Package: IMEC (via r-universe)

October 26, 2024

Title Ising Model of Explanatory Coherence

Description Theories are one of the most important tools of science. Although psychologists discussed problems of theory in their

Version 0.2.0

in most subfields. One possible reason for this is that psychologists lack the tools to systematically assess the quality of their theories. Previously a computational model for
quality of their theories. Previously a computational model for
formal theory evaluation based on the concept of explanatory
coherence was developed (Thagard, 1989,
<doi:10.1017 s0140525x00057046="">). However, there are possible</doi:10.1017>
improvements to this model and it is not available in software
that psychologists typically use. Therefore, a new
implementation of explanatory coherence based on the Ising
model is available in this R-package.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports IsingSampler, igraph, qgraph
Suggests testthat
NeedsCompilation no
Author Maximilian Maier [aut, cre], Noah van Dongen [ths], Denny Borsboom [ths]
Maintainer Maximilian Maier <maximilianmaier0401@gmail.com></maximilianmaier0401@gmail.com>
Repository CRAN
Date/Publication 2020-11-27 10:10:03 UTC
Contents
computeIMEC
compatibilities

2

2 compute IMEC

Index																8
	summary.IMEC															7
	plot.IMEC															6
	initializeNetwork															5
	IMEC	 														5
	explain															
	contradict															

computeIMEC

Computes the Ising model of explanatory coherence.

Description

Computes IMEC based on previously specified explanatory relations.

Usage

```
computeIMEC(
 matrix,
 evidence,
 phenomena,
  theory1,
  theory2 = character(),
  analytic = TRUE,
  analogy = numeric()
)
```

Arguments

matrix	matrix of explanatory relations.
evidence	vector of evidence for phenomena.
phenomena	vector of phenomena should be the same length as evidence.
theory1	vector of propositions in theory 1.
theory2	vector of propositions in theory2.
analytic	whether the result should be calculated analytically or (for large networks) estimated using Metropolis-Hastings algorithm enhanced with Coupling from the past.
analogy	this argument is only for purposes of adding analogy in the future and should currently not be used.

Value

returns an IMEC object which contains the explanatory coherence of the propositions, the explanatory relations, the evidence, and the phenomena

contradict 3

Examples

```
# simple example comparing two hypotheses one of them with more explanatory breadth##
T1 <- c("H1", "H2")
Phenomena <- c("E1", "E2")
Thresholds <- c(2,2)
explanations <- initializeNetwork(Phenomena, T1)
explanations <- explain("H1", "E1", explanations)
explanations <- explain("H1", "E2", explanations)
explanations <- explain("H2", "E2", explanations)
explanations <- contradict("H1", "H2", explanations)
coherence <- computeIMEC(explanations, Thresholds, Phenomena, T1)
summary(coherence)
plot(coherence)</pre>
```

contradict

contradict

Description

Sets a contradictory relation between a set of propositions and a phenomenon. If more than one proposition is used the edge weight will be reduced accordingly.

Usage

```
contradict(Explanation, Explanandum, matrix, weight = 4)
```

Arguments

Explanation Vector of explanations that explain the explanadum

Explanandum A proposition or phenomenon that is explained

Matrix Matrix of explanatory relations that is modified

weight Strength of connection (i.e., strength of contradiction)

#'@return returns the explanatory matrix with the edge weights modified according to the specified contradiction

```
# simple example comparing two hypotheses one of them with more explanatory breadth##
T1 <- c("H1", "H2")
Phenomena <- c("E1", "E2")
Thresholds <- c(2,2)
explanations <- initializeNetwork(Phenomena, T1)
explanations <- explain("H1", "E1", explanations)
explanations <- explain("H1", "E2", explanations)
explanations <- explain("H2", "E2", explanations)
explanations <- contradict("H1", "H2", explanations)
coherence <- computeIMEC(explanations, Thresholds, Phenomena, T1)
summary(coherence)
plot(coherence)</pre>
```

4 explain

Description

Sets an explanatory relation between a set of propositions and a phenomenon. If more than one proposition is used the edge weight will be reduced accordingly.

