--- title: 'ILSE: a simple NHANES example' author: "Wei Liu" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{ILSE: a simple NHANES example} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ### Load real data First, we load the 'ILSE' package and the real data which can be loaded by following command. ```{r eval = FALSE} library("ILSE") data("nhanes") ``` ### Fit linear regression model We fit the linear regression model using 'ILSE' function, and then compare with *CC* method and *FIML* method. ```{r eval = FALSE} ncomp <- sum(complete.cases(nhanes)) message("Number of complete cases is ", ncomp, '\n') ilse2 <- ilse(age~., data=nhanes, verbose=T) print(ilse2) ``` Next, *Bootstrap* is applied to evaluate the standard error and p-values of each coefficients estimated by ILSE. We observe four significant coefficients. ```{r eval = FALSE} set.seed(1) s2 <- summary(ilse2, Nbt=20) s2 ``` ### Compare with CC and FIML First, we conduct CC analysis. ```{r eval = FALSE} lm1 <- lm(age~., data=nhanes) s_cc <- summary.lm(lm1) s_cc ``` We fit linear regression model using FIML method. ```{r eval = FALSE} fimllm <- fimlreg(age~., data=nhanes) print(fimllm) ``` We also use *bootstrap* to evaluate the standard error and p-values of each coefficients estimated by ILSE. We observe only one significant coefficients. ```{r eval = FALSE} s_fiml <- summary(fimllm, Nbt=20) s_fiml ``` ### Visualization We visualize the p-vaules of each methods, where red line denotes 0.05 in y-axis and blue line 0.1 in y-axis. ```{r eval = FALSE} library(ggplot2) library(ggthemes) pMat <- cbind(CC=s_cc$coefficients[,4], ILSE=s2[,4], FIML=s_fiml[,4]) df1 <- data.frame(Pval= as.vector(pMat[-1,]), Method =factor(rep(c('CC', "ILSE", "FIML"),each=3)), covariate= factor(rep(row.names(pMat[-1,]), times=3))) ggplot(data=df1, aes(x=covariate, y=Pval, fill=Method)) + geom_bar(position = "dodge", stat="identity",width = 0.5) + geom_hline(yintercept = 0.05, color='red') + geom_hline(yintercept = 0.1, color='blue') + scale_fill_economist() ``` ## Session information ```{r} sessionInfo() ```