
Package: HTRX (via r-universe)
November 6, 2024

Type Package

Title Haplotype Trend Regression with eXtra Flexibility (HTRX)

Version 1.2.4

Maintainer Yaoling Yang <yaoling.yang@bristol.ac.uk>

Description Detection of haplotype patterns that include single
nucleotide polymorphisms (SNPs) and non-contiguous haplotypes
that are associated with a phenotype. Methods for implementing
HTRX are described in Yang Y, Lawson DJ (2023)
<doi:10.1093/bioadv/vbad038> and Barrie W, Yang Y, Irving-Pease
E.K, et al (2024) <doi:10.1038/s41586-023-06618-z>.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Depends R (>= 4.0.0)

Imports fastglm, caret, parallel, methods, stats, glmnet, tune,
recipes

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Yaoling Yang [aut, cre]
(<https://orcid.org/0000-0003-4905-8097>), Daniel Lawson [aut]
(<https://orcid.org/0000-0002-5311-6213>)

Repository CRAN

Date/Publication 2024-02-09 08:00:14 UTC

Config/pak/sysreqs libicu-dev

1

https://doi.org/10.1093/bioadv/vbad038
https://doi.org/10.1038/s41586-023-06618-z
https://orcid.org/0000-0003-4905-8097
https://orcid.org/0000-0002-5311-6213

2 HTRX-package

Contents
HTRX-package . 2
computeR2 . 3
data_split . 4
do_cumulative_htrx . 5
do_cv . 11
do_cv_direct . 15
example_data_nosnp . 18
example_hap1 . 18
example_hap2 . 19
htrx_max . 19
htrx_nfeatures . 20
make_htrx . 21
themodel . 22

Index 24

HTRX-package HTRX: Haplotype Trend Regression with eXtra flexibility

Description

This is the software for "HTRX - Haplotype Trend Regression with eXtra flexibility (HTRX)" based
on the papar Genetic risk for Multiple Sclerosis originated in Pastoralist Steppe populations, Barrie
W, Yang Y, Attfield K E, et al (2022).

HTRX searches for haplotype patterns that include single nucleotide polymorphisms (SNPs) and
non-contiguous haplotypes.

HTRX is a template gives a value for each SNP taking values of ‘0’ or ‘1’, reflecting whether the
reference allele of each SNP is present or absent, or an ‘X’ meaning either value is allowed.

We used a two-step procedure to select the best HTRX model: do_cv.

Step 1: select candidate models using AIC, BIC or lasso;

Step 2: select the best model using 10-fold cross-validation.

There is also an option to directly perform 10-fold cross-validation: do_cv_direct. This method
loses some accuracy and doesn’t return the fixed features selected, but saves computational time.

Longer haplotypes are important for discovering interactions. However, too many haplotypes make
original HTRX unrealistic for regions with large numbers of SNPs. We proposed "cumulative
HTRX" that enables HTRX to run on longer haplotypes: do_cumulative_htrx.

The code for HTRX is hosted at https://github.com/YaolingYang/HTRX.

Author(s)

Maintainer: Yaoling Yang <yaoling.yang@bristol.ac.uk> (ORCID)

Authors:

• Daniel Lawson <Dan.Lawson@bristol.ac.uk> (ORCID)

https://github.com/YaolingYang/HTRX
https://orcid.org/0000-0003-4905-8097
https://orcid.org/0000-0002-5311-6213

computeR2 3

References

Yang Y, Lawson DJ. HTRX: an R package for learning non-contiguous haplotypes associated with
a phenotype. Bioinformatics Advances 3(1) (2023): vbad038.

Barrie, W., Yang, Y., Irving-Pease, E.K. et al. Elevated genetic risk for multiple sclerosis emerged
in steppe pastoralist populations. Nature 625, 321–328 (2024).

Eforn, B. "Bootstrap methods: another look at the jackknife." The Annals of Statistics 7 (1979):
1-26.

Schwarz, Gideon. "Estimating the dimension of a model." The annals of statistics (1978): 461-464.

McFadden, Daniel. "Conditional logit analysis of qualitative choice behavior." (1973).

Akaike, Hirotugu. "A new look at the statistical model identification." IEEE transactions on auto-
matic control 19.6 (1974): 716-723.

Tibshirani, Robert. "Regression shrinkage and selection via the lasso." Journal of the Royal Statis-
tical Society: Series B (Methodological) 58.1 (1996): 267-288.

computeR2 Compute variance explained by models

Description

Compute the variance explained by a linear or generalized linear model.

Usage

mypredict(model, newdata)

computeR2(pred, outcome, usebinary = 1)

Arguments

model a fitted model, which is the output of themodel.

newdata a data frame which contains all the variables included in the model. This data
frame is used to make prediction on.

pred a vector of the predicted outcome.

outcome a vector of the actual outcome.

usebinary a non-negative number representing different models. Use linear model if usebinary=0,
use logistic regression model via fastglm if usebinary=1 (by default), and use
logistic regression model via glm if usebinary>1.

Details

The variance explained by a linear model is based on the conventional R2. As for logistic regression,
we use McFadden’s R2.

4 data_split

Value

mypredict returns a vector of the predicted outcome.

computeR2 returns a positive number of the variance explained by the linear model (conventional
R2) or the generalized linear model (McFadden’s R2).