Usage

```
explain(Explanation, Explanandum, matrix, weight = 1)
```

Arguments

Explanation	Vector of Explanations that explain the Explanadum
Explanandum	A proposition or phenomenon that is explained
matrix	Matrix of Explanatory relations that is modified
weight	Strength of connection (i.e., quality of explanation)

Value

Returns the explanatory matrix with the edge weights modified according to the specified explanation

```
# simple example comparing two hypotheses one of them with more explanatory breadth##
T1 <- c("H1", "H2")
Phenomena <- c("E1", "E2")
Thresholds <- c(2,2)
explanations <- initializeNetwork(Phenomena, T1)
explanations <- explain("H1", "E1", explanations)
explanations <- explain("H1", "E2", explanations)
explanations <- explain("H2", "E2", explanations)
explanations <- contradict("H1", "H2", explanations)
coherence <- computeIMEC(explanations, Thresholds, Phenomena, T1)
summary(coherence)
plot(coherence)</pre>
```

IMEC 5

Description

This package computes the Ising Model of Explanatory Coherence for theory comparison and theory appraisal.

Construct Explanary Network

intializeNetwork constructs an initial empty explanatoy network Explain and Contradict specify explanatory relations.

Calculate IMEC

computeIMEC computes the Ising model of explanatory coherence and returns an object of class IMEC. Use summary to summarize the result and plot to plot the explanatory relations.

•	initializeNetwork
---	-------------------

Description

This function initializes the network in which explanatory relations can be stored later.

Usage

```
initializeNetwork(phenomena, theory1, theory2 = character())
```

Arguments

phenomena	Vector of phenomena that are explained
theory1	Vector of propositions included in theory 1
theory2	Vector of propositions included in theory 2 (only set manually if theory comparison is intended)

Value

An empty edge matrix (all edges 0)

6 plot.IMEC

Examples

```
# simple example comparing two hypotheses one of them with more explanatory breadth##
T1 <- c("H1", "H2")
Phenomena <- c("E1", "E2")
Thresholds <- c(2,2)
explanations <- initializeNetwork(Phenomena, T1)
explanations <- explain("H1", "E1", explanations)
explanations <- explain("H1", "E2", explanations)
explanations <- explain("H2", "E2", explanations)
explanations <- contradict("H1", "H2", explanations)
coherence <- computeIMEC(explanations, Thresholds, Phenomena, T1)
summary(coherence)
plot(coherence)</pre>
```

plot.IMEC

Plots the explanatory relations

Description

Plot the explanatory relations between data and phenomena. A window will open where you can drag the nodes in the intended position. Then press enter to plot the network.

Usage

```
## S3 method for class 'IMEC'
plot(x, nodesize = 10, ...)
```

Arguments

x Object of the class IMEC as returned by computeIMEC
 nodesize size of vertices in the plotted network
 other parameters passed on to S3 method.

```
# simple example comparing two hypotheses one of them with more explanatory breadth##
T1 <- c("H1", "H2")
Phenomena <- c("E1", "E2")
Thresholds <- c(2,2)
explanations <- initializeNetwork(Phenomena, T1)
explanations <- explain("H1", "E1", explanations)
explanations <- explain("H1", "E2", explanations)
explanations <- explain("H2", "E2", explanations)
explanations <- contradict("H1", "H2", explanations)
coherence <- computeIMEC(explanations, Thresholds, Phenomena, T1)
summary(coherence)
plot(coherence)</pre>
```

summary.IMEC 7

summary.IMEC

Summary of an IMEC object.

Description

Summary of an IMEC object.

Usage

```
## S3 method for class 'IMEC'
summary(object, ...)
```

Arguments

object IMEC object.

... other parameters passed on from S3 method.

```
# simple example comparing two hypotheses one of them with more explanatory breadth##
T1 <- c("H1", "H2")
Phenomena <- c("E1", "E2")
Thresholds <- c(2,2)
explanations <- initializeNetwork(Phenomena, T1)
explanations <- explain("H1", "E1", explanations)
explanations <- explain("H1", "E2", explanations)
explanations <- explain("H2", "E2", explanations)
explanations <- contradict("H1", "H2", explanations)
coherence <- computeIMEC(explanations, Thresholds, Phenomena, T1)
summary(coherence)
plot(coherence)</pre>
```

Index

```
computeIMEC, 2
contradict, 3

explain, 4

IMEC, 5
initializeNetwork, 5

plot.IMEC, 6

summary.IMEC, 7
```