊤ are uncorrelated (and

independent in ICA) and the model can be rewritten as x = z∗A∗⊤
. Thus, the order, signs and scales of
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the source components cannot be determined. This means that, for any given unmixing matrix W , also
W ∗ = CW with C ∈ C is a solution.

As the scales of the latent components are not identi�able, one may simply assume that COV(z) = Ip.
Let then Σ = COV(x) = AA⊤ denote the covariance matrix of x, and further let Σ−1/2 be the symmetric
matrix satisfying Σ−1/2Σ−1/2 = Σ−1. Then, for the standardized random variable xst = (x − µ)Σ−1/2,
we have that z = xstU

⊤ for some orthogonal U [Miettinen et al., 2015, Theorem 1]. Thus, the search
for the unmixing matrix W can be separated into �nding the whitening (standardization) matrix Σ−1/2

and the rotation matrix U . The unmixing matrix is then given by W = UΣ−1/2.
In this paper, we describe the R package JADE which o�ers several BSS methods covering all three

major BSS models. In all of these methods, the whitening step is performed using the regular covariance
matrix whereas the rotation matrix U is found via joint diagonalization. The concepts of simultaneous
and approximate joint diagonalization are recalled in Section 2, and several ICA, SOS and NSS methods
based on diagonalization are described in Sections 3, 4 and 5, respectively. As performance indices are
widely used to compare di�erent BSS algorithms, we de�ne some popular indices in Section 6. We also
introduce the R package BSSasymp which includes functions for computing the asymptotic covariance
matrices and their data-based estimates for most of the BSS estimators in the package JADE. Section 7
describes the R packages JADE and BSSasymp, and in Section 8 we illustrate the use of these packages
via simulated and real data examples.

2 Simultaneous and approximate joint diagonalization

2.1 Simultaneous diagonalization of two symmetric matrices

Let S1 and S2 be two symmetric p× p matrices. If S1 positive de�nite, then there is a nonsingular p× p
matrix W and a diagonal p× p matrix D such that

WS1W
⊤ = Ip and WS2W

⊤ = D.

If the diagonal values of D are distinct, the matrix W is unique up to a permutation and sign changes
of the rows. Notice that the requirement that either S1 or S2 is positive de�nite is not necessary; there
are more general results on simultaneous diagonalization of two symmetric matrices, see for example
Golub and Van Loan [2002]. However, for our purposes the assumption on positive de�niteness is not
too strong.

The simultaneous diagonalizer can be solved as follows. First solve the eigenvalue/eigenvector problem

S1V
⊤ = V ⊤Λ1,

and de�ne the inverse of the square root of S1 as

S
−1/2
1 = V ⊤Λ

−1/2
1 V.

Next solve the eigenvalue/eigenvector problem

(S
−1/2
1 S2(S

−1/2
1 )⊤)U⊤ = U⊤Λ2.

The simultaneous diagonalizer is then W = US
−1/2
1 and D = Λ2.

2.2 Approximate joint diagonalization

Exact diagonalization of a set of symmetric p × p matrices S1, . . . , SK , K > 2 is only possible if all
matrices commute. As shown later in Sections 3, 4 and 5, in BSS this is, however, not the case for �nite
data and we need to perform approximate joint diagonalization, that is, we try to make WSKW⊤ as
diagonal as possible. In practice, we have to choose a measure of diagonality M , a function that maps a
set of p× p matrices to [0,∞), and seek W that minimizes

K∑
k=1

M(WSkW
⊤).
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Usually the measure of diagonality is chosen to be

M(V ) = ||o�(V )||2 =
∑
i ̸=j

(V )2ij ,

where o�(V ) has the same o�-diagonal elements as V , and the diagonal elements are zero. In common
principal component analysis for positive de�nite matrices, Flury [1984] used the measure

M(V ) = log det(diag(V ))− log det(V ),

where diag(V ) = V − o�(V ).
Obviously the sum of squares criterion is minimized by the trivial solution W = 0. The most popular

method to avoid this solution is to diagonalize one of the matrices, then transform the restK−1matrices,
and approximately diagonalize them requiring the diagonalizer to be orthogonal. To be more speci�c,

suppose that S1 is a positive de�nite p× p matrix. Then �nd S
−1/2
1 and denote S∗

k = S
−1/2
1 Sk(S

−1/2
1 )⊤,

k = 2, . . . ,K. Notice that in classical BSS methods, matrix S1 is usually the covariance matrix, and
the transformation is called whitening. Now if we measure the diagonality using the sum of squares
of the o�-diagonal elements, the approximate joint diagonalization problem is equivalent to �nding an
orthogonal p× p matrix U that minimizes

K∑
k=2

∥o�(US∗
kU

⊤)∥2 =

K∑
k=2

∑
i ̸=j

(US∗
kU

⊤)2ij .

Since the sum of squares remains the same when multiplied by an orthogonal matrix, we may equivalently
maximize the sum of squares of the diagonal elements

K∑
k=2

∥diag(US∗
kU

⊤)∥2 =

K∑
k=2

p∑
i=1

(US∗
kU

⊤)2ii. (3)

Several algorithms for orthogonal approximate joint diagonalization have been suggested, and in the fol-
lowing we describe two algorithms which are given in the R package JADE. For examples of nonorthogonal
approaches, see R package jointDiag and references therein as well as Yeredor [2002].

The rjd algorithm uses Given's (or Jacobi) rotations to transform the set of matrices to a more
diagonal form two rows and two columns at a time [Clarkson, 1988]. Givens rotation matrix is given by

G(i, j, θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos(θ) · · · − sin(θ) · · · 0
...

...
. . .

...
...

0 · · · sin(θ) · · · cos(θ) · · · 0
...

...
...

...
0 · · · 0 · · · 0 · · · 1


In rjd algorithm the initial value for the orthogonal matrix U is Ip. First, the value of θ is computed

using the elements (S∗
k)11, (S

∗
k)12 and (S∗

k)22, k = 2, . . . ,K, and matrices U, S∗
2 , . . . , S

∗
K are then updated

by
U ← UG(1, 2, θ) and S∗

k ← G(1, 2, θ)S∗
kG(1, 2, θ), k = 2, . . . ,K.

Similarly all pairs i < j are gone through. When θ = 0, the Givens rotation matrix is identity and no
more rotation is done. Hence, the convergence has been reached when θ is small for all pairs i < j.
Based on vast simulation studies it seems that the solution of the rjd algorithm always maximizes the
diagonality criterion (3).

In the de�ation based joint diagonalization (djd) algorithm the rows of the joint diagonalizer are
found one by one [Nordhausen et al., 2012]. Following the notations above, assume that S∗

2 , . . . , S
∗
K ,
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K ≥ 2, are the symmetric p× p matrices to be jointly diagonalized by an orthogonal matrix, and write
the criterion (3) as

K∑
k=2

||diag(US∗
kU

⊤)||2 =

p∑
j=1

K∑
k=2

(ujS
∗
ku

⊤
j )

2, (4)

where uj is the jth row of U . The sum (4) can then be approximately maximized by solving successively
for each j = 1, . . . , p− 1, uj that maximizes

K∑
k=2

(ujS
∗
ku

⊤
j )

2 (5)

under the constraint uru
⊤
j = δrj , r = 1, . . . , j − 1. Recall that δrj = 1 as r = j and zero otherwise.

