Title: | Procedures for Gaussian and Non Gaussian Geostatistical (Large) Data Analysis |
---|---|
Description: | Functions for Gaussian and Non Gaussian (bivariate) spatial and spatio-temporal data analysis are provided for a) (fast) simulation of random fields, b) inference for random fields using standard likelihood and a likelihood approximation method called weighted composite likelihood based on pairs and b) prediction using (local) best linear unbiased prediction. Weighted composite likelihood can be very efficient for estimating massive datasets. Both regression and spatial (temporal) dependence analysis can be jointly performed. Flexible covariance models for spatial and spatial-temporal data on Euclidean domains and spheres are provided. There are also many useful functions for plotting and performing diagnostic analysis. Different non Gaussian random fields can be considered in the analysis. Among them, random fields with marginal distributions such as Skew-Gaussian, Student-t, Tukey-h, Sin-Arcsin, Two-piece, Weibull, Gamma, Log-Gaussian, Binomial, Negative Binomial and Poisson. See the URL for the papers associated with this package, as for instance, Bevilacqua and Gaetan (2015) <doi:10.1007/s11222-014-9460-6>, Bevilacqua et al. (2016) <doi:10.1007/s13253-016-0256-3>, Vallejos et al. (2020) <doi:10.1007/978-3-030-56681-4>, Bevilacqua et. al (2020) <doi:10.1002/env.2632>, Bevilacqua et. al (2021) <doi:10.1111/sjos.12447>, Bevilacqua et al. (2022) <doi:10.1016/j.jmva.2022.104949>, Morales-Navarrete et al. (2023) <doi:10.1080/01621459.2022.2140053>, and a large class of examples and tutorials. |
Authors: | Moreno Bevilacqua [aut, cre] , Víctor Morales-Oñate [aut] , Christian Caamaño-Carrillo [aut] |
Maintainer: | Moreno Bevilacqua <[email protected]> |
License: | GPL (>= 3) |
Version: | 2.0.8 |
Built: | 2024-12-19 06:57:00 UTC |
Source: | CRAN |
A ()-matrix containing lon/lat
and yearly total precipitation anomalies registered at 7.352 location sites in USA.
data(anomalies)
data(anomalies)
A numerical matrix of dimension .
Kaufman, C.G., Schervish, M.J., Nychka, D.W. (2008) Covariance tapering for likelihood-based estimation in large spatial data sets. Journal of the American Statistical Association, Theory & Methods, 103, 1545–1555.
A matrix containing maximum temperature in Australia in July 2011.
data(austemp)
data(austemp)
A ()-matrix containing longitude, latitude, maximum temperature,
and the 'so called' geometric temperature covariate.
Bevilacqua M., Caamaño C., Morales-Oñate V., Arellano-Valle R. B. (2020) Non-Gaussian Geostatistical Modeling using (skew) t Processes, Scandinavian Journal of Statistics.
The procedure control if the correlation model is bivariate.
CheckBiv(numbermodel)
CheckBiv(numbermodel)
numbermodel |
numeric; the number associated to a given correlation model. |
The function check if the correlation model is bivariate.
Return TRUE or FALSE depending if the correlation model is bivariate or not.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) CheckBiv(CkCorrModel("Bi_matern_sep"))
library(GeoModels) CheckBiv(CkCorrModel("Bi_matern_sep"))
The procedure controls the type of distance.
CheckDistance(distance)
CheckDistance(distance)
distance |
String; the type of distance, for the
description see |
The function check if the type of distance is valid.
Returns 0,1,2 for euclidean,geodesic, chordal distances respectively. Otherwise returns NULL.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Subroutine called by InitParam. The procedure controls if a covariance model is valid only on the sphere.
CheckSph(numbermodel)
CheckSph(numbermodel)
numbermodel |
Numeric; the code number for the covariance model. |
The function checks if a covariance is valid only on the sphere
Returns TRUE or FALSE
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
The procedure control if the correlation model is spacetime.
CheckST(numbermodel)
CheckST(numbermodel)
numbermodel |
numeric; the number associated to a given correlation model. |
The function check if the correlation model is spacetime.
Returns TRUE or FALSE depending if the correlation model is spacetime or not.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) CheckST(CkCorrModel("gneiting"))
library(GeoModels) CheckST(CkCorrModel("gneiting"))
The procedure controls if the correlation model inserted is correct.
CkCorrModel(corrmodel)
CkCorrModel(corrmodel)
corrmodel |
String; the name of a correlation model, for the
description see |
The procedure controls if the correlation model is correct
Return a number associated to a given correlation model if the model is considered in the package. Otherwise return NULL.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Subroutine called by the fitting procedures. The procedure controls the the validity of the input inserted by the users.
CkInput(coordx, coordy, coordt, coordx_dyn,corrmodel, data, distance, fcall, fixed, grid,likelihood, maxdist, maxtime, model, n, optimizer, param, radius, start, taper, tapsep, type, varest, vartype, weighted,copula,X)
CkInput(coordx, coordy, coordt, coordx_dyn,corrmodel, data, distance, fcall, fixed, grid,likelihood, maxdist, maxtime, model, n, optimizer, param, radius, start, taper, tapsep, type, varest, vartype, weighted,copula,X)
coordx |
A numeric ( |
coordy |
A numeric vector assigning 1-dimension of
coordinates; |
coordt |
A numeric vector assigning 1-dimension of temporal coordinates. |
corrmodel |
String; the name of a correlation model, for the
description see |
coordx_dyn |
A list of |
data |
A numeric vector or a ( |
distance |
String; the name of the spatial distance. The default is |
fcall |
String; |
fixed |
A named list giving the values of the parameters that
will be considered as known values. The listed parameters for a
given correlation function will be not estimated, i.e. if
|
grid |
Logical; if |
likelihood |
String; the configuration of the composite
likelihood. |
maxdist |
Numeric; an optional positive value indicating the maximum spatial distance considered in the composite-likelihood computation. |
maxtime |
Numeric; an optional positive value indicating the maximum temporal lag separation in the composite-likelihood. |
radius |
Numeric; the radius of the sphere in the case of lon-lat coordinates. The default is 6371, the radius of the earth. |
model |
String; the density associated to the likelihood
objects. |
n |
Numeric; the number of trials in a binomial random fields.
Default is |
optimizer |
String; the optimization algorithm
(see |
param |
A numeric vector of parameters, needed only in
simulation. See |
start |
A named list with the initial values of the
parameters that are used by the numerical routines in maximization
procedure. |
taper |
String; the name of the tapered correlation function. |
tapsep |
Numeric; an optional value indicating the separabe parameter in the space time quasi taper (see Details). |
type |
String; the type of the likelihood objects. If |
varest |
Logical; if |
vartype |
String; the type of estimation method for computing
the estimate variances, see |
weighted |
Logical; if |
copula |
String; the type of copula. It can be "Clayton" or "Gaussian" |
X |
Numeric; Matrix of space-time covariates in the linear mean specification. |
Subroutine called by the fitting procedures. The procedure controls the the validity of the input inserted by the users.
A list with the type of error associated with the input parameters.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Subroutine called by InitParam. The procedure controls the type of the composite-likelihood inserted by the users.
CkLikelihood(likelihood)
CkLikelihood(likelihood)
likelihood |
String; the configuration of the composite
likelihood. |
The function controls the type of the composite-likelihood inserted by the users.
The function returns a numeric positive integer, or NULL if the likelihood is invalid.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Subroutine called by InitParam. The procedure controls the type of random field inserted by the users.
CkModel(model)
CkModel(model)
model |
String; the density associated to the likelihood
objects. |
The function controls the type of random field inserted by the users.
The function returns a numeric positive integer, or NULL if the model is invalid.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Subroutine called by InitParam. The procedure controls the type of likelihood objects inserted by the users.
CkType(type)
CkType(type)
type |
String; the type of the likelihood objects. If |
The procedure checks the likelihood Object
The function returns a numeric positive integer, or NULL if the type of likelihood is invalid.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Subroutine called by InitParam. The procedure controls the method used to compute the estimates' variances.
CkVarType(type)
CkVarType(type)
type |
String; the method used to compute the estimates'
variances. If |
The procedure controls the method used to compute the estimates' variances
The function returns a numeric positive integer, or NULL if the method is invalid.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Subroutine called by GeoFit. The procedure estimates the model parameters by maximisation of the indipendence composite log-likelihood.
CompIndLik2(bivariate, coordx, coordy ,coordt, coordx_dyn, data, flagcorr, flagnuis, fixed,grid, lower, model, n, namescorr, namesnuis, namesparam, numparam, optimizer, onlyvar, parallel, param, spacetime, type, upper, namesupper, varest, ns, X, sensitivity,copula,MM)
CompIndLik2(bivariate, coordx, coordy ,coordt, coordx_dyn, data, flagcorr, flagnuis, fixed,grid, lower, model, n, namescorr, namesnuis, namesparam, numparam, optimizer, onlyvar, parallel, param, spacetime, type, upper, namesupper, varest, ns, X, sensitivity,copula,MM)
bivariate |
Logical; if |
coordx |
A numeric ( |
coordy |
A numeric vector assigning 1-dimension of
coordinates; |
coordt |
A numeric vector assigning 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
data |
A numeric vector or a ( |
flagcorr |
A numeric vector of binary values denoting which paramerters of the correlation function will be estimated. |
flagnuis |
A numeric vector of binary values denoting which nuisance paramerters will be estimated. |
fixed |
A numeric vector of parameters that will be considered as known values. |
grid |
Logical; if |
lower |
An optional named list giving the values for the lower bound of the space parameter
when the optimizer is |
model |
Numeric; the id value of the density associated to the likelihood objects. |
n |
Numeric; number of trials in a binomial random fields. |
namescorr |
String; the names of the correlation parameters. |
namesnuis |
String; the names of the nuisance parameters. |
namesparam |
String; the names of the parameters to be maximised. |
numparam |
Numeric; the number of parameters to be maximised. |
optimizer |
String; the optimization algorithm
(see |
onlyvar |
Logical; if |
parallel |
Logical; if |
param |
A numeric vector of parameters values. |
spacetime |
Logical; if |
type |
String; the type of the likelihood objects. If |
upper |
An optional named list giving the values for the upper bound
of the space parameter when the optimizer is or |
namesupper |
String; the names of the upper limit of the parameters. |
varest |
Logical; if |
ns |
Numeric; Number of (dynamical) temporal instants. |
X |
Numeric; Matrix of space-time covariates in the linear mean specification. |
sensitivity |
Logical; if |
copula |
String; the type of copula. It can be "Clayton" or "Gaussian" |
MM |
Numeric;a non constant fixed mean |
Return a list from an optim
call.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Subroutine called by GeoFit. The procedure estimates the model parameters by maximisation of the composite log-likelihood.
CompLik(copula,bivariate, coordx, coordy ,coordt, coordx_dyn, corrmodel, data,distance, flagcorr, flagnuis, fixed, GPU, grid,likelihood,local,lower, model, n, namescorr, namesnuis, namesparam, numparam, numparamcorr, optimizer, onlyvar, parallel, param, spacetime, type,upper, varest, vartype, weigthed, winconst, winstp,winconst_t, winstp_t, ns, X,sensitivity,MM,aniso)
CompLik(copula,bivariate, coordx, coordy ,coordt, coordx_dyn, corrmodel, data,distance, flagcorr, flagnuis, fixed, GPU, grid,likelihood,local,lower, model, n, namescorr, namesnuis, namesparam, numparam, numparamcorr, optimizer, onlyvar, parallel, param, spacetime, type,upper, varest, vartype, weigthed, winconst, winstp,winconst_t, winstp_t, ns, X,sensitivity,MM,aniso)
copula |
String; the type of copula. It can be "Clayton" or "Gaussian" |
bivariate |
Logical; if |
coordx |
A numeric ( |
coordy |
A numeric vector assigning 1-dimension of
coordinates; |
coordt |
A numeric vector assigning 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
corrmodel |
Numeric; the id of the correlation model. |
data |
A numeric vector or a ( |
distance |
String; the name of the spatial distance. The default is |
flagcorr |
A numeric vector of binary values denoting which paramerters of the correlation function will be estimated. |
flagnuis |
A numeric vector of binary values denoting which nuisance paramerters will be estimated. |
fixed |
A numeric vector of parameters that will be considered as known values. |
GPU |
Numeric; if |
grid |
Logical; if |
likelihood |
String; the configuration of the
compositelikelihood, see |
local |
Numeric; number of local work-items of the GPU |
lower |
An optional named list giving the values for the lower bound of the space parameter
when the optimizer is |
model |
Numeric; the id value of the density associated to the likelihood objects. |
n |
Numeric; number of trials in a binomial random fields. |
namescorr |
String; the names of the correlation parameters. |
namesnuis |
String; the names of the nuisance parameters. |
namesparam |
String; the names of the parameters to be maximised. |
numparam |
Numeric; the number of parameters to be maximised. |
numparamcorr |
Numeric; the number of correlation parameters. |
optimizer |
String; the optimization algorithm
(see |
onlyvar |
Logical; if |
parallel |
Logical; if |
param |
A numeric vector of parameters' values. |
spacetime |
Logical; if |
type |
String; the type of the likelihood objects. If |
upper |
An optional named list giving the values for the upper bound
of the space parameter when the optimizer is or |
varest |
Logical; if |
vartype |
String; the type of estimation method for computing
the estimate variances, see |
weigthed |
Logical; if |
winconst |
Numeric; a positive value for computing the spatial sub-window in the sub-sampling procedure. |
winstp |
Numeric; a value in |
winconst_t |
Numeric; a positive value for computing the temporal sub-window in the sub-sampling procedure. |
winstp_t |
Numeric; a value in |
ns |
Numeric; Number of (dynamical) temporal instants. |
X |
Numeric; Matrix of space-time covariates in the linear mean specification. |
sensitivity |
Logical; if |
MM |
Numeric;a non constant fixed mean |
aniso |
Logical; should anisotropy be considered? |
Subroutine called by GeoFit. The procedure estimates the model parameters by maximisation of the composite log-likelihood
Return a list from an optim
call.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Subroutine called by GeoFit. The procedure estimates the model parameters by maximisation of the composite log-likelihood.