References

McFadden, Daniel. "Conditional logit analysis of qualitative choice behavior." (1973).

Examples

create datasets
x=matrix(runif(100,-2,2),ncol=5)
outcome=(0.5*x[,2] - 0.8*x[,4] + 0.3*x[,5])>runif(100,-2,2)

create binary outcome
outcome[outcome]=1
data=data.frame(outcome,x)

compute the variance explained by features
model=themodel(outcome~.,data[1:80,],usebinary=1)
outcome_predict=mypredict(model,data[81:100,])
computeR2(outcome_predict,data[81:100,'outcome'],usebinary=1)

data_split Data split

Description

kfold_split splits data into k folds with equal sizes, which is used for cross-validation. twofold_split
splits data into two folds, which samples the training set. Both stratified sampling and simple sam-
pling are allowed. The details can be found in function do_cv and do_cumulative_htrx.

Usage

kfold_split(outcome, fold, method = "simple")

twofold_split(outcome, train_proportion = 0.5, method = "simple")

Arguments

outcome a vector of the variable (usually the outcome) based on which the data is going
to be stratified. This only works when method="stratified".

fold a positive integer specifying how many folds the data should be split into.

method the method to be used for data split, either "simple" (default) or "stratified".
train_proportion

a positive number between 0 and 1 giving the proportion of the training dataset
when splitting data into 2 folds. By default, train_proportion=0.5.

do_cumulative_htrx 5

Details

Stratified sampling works only when the outcome variable is binary (either 0 or 1), and it ensures
each fold has almost the same number of outcome=0 and outcome=1.

Simple sampling randomly splits the data into k folds.

Two-fold data split is used to select candidate models in Step 1 of HTRX or cumulative HTRX,
while k-fold data split is used for 10-fold cross-validation in Step 2 which aims at selecting the best
model.

Value

Both functions return a list containing the indexes of different folds.

Examples

create the binary outcome (20% prevalence)
outcome=rbinom(200,1,0.2)

simple sampling (10 folds)
kfold_split(outcome,10)

stratified sampling (10 folds)
kfold_split(outcome,10,"stratified")

stratified sampling (2 folds, with 50% training data)
twofold_split(outcome,0.5,"stratified")

do_cumulative_htrx Cumulative HTRX on long haplotypes

Description

Two-step cross-validation used to select the best HTRX model for longer haplotypes, i.e. include at
least 7 single nucleotide polymorphisms (SNPs).

Usage

do_cumulative_htrx(
data_nosnp,
hap1,
hap2 = hap1,
train_proportion = 0.5,
sim_times = 5,
featurecap = 40,
usebinary = 1,
randomorder = TRUE,
fixorder = NULL,
method = "simple",

6 do_cumulative_htrx

criteria = "BIC",
gain = TRUE,
nmodel = 3,
runparallel = FALSE,
mc.cores = 6,
rareremove = FALSE,
rare_threshold = 0.001,
L = 6,
dataseed = 1:sim_times,
fold = 10,
kfoldseed = 123,
htronly = FALSE,
max_int = NULL,
returnwork = FALSE,
verbose = FALSE

)

do_cumulative_htrx_step1(
data_nosnp,
hap1,
hap2 = hap1,
train_proportion = 0.5,
featurecap = 40,
usebinary = 1,
randomorder = TRUE,
fixorder = NULL,
method = "simple",
criteria = "BIC",
nmodel = 3,
splitseed = 123,
gain = TRUE,
runparallel = FALSE,
mc.cores = 6,
rareremove = FALSE,
rare_threshold = 0.001,
L = 6,
htronly = FALSE,
max_int = NULL,
verbose = FALSE

)

extend_haps(
data_nosnp,
featuredata,
train,
featurecap = dim(featuredata)[2],
usebinary = 1,
gain = TRUE,

do_cumulative_htrx 7

runparallel = FALSE,
mc.cores = 6,
verbose = FALSE

)

make_cumulative_htrx(
hap1,
hap2 = hap1,
featurename,
rareremove = FALSE,
rare_threshold = 0.001,
htronly = FALSE,
max_int = NULL

)

Arguments

data_nosnp a data frame with outcome (the outcome must be the first column with col-
names(data_nosnp)[1]="outcome"), fixed covariates (for example, sex, age and
the first 18 PCs) if there are, and without SNPs or haplotypes.

hap1 a data frame of the SNPs’ genotype of the first genome. The genotype of a SNP
for each individual is either 0 (reference allele) or 1 (alternative allele).

hap2 a data frame of the SNPs’ genotype of the second genome. The genotype of a
SNP for each individual is either 0 (reference allele) or 1 (alternative allele). By
default, hap2=hap1 representing haploid.

train_proportion

a positive number between 0 and 1 giving the proportion of the training dataset
when splitting data into 2 folds. By default, train_proportion=0.5.

sim_times an integer giving the number of simulations in Step 1 (see details). By default,
sim_times=5.

featurecap a positive integer which manually sets the maximum number of independent
features. By default, featurecap=40.

usebinary a non-negative number representing different models. Use linear model if usebinary=0,
use logistic regression model via fastglm if usebinary=1 (by default), and use
logistic regression model via glm if usebinary>1.

randomorder logical. If randomorder=TRUE (default), use random order of all the SNPs to
add SNPs in cumulative HTRX.

fixorder a vector of the fixed order of SNPs to be added in cumulative HTRX. This only
works by setting randomorder=FALSE. Otherwise, fixorder=NULL (default).
The length of fixorder can be smaller than the total number of SNPs, i.e. users
can specify the order of some instead of all of the SNPs.

method the method used for data splitting, either "simple" (default) or "stratified".

criteria the criteria for model selection, either "BIC" (default), "AIC" or "lasso".

gain logical. If gain=TRUE (default), report the variance explained in addition to fixed
covariates; otherwise, report the total variance explained by all the variables.

