Title: | Calculate Optical Parameters from Spindle Stage Measurements |
---|---|
Description: | Calculates optical parameters of crystals like the optical axes, the axis angle 2V, and the direction of the principal axes of the indicatrix from extinction angles measured on a spindle stage mounted on a polarisation microscope stage. Details of the method can be found in Dufey (2017) <arXiv:1703.00070>. |
Authors: | Florian Dufey [aut, cre] |
Maintainer: | Florian Dufey <[email protected]> |
License: | GPL-3 |
Version: | 0.5 |
Built: | 2024-12-01 08:41:47 UTC |
Source: | CRAN |
Adularia data from: Bloss, F. D., and D. Riess. "Computer determination of 2V and indicatrix orientation from extinction data." American Mineralogist 58 (1973): 1052-1061.
data("Bloss73")
data("Bloss73")
A data frame with 19 observations on the following 2 variables.
S
a numeric vector
MS
a numeric vector
res<-fit.joel(Bloss73,MR=180.95,cw="ccw",optimMR=FALSE)
res<-fit.joel(Bloss73,MR=180.95,cw="ccw",optimMR=FALSE)
Data from F. Donald Bloss, "The spindle stage, principles and practice", Cambridge UP, Cambridge, 1981, p. 226, for Topaz provided by Prof. Carman.
data("Carman")
data("Carman")
A data frame with 36 observations of the following 2 variables.
S
a numeric vector
MS
a numeric vector
res<-fit.joel(Carman,cw="ccw",optimMR=TRUE)
res<-fit.joel(Carman,cw="ccw",optimMR=TRUE)
Example data for Tiburon Albite from Bartelmehs, K. L., et al. "Excalibr II." Zeitschrift fuer Kristallographie 199.3-4 (1992): 185-196.
data("excalibrII")
data("excalibrII")
A data frame with 19 observations on the following 2 variables.
S
a numeric vector
MS
a numeric vector
res<-fit.joel(excalibrII,MR=180.15,cw="ccw",optimMR=FALSE)
res<-fit.joel(excalibrII,MR=180.15,cw="ccw",optimMR=FALSE)
Calculate the angle between the optical axes 2V, the optical axes in cartesian and polar coordinates and the principal axes of the dielectric tensor in cartesian and polar coordinates.
fit.joel(Data, MR = NULL, cw = c("ccw", "cw"),optimMR=FALSE)
fit.joel(Data, MR = NULL, cw = c("ccw", "cw"),optimMR=FALSE)
Data |
(data frame) containing the spindle angles S and the extinction angles ES |
MR |
(numeric) The reference azimuth; If numeric and optimMR==TRUE, this value will be used as a starting value for further optimization. If NULL, a starting value will be guessed. |
cw |
(character) string "cw" for a clockwise graduated table, "ccw" for a counter-clockwise graduated table (default) |
optimMR |
(logical) If FALSE, the provided MR will be used without further refinement, if TRUE, the MR will be refined so as to minimize the deviance |
(list) with elements:
coeffs |
list of the fitted parameters |
covmat |
matrix of covariances of the parameters |
delta2V |
list of estimate of 2V, its standard deviation and upper and lower confidence limits |
kart |
data frame with cartesian coordinates of the axes, sd, and confidence intervals |
sphaer |
data frame with S and ES values of the axes, sd, and confidence intervals |
principal |
data frame with S and MS angles to bring axes into extinction |
Extinctions |
data frame with S, MS, ES, calculated ES and ES-ES calculated |
Wulffdat |
data necessary to create a plot on the Wulff stereonet |
Florian Dufey <[email protected]>
# With 360 deg. data: res<-fit.joel(Carman,MR=NULL,cw="ccw",optimMR=TRUE) Wulffplot(res) #Plot data on a Wulff net #with 180 degree data: res<-fit.joel(Gunter,MR=-0.89,cw="cw",optimMR=FALSE) Wulffplot(res) #Plot data on a Wulff net
# With 360 deg. data: res<-fit.joel(Carman,MR=NULL,cw="ccw",optimMR=TRUE) Wulffplot(res) #Plot data on a Wulff net #with 180 degree data: res<-fit.joel(Gunter,MR=-0.89,cw="cw",optimMR=FALSE) Wulffplot(res) #Plot data on a Wulff net
Gunter, Mickey E., et al. "Results from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a spindle stage." MICROSCOPE-LONDON THEN CHICAGO-. 52.1 (2004): 23-39.
data("Gunter")
data("Gunter")
A data frame with 19 observations on the following 2 variables.
S
a numeric vector
MS
a numeric vector
res<-fit.joel(Gunter,MR=-0.89,cw="cw",optimMR=FALSE)
res<-fit.joel(Gunter,MR=-0.89,cw="cw",optimMR=FALSE)
Add a circle to a plot, with cross-hairs
pcirc(gcol = "black", border = "black", ndiv = 36)
pcirc(gcol = "black", border = "black", ndiv = 36)
gcol |
color of crosshairs |
border |
border color |
ndiv |
number of divisions for the circle |
no return values, used for side effects
Jonathan M. Lees <[email protected]>
plot(c(-1,1),c(-1,1)) pcirc(gcol = "black", border = "black", ndiv = 36)
plot(c(-1,1),c(-1,1)) pcirc(gcol = "black", border = "black", ndiv = 36)
Function Wulffnet Plot a Wulffnet modified from RFOC package; Wulff net rotated
Wulffnet(add = FALSE, col = gray(0.7), border = "black", lwd = 1)
Wulffnet(add = FALSE, col = gray(0.7), border = "black", lwd = 1)
add |
Logical, TRUE=add to existing plot |
col |
color |
border |
border color |
lwd |
line width |
Plots equal-angle stereonet as opposed to equal-area. In comparison to the original Wnet function from RFOC package, Wulff net is rotated by 90 degrees so as to conform with custom in mineralogy.
graphical side effects
Jonathan M. Lees <[email protected]>, Florian Dufey <[email protected]>
Wulffnet(add = FALSE, col = gray(0.7), border = "black", lwd = 1)
Wulffnet(add = FALSE, col = gray(0.7), border = "black", lwd = 1)
Function Wulffplot Plot the S and ES values of measured points calculated points and of all axes on a Wulff stereonet
Wulffplot(x)
Wulffplot(x)
x |
(list) Output list from the fit.joel function |
Florian Dufey <[email protected]>
res<-fit.joel(Gunter,MR=-0.89,cw="cw",optimMR=FALSE) Wulffplot(res)
res<-fit.joel(Gunter,MR=-0.89,cw="cw",optimMR=FALSE) Wulffplot(res)
Function Wulffpoint Plots Points in the Wulffnet given S and ES
Wulffpoint(ES, S, col = 2, pch = 5, bg="white" , lab = "")
Wulffpoint(ES, S, col = 2, pch = 5, bg="white" , lab = "")
ES |
(numeric) azimuth (extinction angle) in degrees |
S |
(numeric) spindle angle in degrees |
col |
color |
pch |
symbol type |
lab |
label |
bg |
background colour of symbol |
Florian Dufey <[email protected]>
Wnet
Wulffnet() Wulffpoint(23, 34)
Wulffnet() Wulffpoint(23, 34)