CompLik2(copula,bivariate, coordx, coordy ,coordt, coordx_dyn,corrmodel, data, distance, flagcorr, flagnuis, fixed, GPU,grid,likelihood, local,lower, model, n, namescorr, namesnuis, namesparam, numparam, numparamcorr, optimizer, onlyvar, parallel, param, spacetime, type, upper, varest, vartype, weigthed, winconst, winstp,winconst_t, winstp_t, ns, X,sensitivity, colidx,rowidx,neighb,MM,aniso)
CompLik2(copula,bivariate, coordx, coordy ,coordt, coordx_dyn,corrmodel, data, distance, flagcorr, flagnuis, fixed, GPU,grid,likelihood, local,lower, model, n, namescorr, namesnuis, namesparam, numparam, numparamcorr, optimizer, onlyvar, parallel, param, spacetime, type, upper, varest, vartype, weigthed, winconst, winstp,winconst_t, winstp_t, ns, X,sensitivity, colidx,rowidx,neighb,MM,aniso)
copula |
String; the type of copula. It can be "Clayton" or "Gaussian" |
bivariate |
Logical; if |
coordx |
A numeric ( |
coordy |
A numeric vector assigning 1-dimension of
coordinates; |
coordt |
A numeric vector assigning 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
corrmodel |
Numeric; the id of the correlation model. |
data |
A numeric vector or a ( |
distance |
String; the name of the spatial distance. The default is |
flagcorr |
A numeric vector of binary values denoting which paramerters of the correlation function will be estimated. |
flagnuis |
A numeric vector of binary values denoting which nuisance paramerters will be estimated. |
fixed |
A numeric vector of parameters that will be considered as known values. |
GPU |
Numeric; if |
grid |
Logical; if |
likelihood |
String; the configuration of the
compositelikelihood, see |
local |
Numeric; number of local work-items of the GPU |
lower |
An optional named list giving the values for the lower bound of the space parameter
when the optimizer is |
model |
Numeric; the id value of the density associated to the likelihood objects. |
n |
Numeric; number of trials in a binomial random fields. |
namescorr |
String; the names of the correlation parameters. |
namesnuis |
String; the names of the nuisance parameters. |
namesparam |
String; the names of the parameters to be maximised. |
numparam |
Numeric; the number of parameters to be maximised. |
numparamcorr |
Numeric; the number of correlation parameters. |
optimizer |
String; the optimization algorithm
(see |
onlyvar |
Logical; if |
parallel |
Logical; if |
param |
A numeric vector of parameters' values. |
spacetime |
Logical; if |
type |
String; the type of the likelihood objects. If |
upper |
An optional named list giving the values for the upper bound
of the space parameter when the optimizer is or |
varest |
Logical; if |
vartype |
String; the type of estimation method for computing
the estimate variances, see |
weigthed |
Logical; if |
winconst |
Numeric; a positive value for computing the spatial sub-window in the sub-sampling procedure. |
winstp |
Numeric; a value in |
winconst_t |
Numeric; a positive value for computing the temporal sub-window in the sub-sampling procedure. |
winstp_t |
Numeric; a value in |
ns |
Numeric; Number of (dynamical) temporal instants. |
X |
Numeric; Matrix of space-time covariates in the linear mean specification. |
sensitivity |
Logical; if |
colidx |
Numeric; Vector of indexes for spatial distances. |
rowidx |
Numeric; Vector of indexes for spatial distances. |
neighb |
Numeric; an optional positive integer indicating the order of neighborhood location. |
MM |
Numeric;a non constant fixed mean |
aniso |
Logical; should anisotropy be considered? |
Return a list from an optim
call.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Subroutine called by InitParam and other procedures. The procedure returns a list with the parameters of a given correlation model.
CorrelationPar(corrmodel)
CorrelationPar(corrmodel)
corrmodel |
Integer; an integer associated to a given correlation model. |
The function return a list with the Parameters of a Correlation Model
Return a vector string of correlation parameters.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
The procedure returns a list with the names of the parameters of a given correlation model.
CorrParam(corrmodel)
CorrParam(corrmodel)
corrmodel |
String: the name associated to a given correlation model. |
The function return a list with the Parameters of a Correlation Model
Return a vector string of correlation parameters.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
require(GeoModels) ################################################################ ### ### Example 1. Parameters of the Matern model ### ############################################################### CorrParam("Matern") ################################################################ ### ### Example 2. Parameters of the Generalized Wendland model ### ############################################################### CorrParam("GenWend") ################################################################ ### ### Example 3. Parameters of the Generalized Cauchy model ### ############################################################### CorrParam("GenCauchy") ################################################################ ### ### Example 4. Parameters of the space time Gneiting model ### ############################################################### CorrParam("Gneiting") ################################################################ ### ### Example 5. Parameters of the bi-Matern separable model. ### Note that in the bivariate case variance paramters are ### included ############################################################### CorrParam("Bi_Matern_sep")
require(GeoModels) ################################################################ ### ### Example 1. Parameters of the Matern model ### ############################################################### CorrParam("Matern") ################################################################ ### ### Example 2. Parameters of the Generalized Wendland model ### ############################################################### CorrParam("GenWend") ################################################################ ### ### Example 3. Parameters of the Generalized Cauchy model ### ############################################################### CorrParam("GenCauchy") ################################################################ ### ### Example 4. Parameters of the space time Gneiting model ### ############################################################### CorrParam("Gneiting") ################################################################ ### ### Example 5. Parameters of the bi-Matern separable model. ### Note that in the bivariate case variance paramters are ### included ############################################################### CorrParam("Bi_Matern_sep")
Transforms or back-transforms a set of coordinates according to the geometric anisotropy parameters.
GeoAniso(coords, anisopars=c(0,1), inverse = FALSE)
GeoAniso(coords, anisopars=c(0,1), inverse = FALSE)
coords |
An n x 2 matrix with the coordinates to be transformed. |
anisopars |
A bivariate vector with the the anisotropy angle and the anisotropy ratio, respectively. The angle must be given in radians in [0,pi] and the anisotropy ratio must be greater or equal than 1. |
inverse |
Logical: Default to FALSE. If TRUE the reverse transformation is performed. |
Geometric anisotropy is defined by a linear tranformation from the anisotropic space to the isotropic space that is
where X is a matrix with original coordinates (anisotropic space), and Y is a matrix with transformed coordinates (isotropic space).
Here R is a rotation matrix with associated anisotropy angle parameter (in ) and a
is a shrinking matrix with associated anisotropy ratio
parameter (greeater or equal than one).
The two parameters are specified in the anisopars argument as a bivariate numeric vector. The case
corresponds to the isotropic case.
Returns a matrix of transformed coordinates
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
The function computes the correlations of a spatial (or spatio-temporal or bivariate spatial) Gaussian or non Gaussian randomm field for a given correlation model and a set of spatial (temporal) distances.
GeoCorrFct(x,t=NULL,corrmodel, model="Gaussian", distance="Eucl", param, radius=6371,n=1, covariance=FALSE,variogram=FALSE)
GeoCorrFct(x,t=NULL,corrmodel, model="Gaussian", distance="Eucl", param, radius=6371,n=1, covariance=FALSE,variogram=FALSE)
x |
A set of spatial distances. |
t |
A set of (optional) temporal distances. |
corrmodel |
String; the name of a correlation model, for the description see the Section Details. |
model |
String; the type of RF. See |
distance |
String; the name of the spatial distance. The default
is |
param |
A list of parameter values required for the covariance model. |
radius |
Numeric; a value indicating the radius of the sphere when using covariance models valid using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371) |
n |
Numeric; the number of trials in a (negative) binomial random fields.
Default is |
covariance |
Logic; if TRUE then the covariance is returned. Default is FALSE |
variogram |
Logic; if FALSE then the covariance/correlation is returned. Otherwise the associated semivariogram is returned |
Returns correlations or covariances values associated to a given parametric spatial and temporal correlation models.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) ################################################################ ### ### Example 1. Covariance of a Gaussian random field with underlying ### Matern correlation model with nugget ### ############################################################### # Define the spatial distances #x = seq(0,1,0.002) # Correlation Parameters for Matern model #CorrParam("Matern") #NuisParam("Gaussian") # Matern Parameters #param=list(sill=2,smooth=0.5,scale=0.2/3,nugget=0.2,mean=0) #cc= GeoCorrFct(x=x, corrmodel="Matern", covariance=TRUE, # param=param,model="Gaussian") #plot(cc,ylab="Corr",lwd=2,main="Matern correlation",type="l") ################################################################ ### ### Example 2. Covariance of a Gaussian random field with underlying ### Generalized Wendland-Matern correlation model ### ############################################################### #CorrParam("GenWend_Matern") #NuisParam("Gaussian") # GenWend Matern Parameters #param=list(sill=2,smooth=1,scale=0.1,nugget=0,power2=1/4,mean=0) #cc= GeoCorrFct(x=x, corrmodel="GenWend_Matern", param=param,model="Gaussian",covariance=FALSE) #plot(cc,ylab="Cov",lwd=2,,main="GenWend covariance",type="l") ################################################################ ### ### Example 3. Semivariogram of a Tukeyh random field with underlying ### Generalized Wendland correlation model ### ############################################################### #CorrParam("GenWend") #NuisParam("Tukeyh") #x = seq(0,1,0.005) #param=list(sill=1,smooth=1,scale=0.5,nugget=0,power2=5,tail=0.1,mean=0) #cc= GeoCorrFct(x=x, corrmodel="GenWend", param=param,model="Tukeyh",variogram=TRUE) #plot(cc,ylab="Corr",lwd=2,main="Tukey semivariogram",type="l") ################################################################ ### ### Example 4. Semi-Variogram of a LoggGaussian random field with underlying ### Kummer correlation model ### ############################################################### #CorrParam("Kummer") #NuisParam("LogGaussian") # GenWend Matern Parameters #param=list(smooth=1,sill=0.5,scale=0.1,nugget=0,power2=1,mean=0) #cc= GeoCorrFct(x=x, corrmodel="Kummer", param=param,model="LogGaussian", # ,covariance=TRUE,variogram=TRUE) #plot(cc,ylab="Semivario",lwd=2, # main="LogGaussian semivariogram",type="l") ################################################################ ### ### Example 5. Covariance of Poisson random field with underlying ### Matern correlation model ### ############################################################### #CorrParam("Matern") #NuisParam("Poisson") #x = seq(0,1,0.005) #param=list(scale=0.6/3,nugget=0,smooth=0.5,mean=2) #cc= GeoCorrFct(x=x, corrmodel="Matern", param=param,model="Poisson",covariance=TRUE) #plot(cc,ylab="Cov",lwd=2, # main="Poisson covariance",type="l") ################################################################ ### ### Example 6. Space time semivariogram of a Gaussian random field ### with separable Matern correlation model ### ############################################################### ## spatial and temporal distances #h<-seq(0,3,by=0.04) #times<-seq(0,3,by=0.04) # Correlation Parameters for the space time separable Matern model #CorrParam("Matern") #NuisParam("Gaussian") # Matern Parameters #param=list(sill=1,scale_s=0.6/3,scale_t=0.5,nugget=0,mean=0,smooth_s=1.5,smooth_t=0.5) #cc= GeoCorrFct(x=h,t=times,corrmodel="Matern_Matern", param=param, # model="Gaussian",variogram=TRUE) #plot(cc,lwd=2,type="l") ################################################################ ### ### Example 7. Correlation of a bivariate Gaussian random field ### with underlying separable bivariate Matern correlation model ### ############################################################### # Define the spatial distances #x = seq(0,1,0.005) # Correlation Parameters for the bivariate sep Matern model #CorrParam("Bi_Matern") # Matern Parameters #param=list(sill_1=1,sill_2=1,smooth_1=0.5,smooth_2=1,smooth_12=0.75, # scale_1=0.2/3, scale_2=0.2/3, scale_12=0.2/3, # mean_1=0,mean_2=0,nugget_1=0,nugget_2=0,pcol=-0.2) #cc= GeoCorrFct(x=x, corrmodel="Bi_Matern", param=param,model="Gaussian") #plot(cc,ylab="corr",lwd=2,type="l")
library(GeoModels) ################################################################ ### ### Example 1. Covariance of a Gaussian random field with underlying ### Matern correlation model with nugget ### ############################################################### # Define the spatial distances #x = seq(0,1,0.002) # Correlation Parameters for Matern model #CorrParam("Matern") #NuisParam("Gaussian") # Matern Parameters #param=list(sill=2,smooth=0.5,scale=0.2/3,nugget=0.2,mean=0) #cc= GeoCorrFct(x=x, corrmodel="Matern", covariance=TRUE, # param=param,model="Gaussian") #plot(cc,ylab="Corr",lwd=2,main="Matern correlation",type="l") ################################################################ ### ### Example 2. Covariance of a Gaussian random field with underlying ### Generalized Wendland-Matern correlation model ### ############################################################### #CorrParam("GenWend_Matern") #NuisParam("Gaussian") # GenWend Matern Parameters #param=list(sill=2,smooth=1,scale=0.1,nugget=0,power2=1/4,mean=0) #cc= GeoCorrFct(x=x, corrmodel="GenWend_Matern", param=param,model="Gaussian",covariance=FALSE) #plot(cc,ylab="Cov",lwd=2,,main="GenWend covariance",type="l") ################################################################ ### ### Example 3. Semivariogram of a Tukeyh random field with underlying ### Generalized Wendland correlation model ### ############################################################### #CorrParam("GenWend") #NuisParam("Tukeyh") #x = seq(0,1,0.005) #param=list(sill=1,smooth=1,scale=0.5,nugget=0,power2=5,tail=0.1,mean=0) #cc= GeoCorrFct(x=x, corrmodel="GenWend", param=param,model="Tukeyh",variogram=TRUE) #plot(cc,ylab="Corr",lwd=2,main="Tukey semivariogram",type="l") ################################################################ ### ### Example 4. Semi-Variogram of a LoggGaussian random field with underlying ### Kummer correlation model ### ############################################################### #CorrParam("Kummer") #NuisParam("LogGaussian") # GenWend Matern Parameters #param=list(smooth=1,sill=0.5,scale=0.1,nugget=0,power2=1,mean=0) #cc= GeoCorrFct(x=x, corrmodel="Kummer", param=param,model="LogGaussian", # ,covariance=TRUE,variogram=TRUE) #plot(cc,ylab="Semivario",lwd=2, # main="LogGaussian semivariogram",type="l") ################################################################ ### ### Example 5. Covariance of Poisson random field with underlying ### Matern correlation model ### ############################################################### #CorrParam("Matern") #NuisParam("Poisson") #x = seq(0,1,0.005) #param=list(scale=0.6/3,nugget=0,smooth=0.5,mean=2) #cc= GeoCorrFct(x=x, corrmodel="Matern", param=param,model="Poisson",covariance=TRUE) #plot(cc,ylab="Cov",lwd=2, # main="Poisson covariance",type="l") ################################################################ ### ### Example 6. Space time semivariogram of a Gaussian random field ### with separable Matern correlation model ### ############################################################### ## spatial and temporal distances #h<-seq(0,3,by=0.04) #times<-seq(0,3,by=0.04) # Correlation Parameters for the space time separable Matern model #CorrParam("Matern") #NuisParam("Gaussian") # Matern Parameters #param=list(sill=1,scale_s=0.6/3,scale_t=0.5,nugget=0,mean=0,smooth_s=1.5,smooth_t=0.5) #cc= GeoCorrFct(x=h,t=times,corrmodel="Matern_Matern", param=param, # model="Gaussian",variogram=TRUE) #plot(cc,lwd=2,type="l") ################################################################ ### ### Example 7. Correlation of a bivariate Gaussian random field ### with underlying separable bivariate Matern correlation model ### ############################################################### # Define the spatial distances #x = seq(0,1,0.005) # Correlation Parameters for the bivariate sep Matern model #CorrParam("Bi_Matern") # Matern Parameters #param=list(sill_1=1,sill_2=1,smooth_1=0.5,smooth_2=1,smooth_12=0.75, # scale_1=0.2/3, scale_2=0.2/3, scale_12=0.2/3, # mean_1=0,mean_2=0,nugget_1=0,nugget_2=0,pcol=-0.2) #cc= GeoCorrFct(x=x, corrmodel="Bi_Matern", param=param,model="Gaussian") #plot(cc,ylab="corr",lwd=2,type="l")
The function computes the correlations of a spatial or spatio-temporal or a bivariate spatial Gaussian or non Gaussian copula randomm field with a given covariance model and a set of spatial (temporal) distances.