8 do_cumulative_htrx

nmodel a positive integer specifying the number of candidate models that the criterion
selects. By default, nmodel=3.

runparallel logical. Use parallel programming based on mclapply function from R package
"parallel" or not. Note that for Windows users, mclapply doesn’t work, so
please set runparallel=FALSE (default).

mc.cores an integer giving the number of cores used for parallel programming. By default,
mc.cores=6. This only works when runparallel=TRUE.

rareremove logical. Remove rare SNPs and haplotypes or not. By default, rareremove=FALSE.

rare_threshold a numeric number below which the haplotype or SNP is removed. This only
works when rareremove=TRUE. By default, rare_threshold=0.001.

L a positive integer. The cumulative HTRX starts with haplotypes templates com-
taining L SNPs. By default, L=6. Let nsnp be the number of SNPs in total, L
must be smaller than nsnp-1.

dataseed a vector of the seed that each simulation in Step 1 (see details) uses. The length
of dataseed must be the same as sim_times. By default, dataseed=1:sim_times.

fold a positive integer specifying how many folds the data should be split into for
cross-validation.

kfoldseed a positive integer specifying the seed used to split data for k-fold cross valida-
tion. By default, kfoldseed=123.

htronly logical. If htronly=TRUE, only haplotypes with interaction between all the
SNPs will be selected. Please set max_int=NULL when htronly=TRUE. By de-
fault, htronly=FALSE.

max_int a positive integer which specifies the maximum number of SNPs that can inter-
act. If no value is given, interactions between all the SNPs will be considered.

returnwork logical. If returnwork=TRUE, return a vector of the maximum number of fea-
tures that are assessed in each simulation, excluding the fixed covariates. This
is used to assess how much computational ’work’ is done in Step 1(2) of HTRX
(see details). By default, returnwork=FALSE.

verbose logical. If verbose=TRUE, print out the inference steps. By default, verbose=FALSE.

splitseed a positive integer giving the seed that a single simulation in Step 1 (see details)
uses.

featuredata a data frame of the feature data, e.g. haplotype data created by HTRX or SNPs.
These features exclude all the data in data_nosnp, and will be selected using
2-step cross-validation.

train a vector of the indexes of the training data.

featurename a character giving the names of features (haplotypes).

Details

Longer haplotypes are important for discovering interactions. However, there are 3k-1 haplo-
types in HTRX if the region contains k SNPs, making HTRX (do_cv) unrealistic to apply on for
regions with large numbers of SNPs. To address this issue, we proposed "cumulative HTRX"
(do_cumulative_htrx) that enables HTRX to run on longer haplotypes, i.e. haplotypes which
include at least 7 SNPs (we recommend). There are 2 steps to implement cumulative HTRX.

do_cumulative_htrx 9

Step 1: extend haplotypes and select candidate models.

(1) Randomly sample a subset (50 use stratified sampling when the outcome is binary. This subset
is used for all the analysis in (2) and (3);

(2) Start with L randomly chosen SNPs from the entire k SNPs, and keep the top M haplotypes
that are chosen from the forward regression. Then add another SNP to the M haplotypes to create
3M+2 haplotypes. There are 3M haplotypes obtained by adding "0", "1" or "X" to the previous
M haplotypes, as well as 2 bases of the added SNP, i.e. "XX...X0" and "XX...X1" (as "X" was
implicitly used in the previous step). The top M haplotypes from them are then selected using
forward regression. Repeat this process until obtaining M haplotypes which include k-1 SNPs;

(3) Add the last SNP to create 3M+2 haplotypes. Afterwards, if criteria="AIC" or criteria="BIC",
start from a model with fixed covariates (e.g. 18 PCs, sex and age), and perform forward regression
on the subset, i.e. iteratively choose a feature (in addition to the fixed covariates) to add whose
inclusion enables the model to explain the largest variance, and select s models with the lowest
Akaike information criterion (AIC) or Bayesian Information Criteria (BIC) to enter the candidate
model pool; If criteria="lasso", using least absolute shrinkage and selection operator (lasso) to
directly select the best s models to enter the candidate model pool;

(4) repeat (1)-(3) B times, and select all the different models in the candidate model pool as the
candidate models.

Step 2: select the best model using k-fold cross-validation.

(1) Randomly split the whole data into k groups with approximately equal sizes, using stratified
sampling when the outcome is binary;

(2) In each of the k folds, use a fold as the validation dataset, a fold as the test dataset, and the
remaining folds as the training dataset. Then, fit all the candidate models on the training dataset,
and use these fitted models to compute the additional variance explained by features (out-of-sample
variance explained) in the validation and test dataset. Finally, select the candidate model with the
biggest average out-of-sample variance explained in the validation set as the best model, and report
the out-of-sample variance explained in the test set.