The djd algorithm in the R package JADE is based on gradients, and to avoid stopping to local
maxima, the initial value for each row is chosen from a set of random vectors so that criterion (5)
is maximized in that set. The djd function also has an option to choose the initial values to be the
eigenvectors of the �rst matrix S∗

2 which makes the function faster, but does not guarantee that the
local maximum is reached. Recall that even if the algorithm �nds the global maximum in every step,
the solution only approximately maximizes the criterion (4).

In the djd function also criteria of the form

K∑
k=2

|ujS
∗
ku

⊤
j |r, r > 0,

can be used instead of (5), and if all matrices are positive de�nite, also

K∑
k=2

log(ujS
∗
ku

⊤
j ).

The joint diagonalization plays an important role is BSS. In the next sections, we recall the three
major BSS models, and corresponding separation methods which are based on the joint diagonalization.
All these mehods are included in the R package JADE.

3 Independent Component Analysis

The independent component model assumes that the source vector z in model (1) has mutually indepen-
dent components. Based on this assumption, the mixing matrix A in (1) is not well-de�ned, therefore
some extra assumptions are usually made. Common assumptions on the source variable z in the IC
model are

(IC1) the source components are mutually independent,

(IC2) E(z) = 0 and E(z⊤z) = Ip,

(IC3) at most one of the components is gaussian, and

(IC4) each source component is independent and identically distributed,

Assumption (IC2) �xes the variances of the components, and thus the scales of the rows of A. Assump-
tion (IC3) is needed as, for multiple normal components, the independence and uncorrelatedness are
equivalent. Thus, any orthogonal transformation of normal components preserves the independence.

Classical ICA methods are often based on maximizing the non-Gaussianity of the components. This
approach is motivated by the central limit theorem which, roughly speaking, says that the sum of random
variables is more Gaussian than the summands. Several di�erent methods to perform ICA are proposed
in the literature. For general overviews, see for example Hyvärinen et al. [2001], Comon and Jutten
[2010], Oja and Nordhausen [2012], Yu et al. [2014].

In the following, we review two classical ICA methods, FOBI and JADE, which utilize joint diago-
nalization when estimating the unmixing matrix. As the FOBI method is a special case of ICA methods
based on two scatter matrices with so-called independence property [Oja et al., 2006], we will �rst recall
some related de�nitions.
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3.1 Scatter Matrix and Independence Property

Let Fx denote the cdf of a p-variate random vector x. A matrix valued functional S(Fx) is called a scatter
matrix if it is positive de�nite, symmetric and a�ne equivariant in the sense that S(FAx+b) = AS(Fx)A

⊤

for all x, full rank matrices p× p matrices A and all p-variate vectors b.
Oja et al. [2006] noticed that the simultaneous diagonalization of any two scatter matrices with the

independence property yields the ICA solution. The issue was further studied in Nordhausen et al.
[2008a]. A scatter matrix S(Fx) with the independence property is de�ned to be a diagonal matrix for
all x with independent components. An example of a scatter matrix with the independence property is
the covariance matrix, but what comes to most scatter matrices, they do not possess the independence
property (for more details, see Nordhausen and Tyler [2015]). However, it was noticed in Oja et al.
[2006] that if the components of x are independent and symmetric, then S(Fx) is diagonal for any
scatter matrix. Thus a symmetrized version of a scatter matrix Ssym(Fx) = S(Fx1−x2

), where x1 and
x2 are independent copies of x, always has the independence property, and can be used to solve the ICA
problem.

The a�ne equivariance of the matrices, which are used in the simultaneous diagonalization and ap-
proximate joint diagonalization methods, imply the a�ne equivariance of the unmixing matrix estimator.
More precisely, if the unmixing matrices W and W ∗ correspond to x and x∗ = xB⊤, respectively, then

xW⊤ = x∗W ∗⊤
(up to sign changes of the components) for all p × p full rank matrices B. This is a

desirable property of an unmixing matrix estimator as it means that the separation result does not de-
pend on the mixing procedure. It is easy to see that the a�ne equivariance also holds even if S2, . . . , SK ,
K ≥ 2, are only orthogonal equivariant.

3.2 FOBI

One of the �rst ICA methods, FOBI (fourth order blind identi�cation) introduced by Cardoso [1989],
uses simultaneous diagonalization of the covariance matrix and the matrix based on the fourth moments,

S1(Fx) = COV(x) and S2(Fx) =
1

p+ 2
E[∥S−1/2

1 (x− E(x))∥2(x− E(x))⊤(x− E(x))],

respectively. Notice that both S1 and S2 are scatter matrices with the independence property. The
unmixing matrix is the simultaneous diagonalizer W satisfying

WS1(Fx)W
⊤ = Ip and WS2(Fx)W

⊤ = D,

where the diagonal elements of D are the eigenvalues of S2(Fz) given by E[z4i ]+p−1, i = 1, . . . , p. Thus,
for a unique solution, FOBI requires that the independent components have di�erent kurtosis values.
The statistical properties of FOBI are studied in Ilmonen et al. [2010a] and Miettinen et al. [2015].

3.3 JADE

The JADE (joint approximate diagonalization of eigenmatrices) algorithm [Cardoso and Souloumiac,
1993] can be seen as a generalization of FOBI since both of them utilize fourth moments. For a recent
comparison of these two methods, see Miettinen et al. [2015]. Contrary to FOBI, the kurtosis values do
not have to be distinct in JADE. The improvement is gained by increasing the number of matrices to be
diagonalized as follows. De�ne, for any p× p matrix M , the fourth order cumulant matrix as

C(M) = E[(xstMx⊤
st)x

⊤
stxst]−M −M⊤ − tr(M)Ip,

where xst is a standardized variable. Notice that C(Ip) is the matrix based on the fourth moments
used in FOBI. Write then Eij = e⊤i ej , i, j = 1, . . . , p, where ei is a p-vector with the ith element one
and others zero. In JADE (after the whitening) the matrices C(Eij), i, j = 1, . . . , p are approximately
jointly diagonalized by an orthogonal matrix. The rotation matrix U thus maximizes the approximate
joint diagonalization criterion

p∑
i=1

p∑
j=1

∥diag(UC(Eij)U⊤)∥2.

5



JADE is a�ne equivariant even though the matrices C(Eij), i, j = 1, . . . , p, are not orthogonal equivari-
ant. If the eighth moments of the independent components are �nite, then the vectorized JADE unmixing
matrix estimate has a limiting multivariate normal distribution. For the asymptotic covariance matrix
and a detailed discussion about JADE, see Miettinen et al. [2015].