GeoCorrFct_Cop(x,t=NULL,corrmodel, model="Gaussian",copula="Gaussian", distance="Eucl", param, radius=6371, n=1,covariance=FALSE,variogram=FALSE)
GeoCorrFct_Cop(x,t=NULL,corrmodel, model="Gaussian",copula="Gaussian", distance="Eucl", param, radius=6371, n=1,covariance=FALSE,variogram=FALSE)
x |
A set of spatial distances. |
t |
A set of (optional) temporal distances. |
corrmodel |
String; the name of a correlation model, for the description see the Section Details. |
model |
String; the type of RF. See |
copula |
String; the type of copula. The two options are Gaussian and Clayton. |
distance |
String; the name of the spatial distance. The default
is |
param |
A list of parameter values required for the covariance model. |
radius |
Numeric; a value indicating the radius of the sphere when using covariance models valid using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371) |
n |
Numeric; the number of trials in a (negative) binomial random fields.
Default is |
covariance |
Logic; if TRUE then the covariance is returned. Default is FALSE |
variogram |
Logic; if FALSE then the covariance/coorelation is returned. Otherwise the associated semivariogram is returned |
Returns a vector of correlations or covariances values associated to a given parametric spatial and temporal correlation models.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) ################################################################ ### ### Example 1. Correlation of a (mean reparametrized) beta random field with underlying ### Matern correlation model using Gaussian and Clayton copulas ### ############################################################### # Define the spatial distances x = seq(0,0.4,0.01) # Correlation Parameters for Matern model CorrParam("Matern") NuisParam("Beta2") # corr Gaussian copula param=list(smooth=0.5,sill=1,scale=0.2/3,nugget=0,mean=0,min=0,max=1,shape=0.5) corr1= GeoCorrFct_Cop(x=x, corrmodel="Matern", param=param,copula="Gaussian",model="Beta2") plot(corr1,ylab="corr",main="Gauss copula correlation",lwd=2) # corr Clayton copula param=list(smooth=0.5,sill=1,scale=0.2/3,nugget=0,mean=0,min=0,max=1,shape=0.5,nu=2) corr2= GeoCorrFct_Cop(x=x, corrmodel="Matern", param=param,copula="Clayton",model="Beta2") lines(x,corr2$corr,ylim=c(0,1),lty=2) plot(corr1,ylab="corr",main="Clayton copula correlation",lwd=2)
library(GeoModels) ################################################################ ### ### Example 1. Correlation of a (mean reparametrized) beta random field with underlying ### Matern correlation model using Gaussian and Clayton copulas ### ############################################################### # Define the spatial distances x = seq(0,0.4,0.01) # Correlation Parameters for Matern model CorrParam("Matern") NuisParam("Beta2") # corr Gaussian copula param=list(smooth=0.5,sill=1,scale=0.2/3,nugget=0,mean=0,min=0,max=1,shape=0.5) corr1= GeoCorrFct_Cop(x=x, corrmodel="Matern", param=param,copula="Gaussian",model="Beta2") plot(corr1,ylab="corr",main="Gauss copula correlation",lwd=2) # corr Clayton copula param=list(smooth=0.5,sill=1,scale=0.2/3,nugget=0,mean=0,min=0,max=1,shape=0.5,nu=2) corr2= GeoCorrFct_Cop(x=x, corrmodel="Matern", param=param,copula="Clayton",model="Beta2") lines(x,corr2$corr,ylim=c(0,1),lty=2) plot(corr1,ylab="corr",main="Clayton copula correlation",lwd=2)
The procedure computes and plots estimated covariance or semivariogram models of a Gaussian or a non Gaussian spatial (temporal or bivariate spatial) random field. It allows to add the empirical estimates in order to compare them with the fitted model.
GeoCovariogram(fitted, distance="Eucl",answer.cov=FALSE, answer.vario=FALSE, answer.range=FALSE, fix.lags=NULL, fix.lagt=NULL, show.cov=FALSE, show.vario=FALSE, show.range=FALSE, add.cov=FALSE, add.vario=FALSE, pract.range=95, vario, invisible=FALSE, ...)
GeoCovariogram(fitted, distance="Eucl",answer.cov=FALSE, answer.vario=FALSE, answer.range=FALSE, fix.lags=NULL, fix.lagt=NULL, show.cov=FALSE, show.vario=FALSE, show.range=FALSE, add.cov=FALSE, add.vario=FALSE, pract.range=95, vario, invisible=FALSE, ...)
fitted |
A fitted object obtained from the
|
distance |
String; the name of the spatial distance. The default
is |
answer.cov |
Logical; if |
answer.vario |
Logical; if |
answer.range |
Logical; if |
fix.lags |
Integer; a positive value denoting the spatial lag to consider for the plot of the temporal profile. |
fix.lagt |
Integer; a positive value denoting the temporal lag to consider for the plot of the spatial profile. |
show.cov |
Logical; if |
show.vario |
Logical; if |
show.range |
Logical; if |
add.cov |
Logical; if |
add.vario |
Logical; if |
pract.range |
Numeric; the percent of the sill to be reached. |
vario |
A |
invisible |
Logical;If TRUE then a statistic the (sum of the squared diffeence between the empirical semivariogram and the estimated semivariogram) is computed. |
... |
other optional parameters which are passed to plot functions. |
The function computes the fitted variogram model
Produces a plot. No values are returned.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Cressie, N. A. C. (1993) Statistics for Spatial Data. New York: Wiley.
Gaetan, C. and Guyon, X. (2010) Spatial Statistics and Modelling. Spring Verlang, New York.
library(GeoModels) library(scatterplot3d) ################################################################ ### ### Example 1. Plot of fitted covariance and fitted ### and empirical semivariogram from a Gaussian RF ### with Matern correlation. ### ############################################################### set.seed(21) # Set the coordinates of the points: x = runif(300, 0, 1) y = runif(300, 0, 1) coords=cbind(x,y) # Set the model's parameters: corrmodel = "Matern" model = "Gaussian" mean = 0 sill = 1 nugget = 0 scale = 0.2/3 smooth=0.5 param=list(mean=mean,sill=sill, nugget=nugget, scale=scale, smooth=smooth) # Simulation of the Gaussian random field: data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param)$data I=Inf start=list(mean=0,scale=scale,sill=sill) lower=list(mean=-I,scale=0,sill=0) upper=list(mean= I,scale=I,sill=I) fixed=list(nugget=nugget,smooth=smooth) # Maximum composite-likelihood fitting of the Gaussian random field: fit = GeoFit(data=data,coordx=coords, corrmodel=corrmodel,model=model, likelihood="Marginal",type='Pairwise',start=start, lower=lower,upper=upper, optimizer="nlminb", fixed=fixed,neighb=3) # Empirical estimation of the variogram: vario = GeoVariogram(data=data,coordx=coords,maxdist=0.5) # Plot of covariance and variogram functions: GeoCovariogram(fit,show.vario=TRUE, vario=vario,pch=20) ################################################################ ### ### Example 2. Plot of fitted covariance and fitted ### and empirical semivariogram from a Bernoulli ### RF with Genwend correlation. ### ############################################################### set.seed(2111) model="Binomial";n=1 # Set the coordinates of the points: x = runif(500, 0, 1) y = runif(500, 0, 1) coords=cbind(x,y) # Set the model's parameters: corrmodel = "GenWend" mean = 0 nugget = 0 scale = 0.2 smooth=0 power=4 param=list(mean=mean, nugget=nugget, scale=scale,smooth=0,power2=4) # Simulation of the Gaussian RF: data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param,n=n)$data start=list(mean=0,scale=scale) fixed=list(nugget=nugget,power2=4,smooth=0) # Maximum composite-likelihood fitting of the Binomial random field: fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model, likelihood="Marginal",type='Pairwise',start=start,n=n, optimizer="BFGS", fixed=fixed,neighb=4) # Empirical estimation of the variogram: vario = GeoVariogram(data,coordx=coords,maxdist=0.5) # Plot of covariance and variogram functions: GeoCovariogram(fit, show.vario=TRUE, vario=vario,pch=20,ylim=c(0,0.3)) ################################################################ ### ### Example 3. Plot of fitted covariance and fitted ### and empirical semivariogram from a Weibull RF ### with Wend0 correlation. ### ############################################################### set.seed(111) model="Weibull";shape=4 # Set the coordinates of the points: x = runif(700, 0, 1) y = runif(700, 0, 1) coords=cbind(x,y) # Set the model's parameters: corrmodel = "Wend0" mean = 0 nugget = 0 scale = 0.4 power2=4 param=list(mean=mean, nugget=nugget, scale=scale,shape=shape,power2=power2) # Simulation of the Gaussian RF: data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param)$data start=list(mean=0,scale=scale,shape=shape) I=Inf lower=list(mean=-I,scale=0,shape=0) upper=list(mean= I,scale=I,shape=I) fixed=list(nugget=nugget,power2=power2) fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model, likelihood="Marginal",type='Pairwise',start=start, lower=lower,upper=upper, optimizer="nlminb", fixed=fixed,neighb=3) # Empirical estimation of the variogram: vario = GeoVariogram(data,coordx=coords,maxdist=0.5) # Plot of covariance and variogram functions: GeoCovariogram(fit, show.vario=TRUE, vario=vario,pch=20) ################################################################ ### ### Example 4. Plot of fitted and empirical semivariogram ### from a space time Gaussian random fields ### with double Matern correlation. ### ############################################################### set.seed(92) # Define the spatial-coordinates of the points: x = runif(50, 0, 1) y = runif(50, 0, 1) coords=cbind(x,y) # Define the temporal sequence: time = seq(0, 10, 1) param=list(mean=mean,nugget=nugget, smooth_s=0.5,smooth_t=0.5,scale_s=0.5/3,scale_t=2/2,sill=sill) # Simulation of the spatio-temporal Gaussian random field: data = GeoSim(coordx=coords, coordt=time, corrmodel="Matern_Matern",param=param)$data fixed=list(nugget=0, mean=0, smooth_s=0.5,smooth_t=0.5) start=list(scale_s=0.2, scale_t=0.5, sill=1) # Maximum composite-likelihood fitting of the space-time Gaussian random field: fit = GeoFit(data, coordx=coords, coordt=time, corrmodel="Matern_Matern", maxtime=1, neighb=3, likelihood="Marginal", type="Pairwise",fixed=fixed, start=start) # Empirical estimation of spatio-temporal covariance: vario = GeoVariogram(data,coordx=coords, coordt=time, maxtime=5,maxdist=0.5) # Plot of the fitted space-time variogram GeoCovariogram(fit,vario=vario,show.vario=TRUE) # Plot of covariance, variogram and spatio and temporal profiles: GeoCovariogram(fit,vario=vario,fix.lagt=1,fix.lags=1,show.vario=TRUE,pch=20) ################################################################ ### ### Example 5. Plot of fitted and empirical semivariogram ### from a bivariate Gaussian random fields ### with Matern correlation. ### ############################################################### set.seed(92) # Define the spatial-coordinates of the points: x <- runif(600, 0, 2) y <- runif(600, 0, 2) coords <- cbind(x,y) # Simulation of a bivariate spatial Gaussian RF: # with a Bivariate Matern set.seed(12) param=list(mean_1=4,mean_2=2,smooth_1=0.5,smooth_2=0.5,smooth_12=0.5, scale_1=0.12,scale_2=0.1,scale_12=0.15, sill_1=1,sill_2=1,nugget_1=0,nugget_2=0,pcol=-0.5) data <- GeoSim(coordx=coords,corrmodel="Bi_matern", param=param)$data # selecting fixed and estimated parameters fixed=list(mean_1=4,mean_2=2,nugget_1=0,nugget_2=0, smooth_1=0.5,smooth_2=0.5,smooth_12=0.5) start=list(sill_1=var(data[1,]),sill_2=var(data[2,]), scale_1=0.1,scale_2=0.1,scale_12=0.1, pcol=cor(data[1,],data[2,])) # Maximum marginal pairwise likelihood fitcl<- GeoFit(data=data, coordx=coords, corrmodel="Bi_Matern", likelihood="Marginal",type="Pairwise", optimizer="BFGS" , start=start,fixed=fixed, neighb=4) print(fitcl) # Empirical estimation of spatio-temporal covariance: vario = GeoVariogram(data,coordx=coords,maxdist=0.4,bivariate=TRUE) GeoCovariogram(fitcl,vario=vario,show.vario=TRUE,pch=20)