Function do_cumulative_htrx_step1 is the Step 1 (1)-(3) described above. Function extend_haps
is used to select haplotypes in the Step 1 (2) described above. Function make_cumulative_htrx is
used to generate the haplotype data (by adding a new SNP into the haplotypes) from M haplotypes
to 3M+2 haplotypes, which is also described in the Step 1 (2)-(3).

When investigating haplotypes with interactions between at most 2 SNPs, L is suggested to be no
bigger than 10. When investigating haplotypes with interactions between at most 3 SNPs, L should
not be bigger than 9. If haplotypes with interactions between more than 4 SNPs are investigated, L
is suggested to be 6 (which is the default value).

Value

do_cumulative_htrx returns a list containing the best model selected, and the out-of-sample vari-
ance explained in each test set.

do_cv_step1 returns a list of three candidate models selected by a single simulation.

extend_haps returns a character of the names of the selected features.

make_cumulative_htrx returns a data frame of the haplotype matrix.

10 do_cumulative_htrx

References

Yang Y, Lawson DJ. HTRX: an R package for learning non-contiguous haplotypes associated with
a phenotype. Bioinformatics Advances 3.1 (2023): vbad038.

Barrie, W., Yang, Y., Irving-Pease, E.K. et al. Elevated genetic risk for multiple sclerosis emerged
in steppe pastoralist populations. Nature 625, 321–328 (2024).

Eforn, B. "Bootstrap methods: another look at the jackknife." The Annals of Statistics 7 (1979):
1-26.

Schwarz, Gideon. "Estimating the dimension of a model." The annals of statistics (1978): 461-464.

McFadden, Daniel. "Conditional logit analysis of qualitative choice behavior." (1973).

Akaike, Hirotugu. "A new look at the statistical model identification." IEEE transactions on auto-
matic control 19.6 (1974): 716-723.

Tibshirani, Robert. "Regression shrinkage and selection via the lasso." Journal of the Royal Statis-
tical Society: Series B (Methodological) 58.1 (1996): 267-288.

Examples

use dataset "example_hap1", "example_hap2" and "example_data_nosnp"
"example_hap1" and "example_hap2" are
both genomes of 8 SNPs for 5,000 individuals (diploid data)
"example_data_nosnp" is a simulated dataset
which contains the outcome (binary), sex, age and 18 PCs

visualise the covariates data
we will use only the first two covariates: sex and age in the example
head(HTRX::example_data_nosnp)

visualise the genotype data for the first genome
head(HTRX::example_hap1)

we perform cumulative HTRX on all the 8 SNPs using 2-step cross-validation
to compute additional variance explained by haplotypes
If the data is haploid, please set hap2=HTRX::example_hap1
If you want to compute total variance explained, please set gain=FALSE
For Linux/MAC users, we recommend setting runparallel=TRUE

cumu_CV_results <- do_cumulative_htrx(HTRX::example_data_nosnp[1:500,1:3],
HTRX::example_hap1[1:500,],
HTRX::example_hap2[1:500,],
train_proportion=0.5,sim_times=1,
featurecap=10,usebinary=1,
randomorder=TRUE,method="stratified",
criteria="BIC",gain=TRUE,
runparallel=FALSE,verbose=TRUE)

#This result would be more precise when setting larger sim_times and featurecap

do_cv 11

do_cv Two-stage HTRX: Model selection on short haplotypes

Description

Two-step cross-validation used to select the best HTRX model. It can be applied to select haplotypes
based on HTR, or select single nucleotide polymorphisms (SNPs).

Usage

do_cv(
data_nosnp,
featuredata,
train_proportion = 0.5,
sim_times = 5,
featurecap = dim(featuredata)[2],
usebinary = 1,
method = "simple",
criteria = "BIC",
gain = TRUE,
nmodel = 3,
dataseed = 1:sim_times,
runparallel = FALSE,
mc.cores = 6,
fold = 10,
kfoldseed = 123,
returnwork = FALSE,
verbose = FALSE

)

do_cv_step1(
data_nosnp,
featuredata,
train_proportion = 0.5,
featurecap = dim(featuredata)[2],
usebinary = 1,
method = "simple",
criteria = "BIC",
nmodel = 3,
splitseed = 123,
runparallel = FALSE,
mc.cores = 6,
verbose = FALSE

)

infer_step1(
data_nosnp,

12 do_cv

featuredata,
train,
criteria = "BIC",
featurecap = dim(featuredata)[2],
usebinary = 1,
nmodel = nmodel,
runparallel = FALSE,
mc.cores = 6,
verbose = FALSE

)

infer_fixedfeatures(
data_nosnp,
featuredata,
train = (1:nrow(data_nosnp))[-test],
test,
features,
coefficients = NULL,
gain = TRUE,
usebinary = 1,
R2only = FALSE,
verbose = FALSE

)

Arguments

data_nosnp a data frame with outcome (the outcome must be the first column with col-
names(data_nosnp)[1]="outcome"), fixed covariates (for example, sex, age and
the first 18 PCs) if there are, and without SNPs or haplotypes.

featuredata a data frame of the feature data, e.g. haplotype data created by HTRX or SNPs.
These features exclude all the data in data_nosnp, and will be selected using
2-step cross-validation.

train_proportion

a positive number between 0 and 1 giving the proportion of the training dataset
when splitting data into 2 folds. By default, train_proportion=0.5.