The JADE estimate jointly diagonalizes p2 matrices. Hence its computational load grows quickly
with the number of components. Miettinen et al. [2013] suggested a quite similar, but faster method,
called k-JADE which is computationally much simpler. The k-JADE method whitens the data using
FOBI and then jointly diagonalizes

{C(Eij) : i, j = 1, . . . , p, with |i− j| < k}.

The value k ≤ p can be chosen by the user and corresponds basically to the guess of the largest multiplicity
of identical kurtosis values of the sources. If k is larger or equal to the largest multiplicity, then k-JADE
and JADE seem to be asymptotically equivalent.

4 Second Order Source Separation

In second order source separation (SOS) model, the source vectors compose a p-variate time series
z = (zt)t=0,±1,±2,... that satis�es

(SOS1) E(zt) = 0 and E(z⊤t zt) = Ip, and

(SOS2) E(z⊤t zt+τ ) = Dτ is diagonal for all τ = 1, 2, . . .

Above assumptions imply that the components of z are weakly stationary and uncorrelated time series.
In the following we will shortly describe two classical (SOS) methods, which yield a�ne equivariant
unmixing matrix estimates.

The AMUSE (Algorithm for Multiple Unknown Signals Extraction) [Tong et al., 1990] algorithm uses
the method of simultaneous diagonalization of two matrices. In AMUSE, the matrices to be diagonalized
are the covariance matrix and the autocovariance matrix with chosen lag τ , that is,

S0(Fx) = COV(x) and Sτ (Fx) = E[(xt − E(xt))
⊤(xt+τ − E(xt))].

The unmixing matrix Wτ then satis�es

WτS0(Fx)W
⊤
τ = Ip and WτSτ (Fx)W

⊤
τ = Dτ .

The requirement for distinct eigenvalues implies that the autocorrelations with the chosen lag need to be
unequal for the source components. Notice that, as the population quantity Sτ (Fx) is symmetric, the esti-
mate Ŵτ is obtained by diagonalizing the sample covariance matrix and the symmetrized autocovariance
matrix with lag τ . The sample autocovariance matrix with lag τ is given by

Ŝτ (X) =
1

n− τ

n−τ∑
t=1

(Xt − X̄t)
⊤(Xt+τ − X̄t),

and the symmetrized autocovariance matrix with lag τ ,

ŜS
τ (X) =

1

2
(Ŝτ (X) + Ŝτ (X)⊤),

respectively.
It has been shown that the choice of the lag has a great impact on the performance of the AMUSE

estimate [Miettinen et al., 2012]. However, without any preliminary knowledge of the uncorrelated
components it is di�cult to choose the best lag for the problem at hand. Cichocki and Amari [2002]
simply recommend to start with τ = 1, and check the diagonal elements of the estimate D̂. If there are
two almost equal values, another value for τ should be chosen.

Belouchrani et al. [1997] provide a natural approximate joint diagonalization method for SOS model.
In SOBI (Second Order Blind Identi�cation) the data is whitened using the covariance matrix S0(Fx) =
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COV(x). The K matrices for rotation are then autocovariance matrices with distinct lags τ1, . . . , τK ,
that is, Sτ1(Fx), . . . , SτK (Fx). The use of di�erent joint diagonalization methods yields estimates with
di�erent properties. For details about de�ation-based algorithm (djd) in SOBI see Miettinen et al.
[2014a], and for details about SOBI using the rjd see Miettinen et al. [2016]. General agreement seems
to be that in most cases, the use of rjd in SOBI is preferrable.

The problem of choosing the set of lags τ1, . . . , τK for SOBI is not as important as the choice of
lag τ for AMUSE. Among the signal processing community, K = 12 and τk = k for k = 1, . . . ,K, are
conventional choices. Miettinen et al. [2014a] argue that, when the de�ation-based joint diagonalization
is applied, one should rather take too many matrices than too few. The same suggestion applies to SOBI
using the rjd. If the time series are linear processes, the asymptotic results in Miettinen et al. [2016]
provide tools to choose the set of lags, see also Example 2 in Section 8.

5 Nonstationary Source Separation

The SOS model assumptions are sometimes considered to be too strong. The NSS model is a more
general framework for cases where the data are ordered observations. In addition to the basic BSS
model (1) assumptions, the following assumptions on the source components are made:

(NSS1) E(zt) = 0 for all t,

(NSS2) E(z⊤t zt) is positive de�nite and diagonal for all t,

(NSS3) E(z⊤t zt+τ ) is diagonal for all t and τ .

Hence the source components are uncorrelated and they have a constant mean. However, the variances
are allowed to change over time. Notice that this de�nition di�ers from the block-nonstationary model,
where the time series can be divided into intervals so that the SOS model holds for each interval.

NSS-SD, NSS-JD and NSS-TD-JD are algorithms that take into account the nonstationarity of the
variances. For the description of the algorithms de�ne

ST,τ (Fx) =
1

|T | − τ

∑
t∈T

E[(xt − E(xt))
⊤(xt+τ − E(xt))],

where T is a �nite time interval and τ ∈ {0, 1, . . .}.
The NSS-SD unmixing matrix simultaneously diagonalizes ST1,0(Fx) and ST2,0(Fx), where T1, T2 ⊂

[1, n] are separate time intervals. T1 and T2 should be chosen so that ST1,0(Fx) and ST2,0(Fx) are as
di�erent as possible.

Corresponding approximate joint diagonalization method is called NSS-JD. The data is whitened
using the covariance matrix S[1,n],0(Fx) computed from all the observations. After whitening, the K
covariance matrices ST1,0(Fx), . . . , STK ,0(Fx) related to time intervals T1, . . . , TK are diagonalized with
an orthogonal matrix.

Both NSS-SD and NSS-JD algorithms ignore the possible time dependence. Assume that the full
time series can be divided into K time intervals T1, . . . , TK so that, in each interval, the SOS model holds
approximately. Then the autocovariance matrices within the intervals make sense, and the NSS-TD-JD
algorithm is applicable. Again, the covariance matrix S[1,n],0(Fx) whitens the data. Now the matrices
to be jointly diagonalized are STi,τj (Fx), i = 1, . . . ,K, j = 1, . . . , L. When selecting the intervals one
should take into account the lengths of the intervals so that the random e�ect is not too large when the
covariances and the autocovariances are computed. A basic rule in signal processing community is to
have 12 intervals if the data is large enough, or K < 12 intervals such that each interval contains at least
100 observations. Notice that NSS-SD and NSS-JD (as well as AMUSE and SOBI) are special cases of
NSS-TD-JD. Naturally, NSS-SD, NSS-JD and NSS-TD-JD are all a�ne equivariant.