library(GeoModels) library(scatterplot3d) ################################################################ ### ### Example 1. Plot of fitted covariance and fitted ### and empirical semivariogram from a Gaussian RF ### with Matern correlation. ### ############################################################### set.seed(21) # Set the coordinates of the points: x = runif(300, 0, 1) y = runif(300, 0, 1) coords=cbind(x,y) # Set the model's parameters: corrmodel = "Matern" model = "Gaussian" mean = 0 sill = 1 nugget = 0 scale = 0.2/3 smooth=0.5 param=list(mean=mean,sill=sill, nugget=nugget, scale=scale, smooth=smooth) # Simulation of the Gaussian random field: data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param)$data I=Inf start=list(mean=0,scale=scale,sill=sill) lower=list(mean=-I,scale=0,sill=0) upper=list(mean= I,scale=I,sill=I) fixed=list(nugget=nugget,smooth=smooth) # Maximum composite-likelihood fitting of the Gaussian random field: fit = GeoFit(data=data,coordx=coords, corrmodel=corrmodel,model=model, likelihood="Marginal",type='Pairwise',start=start, lower=lower,upper=upper, optimizer="nlminb", fixed=fixed,neighb=3) # Empirical estimation of the variogram: vario = GeoVariogram(data=data,coordx=coords,maxdist=0.5) # Plot of covariance and variogram functions: GeoCovariogram(fit,show.vario=TRUE, vario=vario,pch=20) ################################################################ ### ### Example 2. Plot of fitted covariance and fitted ### and empirical semivariogram from a Bernoulli ### RF with Genwend correlation. ### ############################################################### set.seed(2111) model="Binomial";n=1 # Set the coordinates of the points: x = runif(500, 0, 1) y = runif(500, 0, 1) coords=cbind(x,y) # Set the model's parameters: corrmodel = "GenWend" mean = 0 nugget = 0 scale = 0.2 smooth=0 power=4 param=list(mean=mean, nugget=nugget, scale=scale,smooth=0,power2=4) # Simulation of the Gaussian RF: data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param,n=n)$data start=list(mean=0,scale=scale) fixed=list(nugget=nugget,power2=4,smooth=0) # Maximum composite-likelihood fitting of the Binomial random field: fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model, likelihood="Marginal",type='Pairwise',start=start,n=n, optimizer="BFGS", fixed=fixed,neighb=4) # Empirical estimation of the variogram: vario = GeoVariogram(data,coordx=coords,maxdist=0.5) # Plot of covariance and variogram functions: GeoCovariogram(fit, show.vario=TRUE, vario=vario,pch=20,ylim=c(0,0.3)) ################################################################ ### ### Example 3. Plot of fitted covariance and fitted ### and empirical semivariogram from a Weibull RF ### with Wend0 correlation. ### ############################################################### set.seed(111) model="Weibull";shape=4 # Set the coordinates of the points: x = runif(700, 0, 1) y = runif(700, 0, 1) coords=cbind(x,y) # Set the model's parameters: corrmodel = "Wend0" mean = 0 nugget = 0 scale = 0.4 power2=4 param=list(mean=mean, nugget=nugget, scale=scale,shape=shape,power2=power2) # Simulation of the Gaussian RF: data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model,param=param)$data start=list(mean=0,scale=scale,shape=shape) I=Inf lower=list(mean=-I,scale=0,shape=0) upper=list(mean= I,scale=I,shape=I) fixed=list(nugget=nugget,power2=power2) fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model, likelihood="Marginal",type='Pairwise',start=start, lower=lower,upper=upper, optimizer="nlminb", fixed=fixed,neighb=3) # Empirical estimation of the variogram: vario = GeoVariogram(data,coordx=coords,maxdist=0.5) # Plot of covariance and variogram functions: GeoCovariogram(fit, show.vario=TRUE, vario=vario,pch=20) ################################################################ ### ### Example 4. Plot of fitted and empirical semivariogram ### from a space time Gaussian random fields ### with double Matern correlation. ### ############################################################### set.seed(92) # Define the spatial-coordinates of the points: x = runif(50, 0, 1) y = runif(50, 0, 1) coords=cbind(x,y) # Define the temporal sequence: time = seq(0, 10, 1) param=list(mean=mean,nugget=nugget, smooth_s=0.5,smooth_t=0.5,scale_s=0.5/3,scale_t=2/2,sill=sill) # Simulation of the spatio-temporal Gaussian random field: data = GeoSim(coordx=coords, coordt=time, corrmodel="Matern_Matern",param=param)$data fixed=list(nugget=0, mean=0, smooth_s=0.5,smooth_t=0.5) start=list(scale_s=0.2, scale_t=0.5, sill=1) # Maximum composite-likelihood fitting of the space-time Gaussian random field: fit = GeoFit(data, coordx=coords, coordt=time, corrmodel="Matern_Matern", maxtime=1, neighb=3, likelihood="Marginal", type="Pairwise",fixed=fixed, start=start) # Empirical estimation of spatio-temporal covariance: vario = GeoVariogram(data,coordx=coords, coordt=time, maxtime=5,maxdist=0.5) # Plot of the fitted space-time variogram GeoCovariogram(fit,vario=vario,show.vario=TRUE) # Plot of covariance, variogram and spatio and temporal profiles: GeoCovariogram(fit,vario=vario,fix.lagt=1,fix.lags=1,show.vario=TRUE,pch=20) ################################################################ ### ### Example 5. Plot of fitted and empirical semivariogram ### from a bivariate Gaussian random fields ### with Matern correlation. ### ############################################################### set.seed(92) # Define the spatial-coordinates of the points: x <- runif(600, 0, 2) y <- runif(600, 0, 2) coords <- cbind(x,y) # Simulation of a bivariate spatial Gaussian RF: # with a Bivariate Matern set.seed(12) param=list(mean_1=4,mean_2=2,smooth_1=0.5,smooth_2=0.5,smooth_12=0.5, scale_1=0.12,scale_2=0.1,scale_12=0.15, sill_1=1,sill_2=1,nugget_1=0,nugget_2=0,pcol=-0.5) data <- GeoSim(coordx=coords,corrmodel="Bi_matern", param=param)$data # selecting fixed and estimated parameters fixed=list(mean_1=4,mean_2=2,nugget_1=0,nugget_2=0, smooth_1=0.5,smooth_2=0.5,smooth_12=0.5) start=list(sill_1=var(data[1,]),sill_2=var(data[2,]), scale_1=0.1,scale_2=0.1,scale_12=0.1, pcol=cor(data[1,],data[2,])) # Maximum marginal pairwise likelihood fitcl<- GeoFit(data=data, coordx=coords, corrmodel="Bi_Matern", likelihood="Marginal",type="Pairwise", optimizer="BFGS" , start=start,fixed=fixed, neighb=4) print(fitcl) # Empirical estimation of spatio-temporal covariance: vario = GeoVariogram(data,coordx=coords,maxdist=0.4,bivariate=TRUE) GeoCovariogram(fitcl,vario=vario,show.vario=TRUE,pch=20)
Image plot displaying the pattern of the sparsness of a covariance matrix.
GeoCovDisplay(covmatrix,limits=FALSE,pch=2)
GeoCovDisplay(covmatrix,limits=FALSE,pch=2)
covmatrix |
An object of class GeoCovmatrix. See the Section Details. |
limits |
Logical; If TRUE and the covariance matrix is spatiotemporal or spatial bivariate then vertical and horizontal lines are added to the image plot. |
pch |
Type of symbols to use in the image plot. |
For a given covariance matrix object (GeoCovmatrix
)
the function diplays the pattern of the sparsness of a covariance matrix
where the white color represents 0 entries and black color represents non zero entries
Produces a plot. No values are returned.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) # Define the spatial-coordinates of the points: x <- runif(100, 0, 2) y <- runif(100, 0, 2) coords=cbind(x,y) matrix1 <- GeoCovmatrix(coordx=coords, corrmodel="GenWend", param=list(smooth=0, power2=4,sill=1,scale=0.2,nugget=0)) GeoCovDisplay(matrix1)
library(GeoModels) # Define the spatial-coordinates of the points: x <- runif(100, 0, 2) y <- runif(100, 0, 2) coords=cbind(x,y) matrix1 <- GeoCovmatrix(coordx=coords, corrmodel="GenWend", param=list(smooth=0, power2=4,sill=1,scale=0.2,nugget=0)) GeoCovDisplay(matrix1)
The function computes the covariance matrix associated to a spatial or spatio(-temporal) or a bivariate spatial Gaussian or non Gaussian randomm field with given underlying covariance model and a set of spatial location sites (and temporal instants).
GeoCovmatrix(estobj=NULL,coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel, distance="Eucl", grid=FALSE, maxdist=NULL, maxtime=NULL, model="Gaussian", n=1, param, anisopars=NULL, radius=6371, sparse=FALSE, taper=NULL, tapsep=NULL, type="Standard",copula=NULL,X=NULL,spobj=NULL)
GeoCovmatrix(estobj=NULL,coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel, distance="Eucl", grid=FALSE, maxdist=NULL, maxtime=NULL, model="Gaussian", n=1, param, anisopars=NULL, radius=6371, sparse=FALSE, taper=NULL, tapsep=NULL, type="Standard",copula=NULL,X=NULL,spobj=NULL)
estobj |
An object of class Geofit that includes information about data, model and estimates. |
coordx |
A numeric ( |
coordy |
A numeric vector giving 1-dimension of
spatial coordinates; |
coordt |
A numeric vector giving 1-dimension of
temporal coordinates. At the moment implemented only for the
Gaussian case. Optional argument, the default is |
coordx_dyn |
A list of |
corrmodel |
String; the name of a correlation model, for the description see the Section Details. |
distance |
String; the name of the spatial distance. The default
is |
grid |
Logical; if |
maxdist |
Numeric; an optional positive value indicating the
marginal spatial compact support in the case of tapered covariance matrix.
See |
maxtime |
Numeric; an optional positive value indicating the
marginal temporal compact support in the case of spacetime tapered
covariance matrix. See |
n |
Numeric; the number of trials in a binomial random fields.
Default is |
model |
String; the type of RF. See |
param |
A list of parameter values required for the covariance model. |
anisopars |
A list of two elements "angle" and "ratio" i.e. the anisotropy angle and the anisotropy ratio, respectively. |
radius |
Numeric; a value indicating the radius of the sphere when using covariance models valid using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371) |
sparse |
Logical; if |
taper |
String; the name of the taper correlation
function if type is |
tapsep |
Numeric; an optional value indicating the separabe parameter in the space-time non separable taper or the colocated correlation parameter in a bivariate spatial taper (see Details). |
type |
String; the type of covariance matrix
|
copula |
String; the type of copula. It can be "Clayton" or "Gaussian" |
X |
Numeric; Matrix of space-time covariates. |
spobj |
An object of class sp or spacetime |
In the spatial case, the covariance matrix of the random vector
with a specific spatial covariance model is computed. Here is the number of the spatial location sites.