sim_times an integer giving the number of simulations in Step 1 (see details). By default,
sim_times=5.

featurecap a positive integer which manually sets the maximum number of independent
features. By default, featurecap=40.

usebinary a non-negative number representing different models. Use linear model if usebinary=0,
use logistic regression model via fastglm if usebinary=1 (by default), and use
logistic regression model via glm if usebinary>1.

method the method used for data splitting, either "simple" (default) or "stratified".

criteria the criteria for model selection, either "BIC" (default), "AIC" or "lasso".

gain logical. If gain=TRUE (default), report the variance explained in addition to fixed
covariates; otherwise, report the total variance explained by all the variables.

do_cv 13

nmodel a positive integer specifying the number of candidate models that the criterion
selects. By default, nmodel=3.

dataseed a vector of the seed that each simulation in Step 1 (see details) uses. The length
of dataseed must be the same as sim_times. By default, dataseed=1:sim_times.

runparallel logical. Use parallel programming based on mclapply function from R package
"parallel" or not. Note that for Windows users, mclapply doesn’t work, so
please set runparallel=FALSE (default).

mc.cores an integer giving the number of cores used for parallel programming. By default,
mc.cores=6. This only works when runparallel=TRUE.

fold a positive integer specifying how many folds the data should be split into for
cross-validation.

kfoldseed a positive integer specifying the seed used to split data for k-fold cross valida-
tion. By default, kfoldseed=123.

returnwork logical. If returnwork=TRUE, return a vector of the maximum number of fea-
tures that are assessed in each simulation, excluding the fixed covariates. This
is used to assess how much computational ’work’ is done in Step 1(2) of HTRX
(see details). By default, returnwork=FALSE.

verbose logical. If verbose=TRUE, print out the inference steps. By default, verbose=FALSE.

splitseed a positive integer giving the seed of data split.

train a vector of the indexes of the training data.

test a vector of the indexes of the test data.

features a character of the names of the fixed features, excluding the intercept.

coefficients a vector giving the coefficients of the fixed features, including the intercept. If
the fixed features don’t have fixed coefficients, set coefficients=NULL (de-
fault).

R2only logical. If R2only=TRUE, function infer_fixedfeatures only returns the vari-
ance explained in the test data. By default, R2only=FALSE.

Details

Function do_cv is the main function used for selecting haplotypes from HTRX or SNPs. It is a
two-step algorithm and is used for alleviating overfitting.

Step 1: select candidate models. This is to address the model search problem, and is chosen to
obtain a set of models more diverse than traditional bootstrap resampling.

(1) Randomly sample a subset (50 Specifically, when the outcome is binary, stratified sampling is
used to ensure the subset has approximately the same proportion of cases and controls as the whole
data;

(2) If criteria="AIC" or criteria="BIC", start from a model with fixed covariates (e.g. 18 PCs,
sex and age), and perform forward regression on the subset, i.e. iteratively choose a feature (in
addition to the fixed covariates) to add whose inclusion enables the model to explain the largest
variance, and select s models with the lowest Akaike information criterion (AIC) or Bayesian Infor-
mation Criteria (BIC) to enter the candidate model pool; If criteria="lasso", using least absolute
shrinkage and selection operator (lasso) to directly select the best s models to enter the candidate
model pool;

14 do_cv

(3) repeat (1)-(2) B times, and select all the different models in the candidate model pool as the
candidate models.

Step 2: select the best model using k-fold cross-validation.

(1) Randomly split the whole data into k groups with approximately equal sizes, using stratified
sampling when the outcome is binary;

(2) In each of the k folds, use a fold as the validation dataset, a fold as the test dataset, and the
remaining folds as the training dataset. Then, fit all the candidate models on the training dataset,
and use these fitted models to compute the additional variance explained by features (out-of-sample
variance explained) in the validation and test dataset. Finally, select the candidate model with the
biggest average out-of-sample variance explained in the validation set as the best model, and report
the out-of-sample variance explained in the test set.

Function do_cv_step1 is the Step 1 (1)-(2) described above. Function infer_step1 is the Step 1
(2) described above. Function infer_fixedfeatures is used to fit all the candidate models on the
training dataset, and compute the additional variance explained by features (out-of-sample R2) in
the test dataset, as described in the Step 2 (2) above.

Value

do_cv returns a list containing the best model selected, and the out-of-sample variance explained in
each test set.

do_cv_step1 and infer_step1 return a list of three candidate models selected by a single simula-
tion.

infer_fixedfeatures returns a list of the variance explained in the test set if R2only=TRUE, oth-
erwise, it returns a list of the variance explained in the test set, the model including all the variables,
and the null model, i.e. the model with outcome and fixed covariates only.

References

Yang Y, Lawson DJ. HTRX: an R package for learning non-contiguous haplotypes associated with
a phenotype. Bioinformatics Advances 3.1 (2023): vbad038.

Barrie, W., Yang, Y., Irving-Pease, E.K. et al. Elevated genetic risk for multiple sclerosis emerged
in steppe pastoralist populations. Nature 625, 321–328 (2024).

Eforn, B. "Bootstrap methods: another look at the jackknife." The Annals of Statistics 7 (1979):
1-26.

Schwarz, Gideon. "Estimating the dimension of a model." The annals of statistics (1978): 461-464.

McFadden, Daniel. "Conditional logit analysis of qualitative choice behavior." (1973).