For further details on NSS methods see for example Choi and Cichocki [2000a,b], Choi et al. [2001],
Nordhausen [2014]. Notice that asymptotic results are not yet available for any of these NSS methods.
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6 BSS performance criteria

The performance of di�erent BSS methods using real data is often di�cult to evaluate since the true
unmixing matrix is unknown. In simulations studies, however, the situation is di�erent, and in the liter-
ature many performance indices have been suggested to measure the performance of di�erent methods.
For a recent overview see Nordhausen et al. [2011], for example.

The package JADE contains several performance indices but in the following we will only introduce
two of them. Both performance indices are functions of the so-called gain matrix, Ĝ, which is a product
of the unmixing matrix estimate Ŵ and the true mixing matrix, that is, Ĝ = ŴA. Since the order,
the signs and the scales of the source components cannot be estimated, the gain matrix of an optimal
estimate does not have to be identity, but equivalent to the identity in the sense that Ĝ = C for some
C ∈ C, where C is given in (2).

The Amari error [Amari et al., 1996] is de�ned as

AE(Ĝ) =
1

2p(p− 1)

 p∑
i=1

 p∑
j=1

|ĝij |
maxh |ĝih|

− 1

+

p∑
j=1

(
p∑

i=1

|ĝij |
maxh |ĝhj |

− 1

) ,

where ĝij denotes the ijth element of Ĝ. The range of the Amari error values is [0, 1], and a small
value corresponds to a good separation performance. The Amari error is not scale invariant. Therefore,
when di�erent algorithms are compered, the unmixing matrices should be scaled in such a way that the
corresponding rows of di�erent matrices are of equal length.

The minimum distance index [Ilmonen et al., 2010b] is de�ned as

MD(Ĝ) =
1√
p− 1

inf
C∈C
∥CĜ− Ip∥,

where ∥ · ∥ is the matrix (Frobenius) norm and C is de�ned in (2). Also the MD index is scaled to have
a maximum value 1, and MD(Ĝ) = 0 if and only if Ĝ ∈ C. The MD index is a�ne invariant. The
statistical properties of the index are thoroughly studied in Ilmonen et al. [2010b] and Ilmonen et al.
[2012].

A feature that makes the minimum distance index especially attractive in simulation studies is that
its value can be related to the asymptotic covariance matrix of an estimator Ŵ . If Ŵ → A−1 and√
n vec(ŴA−Ip)→ Np2(0,Σ), which is for example the case for FOBI, JADE, AMUSE and SOBI, then

the limiting distribution of n(p− 1)MD(Ĝ)2 has an expected value

tr
(
(Ip2 −Dp,p)Σ(Ip2 −Dp,p)

)
, (6)

where Dp,p =
∑p

i=1 e
⊤
i ei ⊗ e⊤i ei, with ⊗ denoting the kronecker product and ei a p-vector with ith

element one and others zero.
Notice that tr

(
(Ip2 −Dp,p)Σ(Ip2 −Dp,p)

)
is the sum of the o�-diagonal elements of Σ and therefore a

natural measure of the variation of the unmixing matrix estimate Ŵ . We will make use of this relationship
later in one of our examples.

7 Functionality of the packages

The package JADE is freely available from the Comprehensive R Archive Network at http://CRAN.

R-project.org/package=JADE and comes under the GNU General Public Licence (GPL) 2.0 or higher
licence.

The main functions of the package implement the blind source separation methods described in the
previous sections. The function names are selfexplanatory being FOBI, JADE and k_JADE for ICA, AMUSE
and SOBI for SOS and NSS.SD, NSS.JD and NSS.TD.JD for NSS. All functions usually take as an input
either a numerical matrix X or as alternative a multivariate time series object of class ts. The functions
have method appropriate arguments like for example which lags to choose for AMUSE and SOBI.

All functions return an object of the S3-class bss which contains at least an object W, which is the
estimated unmixing matrix, and S containing the estimated (and centered) sources. Depending on the
chosen function also other information is stored. The methods available for the class are
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� print: which prints basically all information except the sources S.

� coef: which extracts the unmixing matrix W.

� plot: which produces a scatter plot matrix of S using pairs for ICA methods and a multivariate
time series plot using plot.ts for other BSS methods.

To extract the sources S the helper function bss.components can be used.
The functions which use joint approximate diagonalization of several matrices provide the user an

option to choose the method for joint diagonalization from the list below.

� djd: for de�ation-based joint diagonalization.

� rjd: for joint diagonalization using Givens rotations.

� frjd: which is basically the same as rjd, but has less options and is much faster as being imple-
mented in C.

From our experience the function frjd, when appropriate, seems to obtain the best results.
In addition, the JADE package provides two other functions for joint diagonalization. The function

FG is designed for diagonalization of real positive-de�nite matrices and cjd is the generalization of rjd to
the case of complex matrices. For details about all functions for joint diagonalization see also their help
pages. More functions for joint diagonalization are also available in the R package jointDiag [Gouy-Pailler,
2009].

To evaluate the performance of BSS methods using simulation studies, performance indices are needed.
The package provides for this purpose the functions amari_error, ComonGAP, MD and SIR. Our personal
favorite is the MD-function which implements the minimum distance index described in Section 6.

For further details on all the functions see their help pages and the references therein.
For ICA, many alternative methods are implemented in other R packages. Examples include fas-

tICA [Marchini et al., 2013], fICA [Miettinen et al., 2014b], mlica2 [Teschendor�, 2012], PearsonICA
[Karvanen, 2009] and ProDenICA [Hastie and Tibshirani, 2010]. None of these ICA methods uses joint
diagonalization in estimation. Two slightly overlapping packages with JADE are ICS [Nordhausen et al.,
2008b] which provides a generalization of the FOBI method, and ica [Helwig, 2014] which includes the
JADE algorithm. In current practise JADE and fastICA (implemented for example in the packages fas-
tICA and fICA) seem to be the most often used ICA methods. Other newer ICA methods, as for example
ICA via product density estimation as provided in the package ProDenICA, are often computationally
very intensive as the sample size is usually high in typical ICA applications.

To the best of our knowledge there are currently no other R packages for SOS or NSS available.
Many methods included in the JADE package are also available in the MATLAB toolbox ICALAB

[Cichocki et al., 2014] which accompanies the book of Cichocki and Amari [2002]. A collection of links
to JADE implementations for real and complex values in di�erent languages like MATLAB, C and python
as well as some joint diagonalization functions for MATLAB are available on J.-F. Cardoso's homepage
http://perso.telecom-paristech.fr/~cardoso/guidesepsou.html.

The package BSSasymp is freely available from the Comprehensive R Archive Network at http:

//CRAN.R-project.org/package=BSSasymp and comes under the GNU General Public Licence (GPL)
2.0 or higher licence.

There are two kinds of functions in the package. The �rst set of functions compute the asymptotic
covariance matrices of the vectorized mixing and unmixing matrix estimates under di�erent BSS models.
The others estimate the covariance matrices based on a data matrix. The package BSSasymp includes
functions for several estimators implemented in package JADE. They are FOBI and JADE in the IC
model and AMUSE, de�ation-based SOBI and regular SOBI in the SOS model. The asymtotic covariance
matrices for FOBI and JADE estimates are computed using the results in Miettinen et al. [2015]. For
the limiting distributions of AMUSE and SOBI estimates, see Miettinen et al. [2012] and Miettinen et al.
[2016], respectively.