In the space-time case, the covariance matrix of the random vector
with a specific space time covariance model is computed. Here is the number of temporal instants.
In the bivariate case, the covariance matrix of the random vector
with a specific spatial bivariate covariance model is computed.
The location site can be a point in the
-dimensional euclidean space with
or a point (given in lon/lat degree format) on a sphere of arbitrary radius.
A list with all the implemented space and space-time and bivariate
correlation models is given below.
The argument param
is a list including all the parameters of a given
correlation model specified by the argument corrmodel
.
For each correlation model one can check the associated parameters' names using CorrParam
.
In what follows
,
,
, and
.
The associated parameters in the argument
param
are
smooth
, power2
, power
, power_s
, power_t
and sep
respectively.
Moreover let when
is true and
otherwise.
Spatial correlation models:
(generalised
in Gneiting and Schlater (2004)) defined as:
If is the geodesic distance then
.
defined as:
If is the geodesic distance then
(Kummer hypergeometric in Ma and Bhadra (2022)) defined as:
is the Kummer hypergeometric function.
If
is the geodesic distance then
It is a rescaled version of the
model
that is
must be divided by
. When
goes to infinity it is the Matern model.
defined as:
This model is valid only for dimensions less than or equal to 3.
(Generalized Wendland in Bevilacqua et al.(2019)) defined as:
where
and
and $F(.,.,.)$
is the Gaussian hypergeometric function.
The cases
correspond to the
,
and
models respectively.
(Generalized Wendland Matern in Bevilacqua et al. (2022)). It is defined as a rescaled version of the Generalized Wendland that is
must be divided by
. When
goes to infinity it is the Matern model.
(Generalized Wendland Matern second parametrization. It is defined as a rescaled version of the Generalized Wendland that is
must be multiplied by
and the smoothness parameter is
. When
goes to infinity it is the Matern model.
(Parsimonious Hypegeometric model in Alegria and Emery (2022)) defined as the model
with the restriction
.
defined as:
This model is valid on the unit sphere and is the geodesic distance.
defined as:
This model is valid on the unit sphere and is the geodesic distance.
(F family in Alegria et al. (2021)) defined as:
where .
This model is valid on the unit sphere and
is the geodesic distance.
Spatio-temporal correlation models.
Non-separable models:
defined as:
_
where can be both the euclidean and the geodesic distance
where
_
_
, defined as:
where ,
,
_
_
, defined interchanging h with u
in
_
_
_
_
, defined as:
where ,
,
_
_
, defined interchanging h with u
in
_
_
_
defined as:
where . This model is valid on the unit
sphere and
is the geodesic distance.
_
defined as:
where and
This model is valid on the unit sphere and
is the geodesic distance.
Separable models.
Space-time separable correlation models are easly obtained as the product of a spatial and a temporal correlation model, that is
Several combinations are possible:
_
defined as:
_
defined as:
_
defined as
.
_
defined as:
Note that some models are nested. (The _
with
_
for instance.)
Spatial bivariate correlation models (see below):
_
(Bivariate full Matern model)
_
_
(Bivariate Matern model with contrainsts)
_
_
(Bivariate separable Matern model )
_
(Bivariate linear model of coregionalization)
_
_
(Bivariate linear model of coregionalization with constraints )
_
(Bivariate full Wendland model)
_
_
(Bivariate Wendland model with contrainsts)
_
_
(Bivariate separable Wendland model)
_
(Bivariate full Smoke model on the unit sphere)
Spatial taper.
For spatial covariance tapering the taper functions are:
defined as:
defined as:
.
Spatio-temporal tapers.
For spacetime covariance tapering the taper functions are:
_
(Separable tapers)
defined as:
_
(Non separable temporal taper)
defined as:
_
,
assuming
,
and
to be fixed using
tapsep
.
_
(Non separable spatial taper)
defined as:
_
,
assuming
,
and
to be fixed using
tapsep
.
Spatial bivariate taper (see below).
_
Remarks:
In what follows we assume positive.
The associated names of the parameters in param
are
sill
, sill_1
,sill_2
,
nugget
, nugget_1
,nugget_2
,
scale
,scale_s
,scale_t
, scale_1
,scale_2
,scale_12
,
smooth_1
,smooth_2
,smooth_12
, a_1
,a_12
,a_21
,a_2
respectively.
Let be a spatial correlation model given in standard notation.
Then the covariance model
applied with arbitrary variance, nugget and scale equals to
if
and
with nugget parameter between 0 and 1.
Similarly if
is a spatio-temporal correlation model given in standard notation,
then the covariance model is
if
and
and
Here ‘...’ stands for additional parameters.
The bivariate models implemented are the following :
_
defined as:
where is the correlation colocated parameter and
.
The model
_
_
(separable matern) is a special case when
and
.
The model
_
_
(constrained matern)
is a special case when
and
_
defined as:
where is the correlation colocated parameter and
.
The model
_
_
(separable Genwendland) is a special case when
and
.
The model
_
_
(constrained Genwendland)
is a special case when
and
_
defined as:
where is a correlation model.
The model
_
_
is a special case when
.
Bivariate LMC models, in the current version of the package, is obtained with
equal to the exponential correlation model.
Returns an object of class GeoCovmatrix
.
An object of class GeoCovmatrix
is a list containing
at most the following components:
bivariate |
Logical: |
coordx |
A |
coordy |
A |
coordt |
A |
coordx_dyn |
A list of |
covmatrix |
The covariance matrix if |
corrmodel |
String: the correlation model; |
distance |
String: the type of spatial distance; |
grid |
Logical: |
nozero |
In the case of tapered matrix the percentage of non zero values in the covariance matrix. Otherwise is NULL. |
maxdist |
Numeric: the marginal spatial compact support
if |
maxtime |
Numeric: the marginal temporal compact support
if |
n |
The number of trial for Binomial RFs |
namescorr |
String: The names of the correlation parameters; |
numcoord |
Numeric: the number of spatial coordinates; |
numtime |
Numeric: the number the temporal coordinates; |
model |
The type of RF, see |
param |
Numeric: The covariance parameters; |
tapmod |
String: the taper model if |
spacetime |
|
sparse |
Logical: is the returned object of class spam? ; |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Alegria, A.,Cuevas-Pacheco, F.,Diggle, P, Porcu E. (2021) The F-family of covariance functions: A Matérn analogue for modeling random fields on spheres. Spatial Statistics 43, 100512
Bevilacqua, M., Faouzi, T., Furrer, R., and Porcu, E. (2019). Estimation and prediction using generalized Wendland functions under fixed domain asymptotics. Annals of Statistics, 47(2), 828–856.
Bevilacqua, M., Caamano-Carrillo, C., and Porcu, E. (2022). Unifying compactly supported and Matérn covariance functions in spatial statistics. Journal of Multivariate Analysis, 189, 104949.
Daley J. D., Porcu E., Bevilacqua M. (2015) Classes of compactly supported covariance functions for multivariate random fields. Stochastic Environmental Research and Risk Assessment. 29 (4), 1249–1263.
Emery, X. and Alegria, A. (2022). The gauss hypergeometric covariance kernel for modeling second-order stationary random fields in euclidean spaces: its compact support, properties and spectral representation. Stochastic Environmental Research and Risk Assessment. 36 2819–2834.
Gneiting, T. (2002). Nonseparable, stationary covariance functions for space-time data. Journal of the American Statistical Association, 97, 590–600.
Gneiting T, Kleiber W., Schlather M. 2010. Matern cross-covariance functions for multivariate random fields. Journal of the American Statistical Association, 105, 1167–1177.
Ma, P., Bhadra, A. (2022). Beyond Matérn: on a class of interpretable confluent hypergeometric covariance functions. Journal of the American Statistical Association,1–14.
Porcu, E.,Bevilacqua, M. and Genton M. (2015) Spatio-Temporal Covariance and Cross-Covariance Functions of the Great Circle Distance on a Sphere. Journal of the American Statistical Association. DOI: 10.1080/01621459.2015.1072541
Gneiting, T. and Schlater M. (2004) Stochastic models that separate fractal dimension and the Hurst effect. SSIAM Rev 46, 269–282.
library(GeoModels) ################################################################ ### ### Example 1.Estimated spatial covariance matrix associated to ### a WCL estimates using the Matern correlation model ### ############################################################### set.seed(3) N=300 # number of location sites x <- runif(N, 0, 1) y <- runif(N, 0, 1) coords <- cbind(x,y) # Set the covariance model's parameters: corrmodel <- "Matern" mean=0.5; sill <- 1 nugget <- 0 scale <- 0.2/3 smooth=0.5 param<-list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth) data <- GeoSim(coordx=coords,corrmodel=corrmodel, param=param)$data fixed<-list(nugget=nugget,smooth=smooth) start<-list(mean=mean,scale=scale,sill=sill) fit0 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, neighb=3,likelihood="Conditional",optimizer="BFGS", type="Pairwise", start=start,fixed=fixed) print(fit0) #estimated covariance matrix using Geofit object mm=GeoCovmatrix(fit0)$covmatrix #estimated covariance matrix mm1 = GeoCovmatrix(coordx=coords,corrmodel=corrmodel, param=c(fit0$param,fit0$fixed))$covmatrix sum(mm-mm1) ################################################################ ### ### Example 2. Spatial covariance matrix associated to ### the GeneralizedWendland-Matern correlation model ### ############################################################### # Correlation Parameters for Gen Wendland model CorrParam("GenWend_Matern") # Gen Wendland Parameters param=list(sill=1,scale=0.04,nugget=0,smooth=0,power2=1.5) matrix2 = GeoCovmatrix(coordx=coords, corrmodel="GenWend_Matern", param=param,sparse=TRUE) # Percentage of no zero values matrix2$nozero ################################################################ ### ### Example 3. Spatial covariance matrix associated to ### the Kummer correlation model ### ############################################################### # Correlation Parameters for kummer model CorrParam("Kummer") param=list(sill=1,scale=0.2,nugget=0,smooth=0.5,power2=1) matrix3 = GeoCovmatrix(coordx=coords, corrmodel="Kummer", param=param) matrix3$covmatrix[1:4,1:4] ################################################################ ### ### Example 4. Covariance matrix associated to ### the space-time double Matern correlation model ### ############################################################### # Define the temporal-coordinates: times = seq(1, 4, 1) # Correlation Parameters for double Matern model CorrParam("Matern_Matern") # Define covariance parameters param=list(scale_s=0.3,scale_t=0.5,sill=1,smooth_s=0.5,smooth_t=0.5) # Simulation of a spatial Gaussian random field: matrix4 = GeoCovmatrix(coordx=coords, coordt=times, corrmodel="Matern_Matern", param=param) dim(matrix4$covmatrix) ################################################################ ### ### Example 5. Spatial Covariance matrix associated to ### a skew gaussian RF with Matern correlation model ### ############################################################### param=list(sill=1,scale=0.3/3,nugget=0,skew=4,smooth=0.5) # Simulation of a spatial Gaussian random field: matrix5 = GeoCovmatrix(coordx=coords, corrmodel="Matern", param=param, model="SkewGaussian") # covariance matrix matrix5$covmatrix[1:4,1:4] ################################################################ ### ### Example 6. Spatial Covariance matrix associated to ### a Weibull RF with Genwend correlation model ### ############################################################### param=list(scale=0.3,nugget=0,shape=4,mean=0,smooth=1,power2=5) # Simulation of a spatial Gaussian random field: matrix6 = GeoCovmatrix(coordx=coords, corrmodel="GenWend", param=param, sparse=TRUE,model="Weibull") # Percentage of no zero values matrix6$nozero ################################################################ ### ### Example 7. Spatial Covariance matrix associated to ### a binomial gaussian RF with Generalized Wendland correlation model ### ############################################################### param=list(mean=0.2,scale=0.2,nugget=0,power2=4,smooth=0) # Simulation of a spatial Gaussian random field: matrix7 = GeoCovmatrix(coordx=coords, corrmodel="GenWend", param=param,n=5, sparse=TRUE, model="Binomial") as.matrix(matrix7$covmatrix)[1:4,1:4] ################################################################ ### ### Example 8. Covariance matrix associated to ### a bivariate Matern exponential correlation model ### ############################################################### set.seed(8) # Define the spatial-coordinates of the points: x = runif(4, 0, 1) y = runif(4, 0, 1) coords = cbind(x,y) # Parameters param=list(mean_1=0,mean_2=0,sill_1=1,sill_2=2, scale_1=0.1, scale_2=0.1, scale_12=0.1, smooth_1=0.5, smooth_2=0.5, smooth_12=0.5, nugget_1=0,nugget_2=0,pcol=-0.25) # Covariance matrix matrix8 = GeoCovmatrix(coordx=coords, corrmodel="Bi_matern", param=param)$covmatrix matrix8
