Title: | Hierarchical Heterogeneity Analysis via Penalization |
---|---|
Description: | In medical research, supervised heterogeneity analysis has important implications. Assume that there are two types of features. Using both types of features, our goal is to conduct the first supervised heterogeneity analysis that satisfies a hierarchical structure. That is, the first type of features defines a rough structure, and the second type defines a nested and more refined structure. A penalization approach is developed, which has been motivated by but differs significantly from penalized fusion and sparse group penalization. Reference: Ren, M., Zhang, Q., Zhang, S., Zhong, T., Huang, J. & Ma, S. (2022). "Hierarchical cancer heterogeneity analysis based on histopathological imaging features". Biometrics, <doi:10.1111/biom.13426>. |
Authors: | Mingyang Ren [aut, cre] , Qingzhao Zhang [aut], Sanguo Zhang [aut], Tingyan Zhong [aut], Jian Huang [aut], Shuangge Ma [aut] |
Maintainer: | Mingyang Ren <[email protected]> |
License: | GPL-2 |
Version: | 1.0.0 |
Built: | 2024-12-25 06:37:54 UTC |
Source: | CRAN |
The main function for Transfer learning for tensor graphical models.
evaluation.sum(n,q,p,admmres, abic.n, admmres2, Beta0, bic.var)
evaluation.sum(n,q,p,admmres, abic.n, admmres2, Beta0, bic.var)
n |
The sample size. |
q |
The dimension of type 1 features. |
p |
The dimension of type 2 features. |
admmres |
The results corresponding to lambda1. |
abic.n |
The BIC values. |
admmres2 |
The results corresponding to lambda1. |
Beta0 |
The true values of beta. |
bic.var |
The BIC values. |
A result list including: evaluating indicator
Some example data
A list.
Simulated data
data(example.data.GGM)
data(example.data.GGM)
Some example data
A list.
Simulated data
data(example.data.reg)
data(example.data.reg)
The main function for Transfer learning for tensor graphical models.
gen_int_beta(n, p, q, whole.data, subgroup=c(2,4), ridge = FALSE, gr.init=10, lambda.min=0.0001)
gen_int_beta(n, p, q, whole.data, subgroup=c(2,4), ridge = FALSE, gr.init=10, lambda.min=0.0001)
n |
The sample size. |
p |
The dimension of type 2 features. |
q |
The dimension of type 1 features. |
whole.data |
The input data analyzed (a list including the response and design matrix). |
subgroup |
When using fmrs to generate initial value, the initial value parameter of fmrs is given. Randomly divide this number of groups into several groups. |
ridge |
The logical variable, whether or not to yield initial values using ridge regression. |
gr.init |
The subgroup number of initial values using ridge regression. |
lambda.min |
The tuning parameter using ridge regression, the default is 0.0001. |
A result list.
Mingyang Ren, Qingzhao Zhang, Sanguo Zhang, Tingyan Zhong, Jian Huang, Shuangge Ma. Maintainer: Mingyang Ren [email protected].
Mingyang Ren, Qingzhao Zhang, Sanguo Zhang, Tingyan Zhong, Jian Huang, Shuangge Ma. 2022. Hierarchical Cancer Heterogeneity Analysis Based On Histopathological Imaging Features. Biometrics, <DOI: 10.1111/biom.13544>.