Functions ASCOV_FOBI and ASCOV_JADE compute the theoretical values for covariance matrices. The
argument sdf is the vector of source density functions standardized to have mean zero and variance
equal to one, supp is a two column matrix, whose rows give the lower and the upper limits used in
numerical integration for each source component and A is the mixing matrix. The corresponding functions
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ASCOV_SOBIdefl and ASCOV_SOBI in the SOS model take as input the matrix psi, which gives the MA-
coe�cients of the source time series, the vector of integers taus for the lags, a matrix of fourth moments
of the innovations Beta (default value is for gaussian innovations) and the mixing matrix A.

Functions ASCOV_FOBI_est, ASCOV_JADE_est, ASCOV_SOBIdefl_est and ASCOV_SOBI_est can be
used for approximating the covariance matrices of the estimates. They are based on asymptotical results,
and therefore the sample size should not be very small. Argument X can be either the observed data or
estimated source components. When argument mixed is set TRUE, X is considered as observed data and
the unmixing matrix is �rst estimated using the method of interest. The estimation of the covariance
matrix of the SOBI estimate is also based on the assumption that the time series are stationary linear
processes. If the time series are gaussian, then the asymptotic variances and covariances depend only
on the autocovariances of the source components. Argument M gives the number of autocovariances to
be used in the approximation of the in�nite sums of autocovariances. Thus, M should be the largest
lag for which any of the source time series has non-zero autocovariance. In the non-gaussian case
the coe�cients of the linear processes need to be computed. In functions ASCOV_SOBIdefl_est and
ASCOV_SOBI_est, ARMA-parameter estimation is used and arguments arp and maq �x the order of
ARMA series, respectively. There are also faster functions ASCOV_SOBIdefl_estN and ASCOV_SOBI_estN,
which assume that the time series are gaussian and do not estimate the MA-coe�cients. The argument
taus is to de�ne the lags of the SOBI estimate.

All functions for the theoretical asymptotic covariance matrices return lists with �ve components. A
and W are the mixing and unmixing matrices and COV_A and COV_W are the corresponding asymptotic
covariance matrices. In simulations studies where the MD index is used as performance criterion, the
sum of the variance of the o�-diagonal values is of interest (recall Section 6 for details). This sum is
returned as object EMD in the list.

The functions for the estimated asymptotic covariance matrices return similar lists as their theoretic
counterparts excluding the component EMD.

8 Examples

In this section we provide four examples to demonstrate how to use the main functions in the packages
JADE and BSSasymp. In Section 8.1 we show how di�erent BSS methods can be compared using an
arti�cial data. Section 8.2 demonstrates how the package BSSasymp can help in selecting the best method
for the source separation. In Section 8.3 we show how a typical simulation study for the comparison of
BSS estimators can be performed using the packages JADE and BSSasymp, and �nally, in Section 8.4 a
real data example is considered. In these examples the dimension of the data is relatively small, but for
example in Joyce et al. [2004] SOBI has been succesfully applied to analyze EEG data where the electrical
activity of the brain is measured by 128 sensors on the scalp. As mentioned earlier, computation of the
JADE estimate for such high-dimensional data is demanding because of the large number of matrices
and the use of k-JADE is recommended then.

In the examples we use the option options(digits = 4) in R 3.2.1 [R Core Team, 2015] together
with the packages JADE 1.9-93, BSSasymp 1.0-2 and tuneR 1.2.1 [Ligges et al., 2014] for the output.
Random seeds (when applicable) are provided for reproducibility of examples.

8.1 Example 1

A classical example of the application of BSS is the so-called cocktail party problem. To separate the
voices of p speakers, we need p microphones in di�erent parts of the room. The microphones record the
mixtures of all p speakers and the goal is then to recover the individual speeches from the mixtures. To
illustrate the problem the JADE package contains in its subfolder datafiles three audio �les which are
often used in BSS1. For demonstration purpose we mix the audio �les and try to recover the original
sounds again. The cocktail party problem data can be created using the packages

R> library("JADE")

R> library("tuneR")

1The �les are originally downloaded from http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi and the au-

thors are grateful to Docent Ella Bingham for giving the permission to use the audio �les.
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To use the �les in R we use functions from the package tuneR and then delete again the downloaded
�les.

R> S1 <- readWave(system.file("datafiles/source5.wav", package = "JADE"))

R> S2 <- readWave(system.file("datafiles/source7.wav", package = "JADE"))

R> S3 <- readWave(system.file("datafiles/source9.wav", package = "JADE"))

We attach a noise component in the data, scale the components to have unit variances, and then mix
the sources with a mixing matrix. The components of a mixing matrix were generated from a standard
normal distribution.

R> set.seed(321)

R> NOISE <- noise("white", duration = 50000)

R> S <- cbind(S1@left, S2@left, S3@left, NOISE@left)

R> S <- scale(S, center = FALSE, scale = apply(S, 2, sd))

R> St <- ts(S, start = 0, frequency = 8000)

R> p <- 4

R> A <- matrix(runif(p^2, 0, 1), p, p)

R> A

[,1] [,2] [,3] [,4]

[1,] 0.1989 0.066042 0.7960 0.4074

[2,] 0.3164 0.007432 0.4714 0.7280

[3,] 0.1746 0.294247 0.3068 0.1702

[4,] 0.7911 0.476462 0.1509 0.6219

R> X <- tcrossprod(St, A)

R> Xt <- as.ts(X)

Figure 1 and Figure 2 show the original sound sources and mixed sources, respectively. These are
obtained using the code

R> plot(St, main = "Sources")

R> plot(Xt, main = "Mixtures")

The package tuneR can play wav �les directly from R if a media player is initialized using the function
setWavPlayer. Assuming that this has been done, the four mixtures can be played using the code

R> x1 <- normalize(Wave(left = X[, 1], samp.rate = 8000, bit = 8),

unit = "8")

R> x2 <- normalize(Wave(left = X[, 2], samp.rate = 8000, bit = 8),

unit = "8")

R> x3 <- normalize(Wave(left = X[, 3], samp.rate = 8000, bit = 8),

unit = "8")

R> x4 <- normalize(Wave(left = X[, 4], samp.rate = 8000, bit = 8),

unit = "8")

R> play(x1)

R> play(x2)

R> play(x3)

R> play(x4)

To demonstrate the use of BSS methods, assume now that we have observed the mixture of unknown
source signals plotted in Figure 2. The aim is then to estimate the original sound signals based on this
observed data. The question is then, which method to use. Based on Figure 2, the data are neither iid
nor second order stationary. Nevertheless, we �rst apply JADE, SOBI and NSSTDJD with their default
settings:

R> jade <- JADE(X)

R> sobi <- SOBI(Xt)

R> nsstdjd <- NSS.TD.JD(Xt)
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Figure 1: Original sound and noise signals.
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Figure 2: Mixed sound signals.
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All three objects are then of class bss and for demonstration purposes we look at the output of the
call to SOBI.