library(GeoModels) ################################################################ ### ### Example 1.Estimated spatial covariance matrix associated to ### a WCL estimates using the Matern correlation model ### ############################################################### set.seed(3) N=300 # number of location sites x <- runif(N, 0, 1) y <- runif(N, 0, 1) coords <- cbind(x,y) # Set the covariance model's parameters: corrmodel <- "Matern" mean=0.5; sill <- 1 nugget <- 0 scale <- 0.2/3 smooth=0.5 param<-list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth) data <- GeoSim(coordx=coords,corrmodel=corrmodel, param=param)$data fixed<-list(nugget=nugget,smooth=smooth) start<-list(mean=mean,scale=scale,sill=sill) fit0 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, neighb=3,likelihood="Conditional",optimizer="BFGS", type="Pairwise", start=start,fixed=fixed) print(fit0) #estimated covariance matrix using Geofit object mm=GeoCovmatrix(fit0)$covmatrix #estimated covariance matrix mm1 = GeoCovmatrix(coordx=coords,corrmodel=corrmodel, param=c(fit0$param,fit0$fixed))$covmatrix sum(mm-mm1) ################################################################ ### ### Example 2. Spatial covariance matrix associated to ### the GeneralizedWendland-Matern correlation model ### ############################################################### # Correlation Parameters for Gen Wendland model CorrParam("GenWend_Matern") # Gen Wendland Parameters param=list(sill=1,scale=0.04,nugget=0,smooth=0,power2=1.5) matrix2 = GeoCovmatrix(coordx=coords, corrmodel="GenWend_Matern", param=param,sparse=TRUE) # Percentage of no zero values matrix2$nozero ################################################################ ### ### Example 3. Spatial covariance matrix associated to ### the Kummer correlation model ### ############################################################### # Correlation Parameters for kummer model CorrParam("Kummer") param=list(sill=1,scale=0.2,nugget=0,smooth=0.5,power2=1) matrix3 = GeoCovmatrix(coordx=coords, corrmodel="Kummer", param=param) matrix3$covmatrix[1:4,1:4] ################################################################ ### ### Example 4. Covariance matrix associated to ### the space-time double Matern correlation model ### ############################################################### # Define the temporal-coordinates: times = seq(1, 4, 1) # Correlation Parameters for double Matern model CorrParam("Matern_Matern") # Define covariance parameters param=list(scale_s=0.3,scale_t=0.5,sill=1,smooth_s=0.5,smooth_t=0.5) # Simulation of a spatial Gaussian random field: matrix4 = GeoCovmatrix(coordx=coords, coordt=times, corrmodel="Matern_Matern", param=param) dim(matrix4$covmatrix) ################################################################ ### ### Example 5. Spatial Covariance matrix associated to ### a skew gaussian RF with Matern correlation model ### ############################################################### param=list(sill=1,scale=0.3/3,nugget=0,skew=4,smooth=0.5) # Simulation of a spatial Gaussian random field: matrix5 = GeoCovmatrix(coordx=coords, corrmodel="Matern", param=param, model="SkewGaussian") # covariance matrix matrix5$covmatrix[1:4,1:4] ################################################################ ### ### Example 6. Spatial Covariance matrix associated to ### a Weibull RF with Genwend correlation model ### ############################################################### param=list(scale=0.3,nugget=0,shape=4,mean=0,smooth=1,power2=5) # Simulation of a spatial Gaussian random field: matrix6 = GeoCovmatrix(coordx=coords, corrmodel="GenWend", param=param, sparse=TRUE,model="Weibull") # Percentage of no zero values matrix6$nozero ################################################################ ### ### Example 7. Spatial Covariance matrix associated to ### a binomial gaussian RF with Generalized Wendland correlation model ### ############################################################### param=list(mean=0.2,scale=0.2,nugget=0,power2=4,smooth=0) # Simulation of a spatial Gaussian random field: matrix7 = GeoCovmatrix(coordx=coords, corrmodel="GenWend", param=param,n=5, sparse=TRUE, model="Binomial") as.matrix(matrix7$covmatrix)[1:4,1:4] ################################################################ ### ### Example 8. Covariance matrix associated to ### a bivariate Matern exponential correlation model ### ############################################################### set.seed(8) # Define the spatial-coordinates of the points: x = runif(4, 0, 1) y = runif(4, 0, 1) coords = cbind(x,y) # Parameters param=list(mean_1=0,mean_2=0,sill_1=1,sill_2=2, scale_1=0.1, scale_2=0.1, scale_12=0.1, smooth_1=0.5, smooth_2=0.5, smooth_12=0.5, nugget_1=0,nugget_2=0,pcol=-0.25) # Covariance matrix matrix8 = GeoCovmatrix(coordx=coords, corrmodel="Bi_matern", param=param)$covmatrix matrix8
The procedure use the GeoKrig
or GeoKrigloc
function to compute n-fold kriging cross-validation using informations from a GeoFit
object. The function returns some prediction scores.
GeoCV(fit, K=100, estimation=TRUE, optimizer=NULL, lower=NULL, upper=NULL, n.fold=0.05,local=FALSE, neighb=NULL, maxdist=NULL,maxtime=NULL,sparse=FALSE, type_krig="Simple", which=1, parallel=FALSE, ncores=NULL)
GeoCV(fit, K=100, estimation=TRUE, optimizer=NULL, lower=NULL, upper=NULL, n.fold=0.05,local=FALSE, neighb=NULL, maxdist=NULL,maxtime=NULL,sparse=FALSE, type_krig="Simple", which=1, parallel=FALSE, ncores=NULL)
fit |
An object of class
|
K |
The number of iterations in cross-validation. |
estimation |
Logical; if |
optimizer |
The type of optimization algorithm if estimation is |
lower |
An optional named list giving the values for the lower bound of the space parameter
when the optimizer is |
upper |
An optional named list giving the values for the upper bound of the space parameter
when the optimizer is |
n.fold |
Numeric; the percentage of data to be deleted (and predicted) in the cross-validation procedure. |
local |
Logical; If local is TRUE, then local kriging is performed. The default is FALSE. |
neighb |
Numeric; an optional positive integer indicating the order of neighborhood if local kriging is performed. |
maxdist |
Numeric; an optional positive value indicating the distance in the spatial neighborhood if local kriging is performed. |
maxtime |
Numeric; an optional positive value indicating the distance in the temporal neighborhood if local kriging is performed. |
sparse |
Logical; if |
type_krig |
String; the type of kriging. If |
which |
Numeric; In the case of bivariate cokriging it indicates which variable to predict. It can be 1 or 2 |
parallel |
Logical; if |
ncores |
Numeric; number of cores involved in parallelization. |
Returns an object containing the following informations:
predicted |
A list of the predicted values in the CV procedure; |
data_to_pred |
A list of the data to predict in the CV procedure; |
mae |
The vector of mean absolute error in the CV procedure; |
mad |
The vector of median absolute error in the CV procedure; |
brie |
The vector of brie score in the CV procedure; |
rmse |
The vector of root mean squared error in the CV procedure; |
lscore |
The vector of log-score in the CV procedure; |
crps |
The vector of continuous ranked probability score in the CV procedure; |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) ################################################################ ########### Examples of spatial kriging ############ ################################################################ model="Gaussian" set.seed(79) x = runif(400, 0, 1) y = runif(400, 0, 1) coords=cbind(x,y) # Set the exponential cov parameters: corrmodel = "GenWend" mean=0; sill=5; nugget=0 scale=0.2;smooth=0;power2=4 param=list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth,power2=power2) # Simulation of the spatial Gaussian random field: data = GeoSim(coordx=coords, corrmodel=corrmodel, param=param)$data ## estimation with pairwise likelihood fixed=list(nugget=nugget,smooth=0,power2=power2) start=list(mean=0,scale=scale,sill=1) I=Inf lower=list(mean=-I,scale=0,sill=0) upper=list(mean= I,scale=I,sill=I) # Maximum pairwise likelihood fitting : fit = GeoFit(data, coordx=coords, corrmodel=corrmodel,model=model, likelihood='Marginal', type='Pairwise',neighb=3, optimizer="nlminb", lower=lower,upper=upper, start=start,fixed=fixed) #a=GeoCV(fit,K=100,estimation=TRUE,parallel=TRUE) #a$rmse
library(GeoModels) ################################################################ ########### Examples of spatial kriging ############ ################################################################ model="Gaussian" set.seed(79) x = runif(400, 0, 1) y = runif(400, 0, 1) coords=cbind(x,y) # Set the exponential cov parameters: corrmodel = "GenWend" mean=0; sill=5; nugget=0 scale=0.2;smooth=0;power2=4 param=list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth,power2=power2) # Simulation of the spatial Gaussian random field: data = GeoSim(coordx=coords, corrmodel=corrmodel, param=param)$data ## estimation with pairwise likelihood fixed=list(nugget=nugget,smooth=0,power2=power2) start=list(mean=0,scale=scale,sill=1) I=Inf lower=list(mean=-I,scale=0,sill=0) upper=list(mean= I,scale=I,sill=I) # Maximum pairwise likelihood fitting : fit = GeoFit(data, coordx=coords, corrmodel=corrmodel,model=model, likelihood='Marginal', type='Pairwise',neighb=3, optimizer="nlminb", lower=lower,upper=upper, start=start,fixed=fixed) #a=GeoCV(fit,K=100,estimation=TRUE,parallel=TRUE) #a$rmse
The function computes RMSE, MAE, LSCORE, CRPS predictive scores based on drop-one prediction for a spatial, spatiotemporal and bivariate Gaussian RFs
GeoDoScores(data, method="cholesky", matrix)
GeoDoScores(data, method="cholesky", matrix)
data |
A |
method |
String; the type of matrix decomposition used in the computation of the predictive scores. Default is |
matrix |
An object of class GeoCovmatrix. See the Section Details. |
For a given covariance matrix object (GeoCovmatrix
)
and a given spatial, spatiotemporal or bivariare realization
from a Gaussian random field,
the function computes four predictive scores based on drop-one prediction.
Returns a list containing the following informations:
RMSE |
Root-mean-square error predictive score |
MAE |
Mean absolute error predictive score |
LSCORE |
Logarithmic predictive score |
CRPS |
Continuous ranked probability predictive score |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Zhang H. and Wang Y. (2010). Kriging and cross-validation for massive spatial data. Environmetrics, 21, 290–304. Gneiting T. and Raftery A. Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association, 102
library(GeoModels) ################################################################ ######### Examples of predictive score computation ############ ################################################################ set.seed(8) # Define the spatial-coordinates of the points: x <- runif(500, 0, 2) y <- runif(500, 0, 2) coords=cbind(x,y) matrix1 <- GeoCovmatrix(coordx=coords, corrmodel="Matern", param=list(smooth=0.5, sill=1,scale=0.2,nugget=0)) data <- GeoSim(coordx=coords, corrmodel="Matern", param=list(mean=0,smooth=0.5, sill=1,scale=0.2,nugget=0))$data Pr_scores <- GeoDoScores(data,matrix=matrix1) Pr_scores
library(GeoModels) ################################################################ ######### Examples of predictive score computation ############ ################################################################ set.seed(8) # Define the spatial-coordinates of the points: x <- runif(500, 0, 2) y <- runif(500, 0, 2) coords=cbind(x,y) matrix1 <- GeoCovmatrix(coordx=coords, corrmodel="Matern", param=list(smooth=0.5, sill=1,scale=0.2,nugget=0)) data <- GeoSim(coordx=coords, corrmodel="Matern", param=list(mean=0,smooth=0.5, sill=1,scale=0.2,nugget=0))$data Pr_scores <- GeoDoScores(data,matrix=matrix1) Pr_scores
Maximum weighted composite-likelihood fitting for Gaussian and some Non-Gaussian univariate spatial, spatio-temporal and bivariate spatial random fieldss The function allows to fix any of the parameters and setting upper/lower bound in the optimization. Different methods of optimization can be used.
GeoFit(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL,copula=NULL, corrmodel=NULL,distance="Eucl",fixed=NULL,anisopars=NULL, est.aniso=c(FALSE,FALSE),GPU=NULL, grid=FALSE, likelihood='Marginal', local=c(1,1), lower=NULL,maxdist=Inf,neighb=NULL, maxtime=Inf, memdist=TRUE,method="cholesky", model='Gaussian',n=1, onlyvar=FALSE , optimizer='Nelder-Mead', parallel=FALSE, radius=6371, sensitivity=FALSE,sparse=FALSE, start=NULL, taper=NULL, tapsep=NULL, type='Pairwise', upper=NULL, varest=FALSE, vartype='SubSamp', weighted=FALSE, winconst=NULL, winstp=NULL, winconst_t=NULL, winstp_t=NULL,X=NULL,nosym=FALSE,spobj=NULL,spdata=NULL)
GeoFit(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL,copula=NULL, corrmodel=NULL,distance="Eucl",fixed=NULL,anisopars=NULL, est.aniso=c(FALSE,FALSE),GPU=NULL, grid=FALSE, likelihood='Marginal', local=c(1,1), lower=NULL,maxdist=Inf,neighb=NULL, maxtime=Inf, memdist=TRUE,method="cholesky", model='Gaussian',n=1, onlyvar=FALSE , optimizer='Nelder-Mead', parallel=FALSE, radius=6371, sensitivity=FALSE,sparse=FALSE, start=NULL, taper=NULL, tapsep=NULL, type='Pairwise', upper=NULL, varest=FALSE, vartype='SubSamp', weighted=FALSE, winconst=NULL, winstp=NULL, winconst_t=NULL, winstp_t=NULL,X=NULL,nosym=FALSE,spobj=NULL,spdata=NULL)
data |
A |
coordx |
A numeric ( |
coordy |
A numeric vector assigning 1-dimension of
spatial coordinates; |
coordt |
A numeric vector assigning 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
copula |
String; the type of copula. It can be "Clayton" or "Gaussian" |
corrmodel |
String; the name of a correlation model, for the description see the Section Details. |
distance |
String; the name of the spatial distance. The default is |
fixed |
An optional named list giving the values of the parameters that will be considered as known values. The listed parameters for a given correlation function will be not estimated. |
anisopars |
A list of two elements: "angle" and "ratio" i.e. the anisotropy angle and the anisotropy ratio, respectively. |
est.aniso |
A bivariate logical vector providing which anisotropic parameters must be estimated. |
GPU |
Numeric; if |
grid |
Logical; if |
likelihood |
String; the configuration of the composite
likelihood. |
local |
Numeric; number of local work-items of the OpenCL setup |
lower |
An optional named list giving the values for the lower bound of the space parameter
when the optimizer is |
maxdist |
Numeric; an optional positive value indicating the maximum spatial distance considered in the composite or tapered likelihood computation. See the Section Details for more information. |
neighb |
Numeric; an optional positive integer indicating the order of neighborhood in the composite likelihood computation. See the Section Details for more information. |
maxtime |
Numeric; an optional positive integer indicating the order of temporal neighborhood in the composite likelihood computation. |
memdist |
Logical; if |
method |
String; the type of matrix decomposition used in the simulation. Default is cholesky.