library(HhP) library(Matrix) library(MASS) library(fmrs) data(example.data.reg) n = example.data.reg$n q = example.data.reg$q p = example.data.reg$p beta.init.list = gen_int_beta(n, p, q, example.data.reg) beta.init = beta.init.list$beta.init lambda = genelambda.obo() result = HhP.reg(lambda, example.data.reg, n, q, p, beta.init) index.list = evaluation.sum(n,q,p, result$admmres, result$abic.n, result$admmres2, example.data.reg$Beta0, result$bic.var) index.list$err.s
library(HhP) library(Matrix) library(MASS) library(fmrs) data(example.data.reg) n = example.data.reg$n q = example.data.reg$q p = example.data.reg$p beta.init.list = gen_int_beta(n, p, q, example.data.reg) beta.init = beta.init.list$beta.init lambda = genelambda.obo() result = HhP.reg(lambda, example.data.reg, n, q, p, beta.init) index.list = evaluation.sum(n,q,p, result$admmres, result$abic.n, result$admmres2, example.data.reg$Beta0, result$bic.var) index.list$err.s
Generating a sequence of the tuning parameters (lambda1 and lambda2).
genelambda.obo(nlambda1=20,lambda1_max=0.5,lambda1_min=0.1, nlambda2=5,lambda2_max=1.5,lambda2_min=0.1)
genelambda.obo(nlambda1=20,lambda1_max=0.5,lambda1_min=0.1, nlambda2=5,lambda2_max=1.5,lambda2_min=0.1)
nlambda1 |
The numbers of lambda 1. |
lambda1_max |
The maximum values of lambda 1. |
lambda1_min |
The minimum values of lambda 1. |
nlambda2 |
The numbers of lambda 2. |
lambda2_max |
The maximum values of lambda 2. |
lambda2_min |
The minimum values of lambda 2. |
A sequence of the tuning parameters (lambda1, lambda2, and lambda3).
Mingyang Ren
lambda <- genelambda.obo() lambda
lambda <- genelambda.obo() lambda
The main function for Transfer learning for tensor graphical models.
HhP.reg(lambda, whole.data, n, q, p, beta.init, merge.all=FALSE, trace=FALSE, selection.sub=FALSE)
HhP.reg(lambda, whole.data, n, q, p, beta.init, merge.all=FALSE, trace=FALSE, selection.sub=FALSE)
lambda |
The sequences of the tuning parameters (lambda1 and lambda2). |
whole.data |
The input data analyzed (a list including the response and design matrix). |
n |
The sample size. |
q |
The dimension of type 1 features. |
p |
The dimension of type 2 features. |
beta.init |
The Initial values of regression coefficients. |
merge.all |
the logical variable, the default is F. |
trace |
the logical variable, whether or not to output the number of identified subgroups during the search for parameters. |
selection.sub |
the logical variable, the default is F. |
A result list.
Mingyang Ren, Qingzhao Zhang, Sanguo Zhang, Tingyan Zhong, Jian Huang, Shuangge Ma. Maintainer: Mingyang Ren [email protected].
Mingyang Ren, Qingzhao Zhang, Sanguo Zhang, Tingyan Zhong, Jian Huang, Shuangge Ma. 2022. Hierarchical Cancer Heterogeneity Analysis Based On Histopathological Imaging Features. Biometrics, <DOI: 10.1111/biom.13544>.
library(HhP) library(Matrix) library(MASS) library(fmrs) data(example.data.reg) n = example.data.reg$n q = example.data.reg$q p = example.data.reg$p beta.init.list = gen_int_beta(n, p, q, example.data.reg) beta.init = beta.init.list$beta.init lambda = genelambda.obo() result = HhP.reg(lambda, example.data.reg, n, q, p, beta.init) index.list = evaluation.sum(n,q,p, result$admmres, result$abic.n, result$admmres2, example.data.reg$Beta0, result$bic.var) index.list$err.s
library(HhP) library(Matrix) library(MASS) library(fmrs) data(example.data.reg) n = example.data.reg$n q = example.data.reg$q p = example.data.reg$p beta.init.list = gen_int_beta(n, p, q, example.data.reg) beta.init = beta.init.list$beta.init lambda = genelambda.obo() result = HhP.reg(lambda, example.data.reg, n, q, p, beta.init) index.list = evaluation.sum(n,q,p, result$admmres, result$abic.n, result$admmres2, example.data.reg$Beta0, result$bic.var) index.list$err.s