R> sobi

W :

[,1] [,2] [,3] [,4]

[1,] 1.931 -0.9493 -0.2541 -0.08017

[2,] -2.717 1.1377 5.8263 -1.14549

[3,] -3.093 2.9244 4.7697 -2.70582

[4,] -2.709 3.3365 2.4661 -1.19771

k :

[1] 1 2 3 4 5 6 7 8 9 10 11 12

method :

[1] "frjd"

The SOBI output tells us that the autocovariance matrices with the lags listed in k have been jointly
diagonalized with the method frjd yielding the unmixing matrix estimate W. If however another set of
lags would be preferred, this can be achieved as follows:

R> sobi2 <- SOBI(Xt, k = c(1, 2, 5, 10, 20))

In such an arti�cial framework, where the mixing matrix is available, one can compute the product
ŴA in order to see if it is close to a matrix with only one non-zero element per row and column.

R> round(coef(sobi) %*% A, 4)

[,1] [,2] [,3] [,4]

[1,] -0.0241 0.0075 0.9995 0.0026

[2,] -0.0690 0.9976 -0.0115 0.0004

[3,] -0.9973 -0.0683 -0.0283 -0.0025

[4,] 0.0002 0.0009 -0.0074 1.0000

The matrix ŴA has exactly one large element on each row and column which expresses that the
separation was succesful. A more formal way to evaluate the performance is to use a performance index.
We now compare all four methods using the minimum distance index.

R> MD(coef(jade), A)

[1] 0.07505

R> MD(coef(sobi), A)

[1] 0.06072

R> MD(coef(sobi2), A)

[1] 0.03372

R> MD(coef(nsstdjd), A)

[1] 0.01388

MD indices show that NSSTDJD performs best and that JADE is the worst method here. This result is
in agreement with how well the data meets the assumptions of each method. The SOBI with the second
set of lags is better than the default SOBI. In Section 8.2 we show how the package BSSasymp can be
used to select a good set of lags.

To play the sounds recovered by NSSTDJD, one can use the function bss.components to extract the
estimated sources and convert them back to audio.

R> Z.nsstdjd <- bss.components(nsstdjd)

R> NSSTDJDwave1 <- normalize(Wave(left = as.numeric(Z.nsstdjd[, 1]),

+ samp.rate = 8000, bit = 8), unit = "8")

R> NSSTDJDwave1 <- normalize(Wave(left = as.numeric(Z.nsstdjd[, 2]),

+ samp.rate = 8000, bit = 8), unit = "8")
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R> NSSTDJDwave1 <- normalize(Wave(left = as.numeric(Z.nsstdjd[, 3]),

+ samp.rate = 8000, bit = 8), unit = "8")

R> NSSTDJDwave1 <- normalize(Wave(left = as.numeric(Z.nsstdjd[, 4]),

+ samp.rate = 8000, bit = 8), unit = "8")

R> play(NSSTDJDwave1)

R> play(NSSTDJDwave2)

R> play(NSSTDJDwave3)

R> play(NSSTDJDwave4)

8.2 Example 2

We continue with the cocktail party data of Example 1 and show how the package BSSasymp can be
used to select the lags for the SOBI method. The asymptotic results of Miettinen et al. [2016] are utilized
in order to estimate the asymptotic variances of the elements of the SOBI unmixing matrix estimate Ŵ
with di�erent sets of lags. Our choice for the objective function to be minimized, with respect to the set
of lags, is the sum of the estimated variances (see also Section 6). The number of di�erent sets of lags is
practically in�nite. In this example we consider the following seven sets:

(i) 1 (AMUSE),

(ii) 1-3,

(iii) 1-12,

(iv) 1, 2, 5, 10, 20,

(iv) 1-50,

(v) 1-20, 25, 30, . . . , 100,

(vi) 11-50.

For the estimation of the asymptotic variances, we assume that the time series are stationary linear
processes. Since we are not interested in the exact values of the variances, but wish to rank di�erent
estimates based on their performance measured by the sum of the limiting variances, we select the
function ASCOV_SOBI_estN which assumes gaussianity of the time series. Notice also that the e�ect
of the non-gaussianity seems to be rather small, see Miettinen et al. [2012]. Now the user only needs
to choose the value of M, the number of autocovariances to be used in the estimation. The value of
M should be such that all lags with non-zero autocovariances are included, and the estimation of such
autocovariances is still reliable. We choose M=1000.

R> library("BSSasymp")

R> ascov1 <- ASCOV_SOBI_estN(Xt, taus = 1, M = 1000)

R> ascov2 <- ASCOV_SOBI_estN(Xt, taus = 1:3, M = 1000)

R> ascov3 <- ASCOV_SOBI_estN(Xt, taus = 1:12, M = 1000)

R> ascov4 <- ASCOV_SOBI_estN(Xt, taus = c(1, 2, 5, 10, 20), M = 1000)

R> ascov5 <- ASCOV_SOBI_estN(Xt, taus = 1:50, M = 1000)

R> ascov6 <- ASCOV_SOBI_estN(Xt, taus = c(1:20, (5:20) * 5), M = 1000)

R> ascov7 <- ASCOV_SOBI_estN(Xt, taus = 11:50, M = 1000)

The estimated asymptotic variances of the �rst estimate are now the diagonal elements of ascov1\$COV_W.
Since the true mixing matrix A is known, it is also possible to use the MD index to �nd out how well
the estimates perform. We can thus check whether the minimization of the sum of the limiting variances
really yields a good estimate.

R> SumVar <- t(c(sum(diag(ascov1$COV_W)), sum(diag(ascov2$COV_W)),

+ sum(diag(ascov3$COV_W)), sum(diag(ascov4$COV_W)), sum(diag(ascov5$COV_W)),

+ sum(diag(ascov6$COV_W)), sum(diag(ascov7$COV_W))))

R> colnames(SumVar) <- c("(i)", "(ii)", "(iii)", "(iv)", "(v)", "(vi)",

15



+ "(vii)")

R> MDs <- t(c(MD(ascov1$W,A), MD(ascov2$W,A), MD(ascov3$W,A),

+ MD(ascov4$W,A), MD(ascov5$W,A), MD(ascov6$W,A), MD(ascov7$W,A)))

R> colnames(MDs) <- colnames(SumVar)

R> SumVar

(i) (ii) (iii) (iv) (v) (vi) (vii)

[1,] 363 0.1282 0.1362 0.08217 0.0756 0.06798 0.1268

R> MDs

(i) (ii) (iii) (iv) (v) (vi) (vii)

[1,] 0.433 0.03659 0.06072 0.03372 0.01242 0.01231 0.0121

The variance estimates indicate that the lag one alone is not su�cient. Sets (iv), (v) and (vi) give the
smallest sums of the variances. The minimum distance index values show that (i) really is the worst set
here and that set (vi), whose estimated sum of asymptotic variances was the smallest, is a good choice
here, even though set (vii) has slightly smaller minimum distance index value. Hence in a realistic data
only situation, where performance indices cannot be computed, the sum of the variances can provide a
way to select a good set of lags for the SOBI method.