Akaike, Hirotugu. "A new look at the statistical model identification." IEEE transactions on auto-
matic control 19.6 (1974): 716-723.

Tibshirani, Robert. "Regression shrinkage and selection via the lasso." Journal of the Royal Statis-
tical Society: Series B (Methodological) 58.1 (1996): 267-288.

Examples

use dataset "example_hap1", "example_hap2" and "example_data_nosnp"
"example_hap1" and "example_hap2" are
both genomes of 8 SNPs for 5,000 individuals (diploid data)

do_cv_direct 15

"example_data_nosnp" is an example dataset
which contains the outcome (binary), sex, age and 18 PCs

visualise the covariates data
we will use only the first two covariates: sex and age in the example
head(HTRX::example_data_nosnp)

visualise the genotype data for the first genome
head(HTRX::example_hap1)

we perform HTRX on the first 4 SNPs
we first generate all the haplotype data, as defined by HTRX
HTRX_matrix=make_htrx(HTRX::example_hap1[1:300,1:4],

HTRX::example_hap2[1:300,1:4])

If the data is haploid, please set
HTRX_matrix=make_htrx(HTRX::example_hap1[1:300,1:4],
HTRX::example_hap1[1:300,1:4])

then perform HTRX using 2-step cross-validation in a single small example
to compute additional variance explained by haplotypes
If you want to compute total variance explained, please set gain=FALSE
CV_results <- do_cv(HTRX::example_data_nosnp[1:300,1:2],

HTRX_matrix,train_proportion=0.5,
sim_times=1,featurecap=4,usebinary=1,
method="simple",criteria="BIC",
gain=TRUE,runparallel=FALSE,verbose=TRUE)

#This result would be more precise when setting larger sim_times and featurecap

do_cv_direct Direct HTRX: k-fold cross-validation on short haplotypes

Description

Direct k-fold cross-validation used to compute the out-of-sample variance explained by selected fea-
tures from HTRX. It can be applied to select haplotypes based on HTR, or select single nucleotide
polymorphisms (SNPs).

Usage

do_cv_direct(
data_nosnp,
featuredata,
featurecap = dim(featuredata)[2],
usebinary = 1,
method = "simple",
criteria = "BIC",
gain = TRUE,

16 do_cv_direct

runparallel = FALSE,
mc.cores = 6,
fold = 10,
kfoldseed = 123,
verbose = FALSE

)

Arguments

data_nosnp a data frame with outcome (the outcome must be the first column), fixed covari-
ates (for example, sex, age and the first 18 PCs) if there are, and without SNPs
or haplotypes.

featuredata a data frame of the feature data, e.g. haplotype data created by HTRX or SNPs.
These features exclude all the data in data_nosnp, and will be selected using
2-step cross-validation.

featurecap a positive integer which manually sets the maximum number of independent
features. By default, featurecap=40.

usebinary a non-negative number representing different models. Use linear model if usebinary=0,
use logistic regression model via fastglm if usebinary=1 (by default), and use
logistic regression model via glm if usebinary>1.

method the method used for data splitting, either "simple" (default) or "stratified".

criteria the criteria for model selection, either "BIC" (default), "AIC" or "lasso".

gain logical. If gain=TRUE (default), report the variance explained in addition to fixed
covariates; otherwise, report the total variance explained by all the variables.

runparallel logical. Use parallel programming based on mclapply function from R package
"parallel" or not. Note that for Windows users, mclapply doesn’t work, so
please set runparallel=FALSE (default).

mc.cores an integer giving the number of cores used for parallel programming. By default,
mc.cores=6. This only works when runparallel=TRUE.

fold a positive integer specifying how many folds the data should be split into for
cross-validation.

kfoldseed a positive integer specifying the seed used to split data for k-fold cross valida-
tion. By default, kfoldseed=123.

verbose logical. If verbose=TRUE, print out the inference steps. By default, verbose=FALSE.

Details

Function do_cv_direct directly performs k-fold cross-validation: features are selected from the
training set using a specified criteria, and the out-of-sample variance explained by the selected
features are computed on the test set. This function runs faster than do_cv with large sim_times,
but may lose some accuracy, and it doesn’t return a fixed set of features.

Value

do_cv_direct returns a list of the out-of-sample variance explained in each of the test set, and the
features selected in each of the k training sets.

do_cv_direct 17

References

Yang Y, Lawson DJ. HTRX: an R package for learning non-contiguous haplotypes associated with
a phenotype. Bioinformatics Advances 3.1 (2023): vbad038.

Barrie, W., Yang, Y., Irving-Pease, E.K. et al. Elevated genetic risk for multiple sclerosis emerged
in steppe pastoralist populations. Nature 625, 321–328 (2024).

Eforn, B. "Bootstrap methods: another look at the jackknife." The Annals of Statistics 7 (1979):
1-26.

Schwarz, Gideon. "Estimating the dimension of a model." The annals of statistics (1978): 461-464.

McFadden, Daniel. "Conditional logit analysis of qualitative choice behavior." (1973).

Akaike, Hirotugu. "A new look at the statistical model identification." IEEE transactions on auto-
matic control 19.6 (1974): 716-723.

Tibshirani, Robert. "Regression shrinkage and selection via the lasso." Journal of the Royal Statis-
tical Society: Series B (Methodological) 58.1 (1996): 267-288.