The other possible choices is |
model |
String; the type of random fields and therefore the densities associated to the likelihood
objects. |
n |
Numeric; number of trials in a binomial random fields; number of successes in a negative binomial random fields |
onlyvar |
Logical; if |
optimizer |
String; the optimization algorithm
(see |
parallel |
Logical; if |
radius |
Numeric; the radius of the sphere in the case of lon-lat coordinates. The default is 6371, the radius of the earth. |
sensitivity |
Logical; if |
sparse |
Logical; if |
start |
An optional named list with the initial values of the
parameters that are used by the numerical routines in maximization
procedure. |
taper |
String; the name of the type of covariance matrix.
It can be |
tapsep |
Numeric; an optional value indicating the separabe parameter in the space time adaptive taper (see Details). |
type |
String; the type of the likelihood objects. If |
upper |
An optional named list giving the values for the upper bound
of the space parameter when the optimizer is or |
varest |
Logical; if |
vartype |
String; ( |
weighted |
Logical; if |
winconst |
Numeric; a bivariate positive vector for computing the spatial sub-window in the sub-sampling procedure. See Details for more information. |
winstp |
Numeric; a value in |
winconst_t |
Numeric; a positive value for computing the temporal sub-window in the sub-sampling procedure. See Details for more information. |
winstp_t |
Numeric; a value in |
X |
Numeric; Matrix of spatio(temporal)covariates in the linear mean specification. |
nosym |
Logical; if TRUE simmetric weights are not considered. This allows a faster but less efficient CL estimation. |
spobj |
An object of class sp or spacetime |
spdata |
Character:The name of data in the sp or spacetime object |
GeoFit
provides weighted composite likelihood estimation based on pairs and independence composite likelihood estimation
for Gaussian and non Gaussian random fields. Specifically, marginal and conditional pairwise
likelihood are considered for each type of random field (Gaussian and not Gaussian).
The optimization method is specified using optimizer
. The default method is Nelder-mead
and other available methods are nlm
, BFGS
, SANN
, L-BFGS-B
, bobyqa
and nlminb
. In the last three cases upper and lower bounds constraints in the optimization can be specified using lower
and upper
parameters.
Depending on the dimension of data
and on the name of the correlation model,
the observations are assumed as a realization of
a spatial, spatio-temporal or bivariate random field.
Specifically, with data
, coordx
, coordy
, coordt
parameters:
If data
is a numeric -dimensional vector,
coordx
and coordy
are two
numeric -dimensional vectors (or
coordx
is ()-matrix and
coordy=NULL
), then the data are interpreted as a single spatial
realisation observed on spatial sites;
If data
is a numeric ()-matrix,
coordx
and coordy
are two
numeric -dimensional vectors (or
coordx
is ()-matrix and
coordy=NULL
),
coordt
is a numeric -dimensional vector, then the data
are interpreted as a single spatial-temporal realisation of a random fields observed on
d
spatial sites and for t
times.
If data
is a numeric ()-matrix,
coordx
and coordy
are two
numeric -dimensional vectors (or
coordx
is ()-matrix and
coordy=NULL
), then the data
are interpreted as a single spatial realisation of a bivariate random fields observed on d
spatial sites.
If data
is a list, coordxdyn
is a list and coordt
is a numeric -dimensional vector, then the data
are interpreted as a single spatial-temporal realisation of a random fields observed on dynamical spatial sites (different locations sites for each temporal instants) and for
t
times.
Is is also possible to specify a matrix of covariates using X
.
Specifically:
In the spatial case X
must be a () covariates matrix associated to
data
a numeric -dimensional vector;
In the spatiotemporal case X
must be a () covariates matrix associated to
data
a numeric ()-matrix, where
;
In the spatiotemporal case X
must be a () covariates matrix associated to
data
a numeric ()-matrix, where
;
The corrmodel
parameter allows to select a specific correlation
function for the random fields. (See GeoCovmatrix
).
The distance
parameter allows to consider differents kinds of spatial distances.
The settings alternatives are:
Eucl
, the euclidean distance (default value);
Chor
, the chordal distance;
Geod
, the geodesic distance;
The likelihood
parameter represents the composite-likelihood
configurations. The settings alternatives are:
Conditional
, the composite-likelihood is formed by
conditionals likelihoods;
Marginal
, the composite-likelihood is formed by
marginals likelihoods (default value);
Full
, the composite-likelihood turns out to be the standard likelihood;
It must be coupled with the type
parameter that can be fixed to
Pairwise
, the composite-likelihood is based on pairs;
Independence
, the composite-likelihood is based on indepedence;
Standard
, this is the option for the standard likelihood;
The possible combinations are:
likelihood="Marginal"
and type="Pairwise"
for maximum marginal pairwise likelihood estimation (the default setting)
likelihood="Conditional"
and type="Pairwise"
for maximum conditional pairwise likelihood estimation
likelihood="Marginal"
and type="Independence"
for maximum independence composite likelihood estimation
likelihood="Full"
and type="Standard"
for maximum stardard likelihood estimation
The first three combinations can be used for any model. The standard likelihood can be used only for some specific model.
The model
parameter indicates the type of random field
considered. The available options are:
random fields with marginal symmetric distribution:
Gaussian
, for a Gaussian random field.
StudentT
, for a StudentT random field (see Bevilacqua M., Caamaño C., Arellano Valle R.B., Morales-Oñate V., 2020).
Tukeyh
, for a Tukeyh random field.
Tukeyh2
, for a Tukeyhh random field. (see Caamaño et al., 2023)
Logistic
, for a Logistic random field.
random fields with positive values and right skewed marginal distribution:
Gamma
for a Gamma random fields (see Bevilacqua M., Caamano C., Gaetan, 2020)
Weibull
for a Weibull random fields (see Bevilacqua M., Caamano C., Gaetan, 2020)
LogGaussian
for a LogGaussian random fields (see Bevilacqua M., Caamano C., Gaetan, 2020)
LogLogistic
for a LogLogistic random fields.
random fields with with possibly asymmetric marginal distribution:
SkewGaussian
for a skew Gaussian random field (see Alegrıa et al. (2017)).
SinhAsinh
for a Sinh-arcsinh random field (see Blasi et. al 2022).
TwopieceGaussian
for a Twopiece Gaussian random field (see Bevilacqua et. al 2022).
TwopieceTukeyh
for a Twopiece Tukeyh random field (see Bevilacqua et. al 2022).
random fields with for directional data
Wrapped
for a wrapped Gaussian random field (see Alegria A., Bevilacqua, M., Porcu, E. (2016))
random fields with marginal counts data
Poisson
for a Poisson random field (see Morales-Navarrete et. al 2021).
PoissonZIP
for a zero inflated Poisson random field (see Morales-Navarrete et. al 2021).
Binomial
for a Binomial random field.
BinomialNeg
for a negative Binomial random field.
BinomialNegZINB
for a zero inflated negative Binomial random field.
random fields using Gaussian and Clayton copula (see Bevilacqua, Alvarado and Caamaño, 2023) with the following marginal distribution:
Gaussian
for Gaussian random field.
Beta2
for Beta random field.
For a given model
the associated parameters are given by nuisance and correlation parameters. In order to obtain the nuisance parameters associated with a specific model use NuisParam
.
In order to obtain the correlation parameters associated with a given correlation model use
CorrParam
.
All the nuisance and covariance parameters must be specified
by the user using the start
and the fixed
parameter.
Specifically:
The option start
sets the starting values parameters in the optimization process for the parameters to be estimated.
The option fixed
parameter allows to fix some of the parameters.
Regression parameters in the linear specification must be specified as mean,mean1,..meank
(see NuisParam
).
In this case a matrix of covariates with suitable dimension must be specified using X
.
In the case of a single mean then X
should not be specified and it is interpreted as a vector of ones.
It is also possible to fix a vector of spatial or spatio-temporal means (estimated with other methods for instance).
Two types of binary weights can be used in the weighted composite likelihood estimation based on pairs, one based on neighboords and one based on distances.
In the first case binary weights are set to 1 or 0 depending if the pairs are neighboords of a certain order (1, 2, 3, ..) specified by the parameter (neighb
). This weighting scheme is effecient for large-data sets since the computation of the 'useful' pairs in based on fast nearest neighbour
search (Caamaño et al., 2023).
In the second case, binary weights are set to 1 or 0 depending if the pairs have distance lower than (maxdist
).
This weighting scheme is less inefficient for large data.
The same arguments of neighb
applies for maxtime
that sets
the order (1, 2, 3, ..) of temporal neighboords in spatial-temporal field.
For estimation of the variance-covariance matrix of the weighted composite likelihood estimates
the option sensitivity=TRUE
must be specified. Then the GeoFit
object must be updated using the function GeoVarestbootstrap
. This allows to estimate the Godambe Information matrix (see Bevilacqua et. al. (2012) , Bevilacqua and Gaetan (2013)).
Then standard error estimation, confidence intervals, pvalues and composite likelihood information critera can be obtained.
The option varest=TRUE
is deprecated.
Returns an object of class GeoFit
.
An object of class GeoFit
is a list containing
at most the following components:
bivariate |
Logical: |
clic |
The composite information criterion, if the full likelihood is considered then it coincides with the Akaike information criterion; |
coordx |
A |
coordy |
A |
coordt |
A |
coordx_dyn |
A list of dynamical (in time) spatial coordinates; |
conf.int |
Confidence intervals for standard maximum likelihood estimation; |
convergence |
A string that denotes if convergence is reached; |
copula |
The type of copula; |
corrmodel |
The correlation model; |
data |
The vector or matrix or array of data; |
distance |
The type of spatial distance; |
fixed |
A list of the fixed parameters; |
iterations |
The number of iteration used by the numerical routine; |
likelihood |
The configuration of the composite likelihood; |
logCompLik |
The value of the log composite-likelihood at the maximum; |
maxdist |
The maximum spatial distance used in the weigthed composite likelihood. If no spatial distance is specified then it is NULL; |
maxtime |
The order of temporal neighborhood in the composite likelihood computation. |
message |
Extra message passed from the numerical routines; |
model |
The density associated to the likelihood objects; |
missp |
True if a misspecified Gaussian model is ued in the composite likelihhod; |
n |
The number of trials in a binominal random fields;the number of successes in a negative Binomial random fieldss; |
neighb |
The order of spatial neighborhood in the composite likelihood computation. |
ns |
The number of (different) location sites in the bivariate case; |
nozero |
In the case of tapered likelihood the percentage of non zero values in the covariance matrix. Otherwise is NULL. |
numcoord |
The number of spatial coordinates; |
numtime |
The number of the temporal realisations of the random fields; |
param |
A list of the parameters' estimates; |
radius |
The radius of the sphere in the case of great circle distance; |
stderr |
The vector of standard errors for standard maximum likelihood estimation; |
sensmat |
The sensitivity matrix; |
varcov |
The matrix of the variance-covariance of the estimates; |
varimat |
The variability matrix; |
vartype |
The method used to compute the variance of the estimates; |
type |
The type of the likelihood objects. |
winconst |
The constant used to compute the window size in the spatial sub-sampling; |
winstp |
The step used for moving the window in the spatial sub-sampling; |
winconst_t |
The constant used to compute the window size in the spatio-temporal sub-sampling; |
winstp_ |
The step used for moving the window in the spatio-temporal sub-sampling; |
X |
The matrix of covariates; |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
General Composite-likelihood:
Varin, C., Reid, N. and Firth, D. (2011). An Overview of Composite Likelihood Methods. Statistica Sinica, 21, 5–42.
Varin, C. and Vidoni, P. (2005) A Note on Composite Likelihood Inference and Model Selection. Biometrika, 92, 519–528.
Non Gaussian random fields:
Alegrıa A., Caro S., Bevilacqua M., Porcu E., Clarke J. (2017) Estimating covariance functions of multivariate skew-Gaussian random fields on the sphere. Spatial Statistics 22 388-402
Alegria A., Bevilacqua, M., Porcu, E. (2016) Likelihood-based inference for multivariate space-time wrapped-Gaussian fields. Journal of Statistical Computation and Simulation. 86(13), 2583–2597.
Bevilacqua M., Caamano C., Gaetan C. (2020) On modeling positive continuous data with spatio-temporal dependence. Environmetrics 31(7)
Bevilacqua M., Caamaño C., Arellano Valle R.B., Morales-Oñate V. (2020) Non-Gaussian Geostatistical Modeling using (skew) t Processes. Scandinavian Journal of Statistics.