8.3 Example 3

In simulation studies usually several estimators are compared and it is of interest to study which of
the estimators performs best under the given model and also how fast the estimators converge to their
limiting distributions. In the following we will perform a simulation study similar to that of Miettinen
et al. [2016] and compare the performances of FOBI, JADE and 1-JADE using the package BSSasymp.

Consider the ICA model where the three source component distributions are exponential, uniform
and normal distributions, all of them centered and scaled to have unit variances. Due to the a�ne
equivariance of the estimators, the choice of the mixing matrix does not a�ect the performances, and we
can choose A = I3 for simplicity.

We �rst create a function ICAsim which generates the data and then computes the MD indices using
the unmixing matrices estimated with the three ICA methods. The arguments in ICAsim are a vector
of di�erent sample sizes (ns) and the number of repetitions (repet). The function then returns a data
frame with the variables N, fobi, jade and kjade, which includes the used sample size and the obtained
MD index value for each run and for the three di�erent methods.

R> library("JADE")

R> library("BSSasymp")

R> ICAsim <- function(ns, repet){

+ M <- length(ns) * repet

+ MD.fobi <- numeric(M)

+ MD.jade <- numeric(M)

+ MD.1jade <- numeric(M)

+ A <- diag(3)

+ row <- 0

+ for (j in ns){

+ for(i in 1:repet){

+ row <- row + 1

+ x1 <- rexp(j) - 1

+ x2 <- runif(j, - sqrt(3), sqrt(3))

+ x3 <- rnorm(j)

+ X <- cbind(x1, x2, x3)

+ MD.fobi[row] <- MD(coef(FOBI(X)), A)

+ MD.jade[row] <- MD(coef(JADE(X)), A)

+ MD.1jade[row] <- MD(coef(k_JADE(X, k = 1)), A)

+ }

+ }

+ RES <- data.frame(N = rep(ns, each = repet), fobi = MD.fobi,
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+ jade = MD.jade, kjade = MD.1jade)

+ RES

+ }

For each of the sample sizes, 250, 500, 1000, 2000, 4000, 8000, 16000 and 32000, we then generate
2000 repetitions. Notice that this simulation will take a while.

R> set.seed(123)

R> N <- 2^(( - 2):5) * 1000

R> MDs <- ICAsim(ns = N, repet = 2000)

Besides the �nite sample performances of di�erent methods, we are interested in seeing how quickly
the estimators converge to their limiting distributions. The relationship between the minimum distance
index and the asymptotic covariance matrix of the unmixing matrix estimate was described in Section 6.
To compute (6) we �rst compute the asymptotic covariance matrices of the unmixing matrix estimates Ŵ .
Since all three independent components in the model have �nite eighth moments, all three estimates have
a limiting multivariate normal distribution [Ilmonen et al., 2010a, Miettinen et al., 2015]. The functions
ASCOV_FOBI and ASCOV_JADE compute the asymptotic covariance matrices of the corresponding unmixing
matrix estimates Ŵ and the mixing matrix estimates Ŵ−1. As arguments, one needs the source density
functions standardized so that the expected value is zero and the variance equals to one, and the support
of each density function. The default value for the mixing matrix is the identity matrix.

R> f1 <- function(x){ exp( - x - 1) }

R> f2 <- function(x){ rep(1 / (2 * sqrt(3)), length(x)) }

R> f3 <- function(x){ exp( - (x)^2 / 2) / sqrt(2 * pi) }

R> support <- matrix(c( - 1, - sqrt(3), - Inf, Inf, sqrt(3), Inf), nrow = 3)

R> fobi <- ASCOV_FOBI(sdf = c(f1, f2, f3), supp = support)

R> jade <- ASCOV_JADE(sdf = c(f1, f2, f3), supp = support)

Let us next look at the simulation results concerning the FOBI method in more detail. First notice
that the rows of the FOBI unmixing matrices are ordered according to the kurtosis values of resulting
independent components. Since the source distributions f1, f2 and f3 are not ordered accordingly, the
unmixing matrix fobi$W is di�erent from the identity matrix.

R> fobi$W

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 0 1

[3,] 0 1 0

Object fobi$COV_W is the asymptotic covariance matrix of the vectorized unmixing matrix estimate
vec(Ŵ ).

R> fobi$COV_W

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 2 0.000 0.000 0.000 0.000 0.0 0.000 0.0 0.000

[2,] 0 6.189 0.000 0.000 0.000 0.0 -4.689 0.0 0.000

[3,] 0 0.000 4.217 -3.037 0.000 0.0 0.000 0.0 0.000

[4,] 0 0.000 -3.037 3.550 0.000 0.0 0.000 0.0 0.000

[5,] 0 0.000 0.000 0.000 11.151 0.0 0.000 0.0 2.349

[6,] 0 0.000 0.000 0.000 0.000 0.2 0.000 0.0 0.000

[7,] 0 -4.689 0.000 0.000 0.000 0.0 5.189 0.0 0.000

[8,] 0 0.000 0.000 0.000 0.000 0.0 0.000 0.5 0.000

[9,] 0 0.000 0.000 0.000 2.349 0.0 0.000 0.0 10.151

The diagonal elements of fobi$COV_W are the asymptotic variances of (Ŵ )11,(Ŵ )22,. . . ,(Ŵ )pp, re-

spectively, and the value −3.037, for example, in fobi$COV_W is the asymptotic covariance of (Ŵ )31 and
(Ŵ )12.
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To make use of the relationship between the minimum distance index and the asymptotic covariance
matrices, we need to extract the asymptotic variances of the o�-diagonal elements of such ŴA that
converges to I3. In fact, these variances are the second, third, fourth, �fth, seventh and ninth diagonal
element of fobi$COV_W, but there is also an object fobi$EMD, which directly gives the sum of the variances
as given in (6).

R> fobi$EMD

[1] 40.45

The corresponding value for JADE can be obtained as follows.

R> jade$EMD

[1] 23.03

Based on these results we can conclude that for this ICA model, the theoretically best separation
method is JADE. The value n(p − 1)MD(Ĝ)2 for JADE should converge to 23.03 and that for FOBI
to 40.45. Since all three components have the di�erent kurtosis values, 1-JADE is expected to have the
same limiting behavior as JADE.

To compare the theoretical values to their �nite sample counterparts, we next compute the average
values of n(p − 1)MD(Ĝ)2 for each sample size and each estimator, and plot them together with their
limiting expected values in Figure 3.