Examples

use dataset "example_hap1", "example_hap2" and "example_data_nosnp"
"example_hap1" and "example_hap2" are
both genomes of 8 SNPs for 5,000 individuals (diploid data)
"example_data_nosnp" is an example dataset
which contains the outcome (binary), sex, age and 18 PCs

visualise the covariates data
we will use only the first two covariates: sex and age in the example
head(HTRX::example_data_nosnp)

visualise the genotype data for the first genome
head(HTRX::example_hap1)

we perform HTRX on the first 4 SNPs
we first generate all the haplotype data, as defined by HTRX
HTRX_matrix=make_htrx(HTRX::example_hap1[,1:4],

HTRX::example_hap2[,1:4])

If the data is haploid, please set
HTRX_matrix=make_htrx(HTRX::example_hap1[,1:4],
HTRX::example_hap1[,1:4])

next compute the maximum number of independent features
featurecap=htrx_max(nsnp=4,cap=10)
then perform HTRX using direct cross-validation
If we want to compute the total variance explained
we can set gain=FALSE in the above example

htrx_results <- do_cv_direct(HTRX::example_data_nosnp[,1:3],
HTRX_matrix,featurecap=featurecap,
usebinary=1,method="stratified",
criteria="lasso",gain=TRUE,
runparallel=FALSE,verbose=TRUE)

18 example_hap1

example_data_nosnp Example covariate data

Description

Example covariate data including outcome (binary), sex, age and 18 PCs for 5,000 individuals.

Usage

data("example_data_nosnp")

Format

A data frame with 5,000 observations on a binary outcome named outcome and 20 numeric covari-
ates named sex, age and PC1-PC18.

Examples

data(example_data_nosnp)

example_hap1 Example genotype data for the first genome

Description

Example genotype data for the first genome of 8 SNPs for 5,000 individuals.

Usage

data("example_hap1")

Format

A data frame with 5,000 observations on 8 binary variables named SNP1-SNP8 ("0" denotes the
reference allele while "1" denotes the alternative allele).

Examples

data(example_hap1)

example_hap2 19

example_hap2 Example genotype data for the second genome

Description

Example genotype data for the second genome of 8 SNPs for 5,000 individuals.

Usage

data("example_hap2")

Format

A data frame with 5,000 observations on 8 binary variables named SNP1-SNP8 ("0" denotes the
reference allele while "1" denotes the alternative allele).

Examples

data(example_hap2)

htrx_max Maximum independent features for HTRX

Description

The maximum number of independent features in principle from haplotypes (i.e. interactions be-
tween SNPs) generated by Haplotype Trend Regression with eXtra flexibility (HTRX).

Usage

htrx_max(nsnp, n_haps = NULL, cap = 40, max_int = NULL, htr = FALSE)

Arguments

nsnp a positive integer giving the number of single nucleotide polymorphisms (SNPs)
included in the haplotypes.

n_haps a positive integer giving the number of haplotypes, which is also the number of
columns of the HTRX or HTR matrix.

cap a positive integer which manually sets the maximum number of independent
features. By default, cap=40.

max_int a positive integer which specifies the maximum number of SNPs that can inter-
act. If no value is given (by default), interactions between all the SNPs will be
considered.

htr logical. If htr=TRUE, the functions returns the maximum number of independent
features for HTR. By default, htr=FALSE.

20 htrx_nfeatures

Details

The maximum number of independent features in principle is 2nsnp-1 for haplotypes containing
interactions between all different numbers of SNPs. However, if max_int < nsnp, i.e. only the
interactions between at most max_int SNPs are investigated, there will be fewer maximum number
of independent features. You can also manually set the upper limit of independent features (by
setting cap) that can be included in the final HTRX or HTR model.

Value

htrx_max returns a positive integer giving the maximum number of independent features to be
included in the analysis.

Examples

the maximum number of independent haplotypes consisted of 4 SNPs from HTRX
htrx_max(nsnp=4,n_haps=(3^4-1))

htrx_nfeatures Total number of features for HTRX

Description

The total number of features in principle from haplotypes (i.e. interactions between SNPs) gener-
ated by Haplotype Trend Regression with eXtra flexibility (HTRX) .

Usage

htrx_nfeatures(nsnp, max_int = NULL, htr = FALSE)

Arguments

nsnp a positive integer giving the number of single nucleotide polymorphisms (SNPs)
included in the haplotypes.

max_int a positive integer which specifies the maximum number of SNPs that can inter-
act. If no value is given (by default), interactions between all the SNPs will be
considered.

htr logical. If htr=TRUE, the function returns the total number of features for HTR.
By default, htr=FALSE.

Details

The total number of features in principle is 2nsnp-1 for haplotypes containing interactions between
all different numbers of SNPs. However, if max_int < nsnp, i.e. only the interactions between at
most max_int SNPs are investigated, there will be fewer total number of features.

make_htrx 21

Value

htrx_nfeatures returns a positive integer giving the total number of features that each analysis
includes.

Examples

the total number of haplotypes consisted of 6 SNPs
for at most 3-SNP interactions
htrx_nfeatures(nsnp=6,max_int=3)

make_htrx Generate haplotype data

Description

Generate the feature data, either the genotype data for single nucleotide polymorphisms (SNPs)
(make_snp), the feature data for Haplotype Trend Regression (HTR) (make_htr), or the feature
data for Haplotype Trend Regression with eXtra flexibility (HTRX) (make_htrx).