R> meanMDs <- aggregate(MDs[ , 2:4]^2, list(N = MDs$N), mean)

R> MmeansMDs <- 2 * meanMDs[ , 1] * meanMDs[, 2:4]

R> ylabel <- expression(paste("n(p-1)ave", (hat(D)^2)))

R> par(mar = c(4, 5, 0, 0) + 0.1)

R> matplot(N, MmeansMDs, pch = c(15, 17, 16), ylim = c(0, 60),

+ ylab = ylabel, log = "x", xlab = "n", cex = c(1.5, 1.6, 1.2),

+ col = c(1, 2, 4), xaxt = "n")

R> axis(1, N)

R> abline(h = fobi$EMD, lty = 1, lwd = 2)

R> abline(h = jade$EMD, lty = 2, col = 4, lwd = 2)

R> legend("topright", c("FOBI", "JADE", "1-JADE"), lty = c(1, 2, 0),

+ pch = 15:17, col = c(1, 4, 2), bty = "n", pt.cex = c(1.5, 1.2, 1.6),

+ lwd = 2)

Figure 3 supports the fact that JADE and 1-JADE are asymptotically equivalent. For small sample
sizes the �nite sample performance of JADE is slightly better than that of 1-JADE. The average of
squared minimum distance values of JADE seem to converge faster to its expected value than those of
FOBI.

8.4 Example 4

So far we have considered examples where the true sources and the mixing matrix have been known.
In our last example we use a real data set which includes electrocardiography (ECG) recordings of a
pregnant woman. ECG measures the electrical potential, generated by the heart muscle, from the body
surface. The electrical activity produced by the heart beats of a fetus can then be detected by measuring
the potential on the mother's skin. As the measured signals are mixtures of the fetus's and the mother's
heart beats, the goal is to use the BSS method to separate these two heart beats as well as some possible
artifacts from each other. In this context it is useful to know that a fetus's heart is supposed to beat
faster than that of the mother. For a more detail discussion on the data and of the use of BSS in this
context, see De Lathauwer et al. [1995].

In this ECG recording, eight sensors have been placed on the skin of the mother, the �rst �ve in the
stomach area and the other three in the chest area. The data was obtained as foetal_ecg.dat from
http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html2 and is also provided in the supple-
mentary �les of the JSS paper Miettinen et al. [2017].

2The authors are grateful to Professor Lieven De Lathauwer for making this data set available.
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In this ECG recording, eight sensors have been places on the skin of the mother, the �rst �ve in the
stomach area and the other three in the chest area. We �rst load the data assuming it is in the working
directory and plot it in Figure 4.

R> library("JADE")

R> library("BSSasymp")

R> dataset <- matrix(scan(paste0("foetal_ecg.dat")), 2500, 9, byrow = TRUE)

Read 22500 items

R> X <- dataset[ , 2:9]

R> plot.ts(X, nc = 1, main = "Data")

Figure 4 shows that the mother's heartbeat is clearly the main element in all of the signals. The
heart beat of the fetus is visible in some signals - most clearly in the �rst one.

We next scale the components to have unit variances to make the elements of the unmixing matrix
larger. Then the JADE estimate is computed and resulting components are plotted in Figure 5.

R> scale(X, center = FALSE, scale = apply(X, 2, sd))

R> jade <- JADE(X)

R> plot.ts(bss.components(jade), nc = 1, main = "JADE solution")

From Figure 5 it is seen that the �rst three components are related to the mother's heartbeat and the
fourth component is related to the fetus's heartbeat. Since we are interested in the fourth component,
we pick up the corresponding coe�cients from the fourth row of the unmixing matrix estimate. For
demonstration purposes, we also derive their standard errors in order to see how much uncertainty is
included in the results. These would be useful for example when selecting the best BSS method in a
case where estimation accuracy of only one component is of interest, as opposed to Example 2 where the
whole unmixing matrix was considered.

R> ascov <- ASCOV_JADE_est(X)

R> Vars <- matrix(diag(ascov$COV_W), nrow = 8)

R> Coefs <- coef(jade)[4, ]

R> SDs <- sqrt(Vars[4, ])

R> Coefs

[1] 0.58797 0.74456 -1.91649 -0.01494 3.35667 -0.26278 0.78501 0.18756

R> SDs

[1] 0.07210 0.15222 0.10519 0.03861 0.14786 0.09714 0.26431 0.17952

Furthermore, we can test, for example, whether the recordings from the mother's chest area contribute
to the estimate of the fourth component (fetus's heartbeat), i.e., whether the last three elements of the
fourth row of the unmixing are non-zero. Since the JADE estimate is asymptotically multivariate normal,
we can compute the Wald test statistic related to the null hypothesis H0 : ((W )46, (W )47, (W )48) =
(0, 0, 0). Notice that ascov$COV_W is the covariance matrix estimate of the vector built from the columns
of the unmixing matrix estimate. Therefore we create the vector w and hypothesis matrix L accordingly.
The sixth, seventh and eighth element of the fourth row of the 8 × 8 matrix are the 5 · 8 + 4 = 44th,
6 · 8 + 4 = 52nd and 7 · 8 + 4 = 60th elements of w, respectively.

R> w <- as.vector(coef(jade))

R> V <- ascov$COV_W

R> L1 <- L2 <- L3<- rep(0, 64)

R> L1[5*8+4] <- L2[6*8+4] <- L3[7*8+4] <- 1

R> L <- rbind(L1,L2,L3)

R> Lw <- L %*% w

R> T <- t(Lw) %*% solve(L %*% tcrossprod(V, L), Lw)

R> T

[,1]

[1,] 89.8

R> format.pval(1 - pchisq(T, 3))

[1] "<2e-16"

The very small p-value suggests that not all of the three elements are zero.
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Figure 4: Electrocardiography recordings of a pregnant woman.
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9 Conclusions

In this paper we have introduced the R packages JADE and BSSasymp which contain several practical
tools for blind source separation.

Package JADE provides methods for three common BSS models. The functions allow the user to
perform blind source separation in cases where the source signals are (i) independent and identically
distributed, (ii) weakly stationary time series, or (iii) time series with nonstationary variance. All
BSS methods included in the package utilize either simultaneous diagonalization of two matrices or
approximate joint diagonalization of several matrices. In order to make the package self-contained we
have included in it several algorithms for joint diagonalization. Two of the algorithms, de�ation-based
joint diagonalization and joint diagonalization using Givens rotations, are described in detail in this
paper.

Package BSSasymp provides tools to compute the asymptotic covariance matrices as well as their
data-based estimates for most of the BSS estimators included in the package JADE. The functions allow
the user to study the uncertainty in the estimation either in simulation studies or in practical applications.
Notice that package BSSasymp is the �rst R package so far to provide such variance estimation methods
for practitioners.

We have provided four examples to introduce the functionality of the packages. The examples show
in detail (i) how to compare di�erent BSS methods using arti�cial example (cocktail-party problem) or
simulated data, (ii) how to select a best method for the problem at hand, and (iii) how to perform blind
source separation with real data (ECG recording).
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