Usage

make_htrx(
hap1,
hap2 = hap1,
rareremove = FALSE,
rare_threshold = 0.001,
fixedfeature = NULL,
max_int = NULL

)

make_htr(hap1, hap2 = hap1, rareremove = FALSE, rare_threshold = 0.001)

make_snp(hap1, hap2 = hap1, rareremove = FALSE, rare_threshold = 0.001)

Arguments

hap1 a data frame of the SNPs’ genotype of the first genome. The genotype of a SNP
for each individual is either 0 (reference allele) or 1 (alternative allele).

hap2 a data frame of the SNPs’ genotype of the second genome. The genotype of a
SNP for each individual is either 0 (reference allele) or 1 (alternative allele). By
default, hap2=hap1 representing haploid.

rareremove logical. Remove rare SNPs and haplotypes or not. By default, rareremove=FALSE.
rare_threshold a numeric number below which the haplotype or SNP is removed. This only

works when rareremove=TRUE. By default, rare_threshold=0.001.
fixedfeature a character consisted of the names of haplotypes. This parameter can be NULL

(by default) if all the haplotypes are used as variables.
max_int a positive integer which specifies the maximum number of SNPs that can inter-

act. If no value is given, interactions between all the SNPs will be considered.

22 themodel

Details

If there are n SNPs, there are 2n different haplotypes created by HTR, and 3n-1 different haplotypes
created by HTRX.

When the data is haploid, please use the default setting hap2=hap1.

Value

a data frame of the feature data (either for SNPs, HTR or HTRX).

Examples

create SNP data for both genomes (diploid data)
hap1=as.data.frame(matrix(0,nrow=100,ncol=4))
hap2=as.data.frame(matrix(0,nrow=100,ncol=4))
colnames(hap1)=colnames(hap2)=c('a','b','c','d')
p=runif(4,0.01,0.99)
for(j in 1:4){

hap1[,j]=rbinom(100,1,p[j])
hap2[,j]=rbinom(100,1,p[j])

}

create the SNP data without removing rare SNPs
make_snp(hap1,hap2)

create feature data for "HTR" removing haplotypes rarer than 0.5%
make_htr(hap1,hap2,rareremove=TRUE,0.005)

create feature data for "HTRX"
retaining haplotypes with interaction across at most 3 SNPs
make_htrx(hap1,hap2,max_int=3)

create feature data for feature "01XX" and "X101"
without removing haplotypes
make_htrx(hap1,hap2,fixedfeature=c("01XX","X101"))

If the data is haploid instead of diploid
create feature data for "HTRX" without removing haplotypes
make_htrx(hap1,hap1)

themodel Model fitting

Description

Model-agnostic functions for model fitting (both linear and generalized linear models).

Usage

themodel(formula, data, usebinary = 1, clean = TRUE)

themodel 23

Arguments

formula a formula for model-fitting, starting with outcome~.

data a data frame contains all the variables included in the formula. The outcome
must be the first column with colnames(data)[1]="outcome".

usebinary a non-negative number representing different models. Use linear model if usebinary=0,
use logistic regression model via fastglm if usebinary=1 (by default), and use
logistic regression model via glm if usebinary>1.

clean logical. If clean=TRUE (by default), remove additional storages that the predict
function, "AIC" and "BIC" criteria do not need.

Details

This function returns a fitted model (either linear model or logistic regression model). For logistic
regression, we use function fastglm from fastglm package, which is much faster than glm.

Value

a fitted model.

Examples

create the dataset for variables and outcome
x=matrix(runif(100,-2,2),ncol=5)
outcome=0.5*x[,2] - 0.8*x[,4] + 0.3*x[,5]
data1=data.frame(outcome,x)

fit a linear model
themodel(outcome~.,data1,usebinary=0)

create binary outcome
outcome=outcome>runif(100,-2,2)
outcome[outcome]=1
data2=data.frame(outcome,x)

fit a logistic regression model
themodel(outcome~.,data2,usebinary=1)

Index

∗ datasets
example_data_nosnp, 18
example_hap1, 18
example_hap2, 19

computeR2, 3

data_split, 4
do_cumulative_htrx, 2, 4, 5
do_cumulative_htrx_step1

(do_cumulative_htrx), 5
do_cv, 2, 4, 11, 16
do_cv_direct, 2, 15
do_cv_step1 (do_cv), 11

example_data_nosnp, 18
example_hap1, 18
example_hap2, 19
extend_haps (do_cumulative_htrx), 5

HTRX (HTRX-package), 2
HTRX-package, 2
htrx_max, 19
htrx_nfeatures, 20

infer_fixedfeatures (do_cv), 11
infer_step1 (do_cv), 11

kfold_split (data_split), 4

make_cumulative_htrx
(do_cumulative_htrx), 5

make_htr (make_htrx), 21
make_htrx, 21
make_snp (make_htrx), 21
mypredict (computeR2), 3

themodel, 22
twofold_split (data_split), 4

24

	HTRX-package
	computeR2
	data_split
	do_cumulative_htrx
	do_cv
	do_cv_direct
	example_data_nosnp
	example_hap1
	example_hap2
	htrx_max
	htrx_nfeatures
	make_htrx
	themodel
	Index