Blasi F., Caamaño C., Bevilacqua M., Furrer R. (2022) A selective view of climatological data and likelihood estimation Spatial Statistics 10.1016/j.spasta.2022.100596
Bevilacqua M., Caamaño C., Arellano-Valle R. B., Camilo Gomez C. (2022) A class of random fields with two-piece marginal distributions for modeling point-referenced data with spatial outliers. Test 10.1007/s11749-021-00797-5
Morales-Navarrete D., Bevilacqua M., Caamaño C., Castro L.M. (2022) Modelling Point Referenced Spatial Count Data: A Poisson Process Approach TJournal of the American Statistical Association To appear
Caamaño C., Bevilacqua M., López C., Morales-Oñate V. (2023) Nearest neighbours weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation Computational Statistics and Data Analysis To appear
Bevilacqua M., Alvarado E., Caamaño C., (2023) A flexible Clayton-like spatial copula with application to bounded support data Journal of Multivariate Analysis To appear
Weighted Composite-likelihood for (non-)Gaussian random fields:
Bevilacqua, M. Gaetan, C., Mateu, J. and Porcu, E. (2012) Estimating space and space-time covariance functions for large data sets: a weighted composite likelihood approach. Journal of the American Statistical Association, Theory & Methods, 107, 268–280.
Bevilacqua, M., Gaetan, C. (2015) Comparing composite likelihood methods based on pairs for spatial Gaussian random fields. Statistics and Computing, 25(5), 877-892.
Caamaño C., Bevilacqua M., López C., Morales-Oñate V. (2023) Nearest neighbours weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation Computational Statistics and Data Analysis To appear
Sub-sampling estimation:
Heagerty, P. J. and Lumley T. (2000) Window Subsampling of Estimating Functions with Application to Regression Models. Journal of the American Statistical Association, Theory & Methods, 95, 197–211.
library(GeoModels) ############################################################### ############ Examples of spatial Gaussian random fieldss ################ ############################################################### # Define the spatial-coordinates of the points: set.seed(3) N=300 # number of location sites x <- runif(N, 0, 1) y <- runif(N, 0, 1) coords <- cbind(x,y) # Define spatial matrix covariates and regression parameters X=cbind(rep(1,N),runif(N)) mean <- 0.2 mean1 <- -0.5 # Set the covariance model's parameters: corrmodel <- "Matern" sill <- 1 nugget <- 0 scale <- 0.2/3 smooth=0.5 param<-list(mean=mean,mean1=mean1,sill=sill,nugget=nugget,scale=scale,smooth=smooth) # Simulation of the spatial Gaussian random fields: data <- GeoSim(coordx=coords,corrmodel=corrmodel, param=param,X=X)$data ################################################################ ### ### Example 0. Maximum independence composite likelihood fitting of ### a Gaussian random fields (no dependence parameters) ### ############################################################### # setting starting parameters to be estimated start<-list(mean=mean,mean1=mean1,sill=sill) fit1 <- GeoFit(data=data,coordx=coords,likelihood="Marginal", type="Independence", start=start,X=X) print(fit1) ################################################################ ### ### Example 1. Maximum conditional pairwise likelihood fitting of ### a Gaussian random fields using BFGS ### ############################################################### # setting fixed and starting parameters to be estimated fixed<-list(nugget=nugget,smooth=smooth) start<-list(mean=mean,mean1=mean1,scale=scale,sill=sill) fit1 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, neighb=3,likelihood="Conditional",optimizer="BFGS", type="Pairwise", start=start,fixed=fixed,X=X) print(fit1) ################################################################ ### ### Example 2. Standard Maximum likelihood fitting of ### a Gaussian random fields using nlminb ### ############################################################### # Define the spatial-coordinates of the points: set.seed(3) N=250 # number of location sites x <- runif(N, 0, 1) y <- runif(N, 0, 1) coords <- cbind(x,y) param<-list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth) data <- GeoSim(coordx=coords,corrmodel=corrmodel, param=param)$data # setting fixed and parameters to be estimated fixed<-list(nugget=nugget,smooth=smooth) start<-list(mean=mean,scale=scale,sill=sill) I=Inf lower<-list(mean=-I,scale=0,sill=0) upper<-list(mean=I,scale=I,sill=I) fit2 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, optimizer="nlminb",upper=upper,lower=lower, likelihood="Full",type="Standard", start=start,fixed=fixed) print(fit2) ############################################################### ############ Examples of spatial non-Gaussian random fieldss ############# ############################################################### ################################################################ ### ### Example 3. Maximum pairwise likelihood fitting of a Weibull random fields ### with Generalized Wendland correlation with Nelder-Mead ### ############################################################### set.seed(524) # Define the spatial-coordinates of the points: N=300 x <- runif(N, 0, 1) y <- runif(N, 0, 1) coords <- cbind(x,y) X=cbind(rep(1,N),runif(N)) mean=1; mean1=2 # regression parameters nugget=0 shape=2 scale=0.2 smooth=0 model="Weibull" corrmodel="GenWend" param=list(mean=mean,mean1=mean1,scale=scale, shape=shape,nugget=nugget,power2=4,smooth=smooth) # Simulation of a non stationary weibull random fields: data <- GeoSim(coordx=coords, corrmodel=corrmodel,model=model,X=X, param=param)$data fixed<-list(nugget=nugget,power2=4,smooth=smooth) start<-list(mean=mean,mean1=mean1,scale=scale,shape=shape) # Maximum independence likelihood: fit <- GeoFit(data=data, coordx=coords, X=X, likelihood="Marginal",type="Independence", corrmodel=corrmodel, ,model=model, start=start, fixed=fixed) print(unlist(fit$param)) ## estimating dependence parameter fixing vector mean parameter Xb=as.numeric(X %*% c(mean,mean1)) fixed<-list(nugget=nugget,power2=4,smooth=smooth,mean=Xb) start<-list(scale=scale,shape=shape) # Maximum conditional composite-likelihood fitting of the random fields: fit1 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model, neighb=3,likelihood="Conditional",type="Pairwise", optimizer="Nelder-Mead", start=start,fixed=fixed) print(unlist(fit1$param)) ### joint estimation of the dependence parameter and mean parameters fixed<-list(nugget=nugget,power2=4,smooth=smooth) start<-list(mean=mean,mean1=mean1,scale=scale,shape=shape) fit2 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model, neighb=3,likelihood="Conditional",type="Pairwise",X=X, optimizer="Nelder-Mead", start=start,fixed=fixed) print(unlist(fit2$param)) ################################################################ ### ### Example 4. Maximum pairwise likelihood fitting of ### a Skew-Gaussian spatial random fields with Wendland correlation ### ############################################################### set.seed(261) model="SkewGaussian" # Define the spatial-coordinates of the points: x <- runif(500, 0, 1) y <- runif(500, 0, 1) coords <- cbind(x,y) corrmodel="Wend0" mean=0;nugget=0 sill=1 skew=-4.5 power2=4 c_supp=0.2 # model parameters param=list(power2=power2,skew=skew, mean=mean,sill=sill,scale=c_supp,nugget=nugget) data <- GeoSim(coordx=coords, corrmodel=corrmodel,model=model, param=param)$data plot(density(data)) fixed=list(power2=power2,nugget=nugget) start=list(scale=c_supp,skew=skew,mean=mean,sill=sill) lower=list(scale=0,skew=-I,mean=-I,sill=0) upper=list(scale=I,skew=I,mean=I,sill=I) # Maximum marginal pairwise likelihood: fit1 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model, neighb=3,likelihood="Marginal",type="Pairwise", optimizer="bobyqa",lower=lower,upper=upper, start=start,fixed=fixed) print(unlist(fit1$param)) ################################################################ ### ### Example 5. Maximum pairwise likelihood fitting of ### a Binomial random fields with exponential correlation ### ############################################################### set.seed(422) N=250 x <- runif(N, 0, 1) y <- runif(N, 0, 1) coords <- cbind(x,y) mean=0.1; mean1=0.8; mean2=-0.5 # regression parameters X=cbind(rep(1,N),runif(N),runif(N)) # marix covariates corrmodel <- "Wend0" param=list(mean=mean,mean1=mean1,mean2=mean2,nugget=0,scale=0.2,power2=4) # Simulation of the spatial Binomial-Gaussian random fields: data <- GeoSim(coordx=coords, corrmodel=corrmodel, model="Binomial", n=10,X=X, param=param)$data ## estimating the marginal parameters using independence cl fixed <- list(power2=4,scale=0.2,nugget=0) start <- list(mean=mean,mean1=mean1,mean2=mean2) # Maximum independence likelihood: fit <- GeoFit(data=data, coordx=coords,n=10, X=X, likelihood="Marginal",type="Independence",corrmodel=corrmodel, ,model="Binomial", start=start, fixed=fixed) print(fit) ## estimating dependence parameter fixing vector mean parameter Xb=as.numeric(X %*% c(mean,mean1,mean2)) fixed <- list(nugget=0,power2=4,mean=Xb) start <- list(scale=0.2) # Maximum conditional pairwise likelihood: fit1 <- GeoFit(data=data, coordx=coords, corrmodel=corrmodel,n=10, likelihood="Conditional",type="Pairwise", neighb=3 ,model="Binomial", start=start, fixed=fixed) print(fit1) ## estimating jointly marginal and dependnce parameters fixed <- list(nugget=0,power2=4) start <- list(mean=mean,mean1=mean1,mean2=mean2,scale=0.2) # Maximum conditional pairwise likelihood: fit2 <- GeoFit(data=data, coordx=coords, corrmodel=corrmodel,n=10, X=X, likelihood="Conditional",type="Pairwise", neighb=3 ,model="Binomial", start=start, fixed=fixed) print(fit2) ############################################################### ######### Examples of Gaussian spatio-temporal random fieldss ########### ############################################################### set.seed(52) # Define the temporal sequence: time <- seq(1, 9, 1) # Define the spatial-coordinates of the points: x <- runif(20, 0, 1) y <- runif(20, 0, 1) coords=cbind(x,y) # Set the covariance model's parameters: scale_s=0.2/3;scale_t=1 smooth_s=0.5;smooth_t=0.5 sill=1 nugget=0 mean=0 param<-list(mean=0,scale_s=scale_s,scale_t=scale_t, smooth_t=smooth_t, smooth_s=smooth_s ,sill=sill,nugget=nugget) # Simulation of the spatial-temporal Gaussian random fields: data <- GeoSim(coordx=coords,coordt=time,corrmodel="Matern_Matern", param=param)$data ################################################################ ### ### Example 6. Maximum pairwise likelihood fitting of a ### space time Gaussian random fields with double-exponential correlation ### ############################################################### # Fixed parameters fixed<-list(nugget=nugget,smooth_s=smooth_s,smooth_t=smooth_t) # Starting value for the estimated parameters start<-list(mean=mean,scale_s=scale_s,scale_t=scale_t,sill=sill) # Maximum composite-likelihood fitting of the random fields: fit <- GeoFit(data=data,coordx=coords,coordt=time, corrmodel="Matern_Matern",maxtime=1,neighb=3, likelihood="Marginal",type="Pairwise", start=start,fixed=fixed) print(fit) ############################################################### ######### Examples of a bivariate Gaussian random fields ########### ############################################################### ################################################################ ### Example 7. Maximum pairwise likelihood fitting of a ### bivariate Gaussian random fields with separable Bivariate matern ### (cross) correlation model ############################################################### # Define the spatial-coordinates of the points: set.seed(89) x <- runif(300, 0, 1) y <- runif(300, 0, 1) coords=cbind(x,y) # parameters param=list(mean_1=0,mean_2=0,scale=0.1,smooth=0.5,sill_1=1,sill_2=1, nugget_1=0,nugget_2=0,pcol=0.2) # Simulation of a spatial bivariate Gaussian random fields: data <- GeoSim(coordx=coords, corrmodel="Bi_Matern_sep", param=param)$data # selecting fixed and estimated parameters fixed=list(mean_1=0,mean_2=0,nugget_1=0,nugget_2=0,smooth=0.5) start=list(sill_1=var(data[1,]),sill_2=var(data[2,]), scale=0.1,pcol=cor(data[1,],data[2,])) # Maximum marginal pairwise likelihood fitcl<- GeoFit(data=data, coordx=coords, corrmodel="Bi_Matern_sep", likelihood="Marginal",type="Pairwise", optimizer="BFGS" , start=start,fixed=fixed, neighb=c(4,4,4)) print(fitcl)
library(GeoModels) ############################################################### ############ Examples of spatial Gaussian random fieldss ################ ############################################################### # Define the spatial-coordinates of the points: set.seed(3) N=300 # number of location sites x <- runif(N, 0, 1) y <- runif(N, 0, 1) coords <- cbind(x,y) # Define spatial matrix covariates and regression parameters X=cbind(rep(1,N),runif(N)) mean <- 0.2 mean1 <- -0.5 # Set the covariance model's parameters: corrmodel <- "Matern" sill <- 1 nugget <- 0 scale <- 0.2/3 smooth=0.5 param<-list(mean=mean,mean1=mean1,sill=sill,nugget=nugget,scale=scale,smooth=smooth) # Simulation of the spatial Gaussian random fields: data <- GeoSim(coordx=coords,corrmodel=corrmodel, param=param,X=X)$data ################################################################ ### ### Example 0. Maximum independence composite likelihood fitting of ### a Gaussian random fields (no dependence parameters) ### ############################################################### # setting starting parameters to be estimated start<-list(mean=mean,mean1=mean1,sill=sill) fit1 <- GeoFit(data=data,coordx=coords,likelihood="Marginal", type="Independence", start=start,X=X) print(fit1) ################################################################ ### ### Example 1. Maximum conditional pairwise likelihood fitting of ### a Gaussian random fields using BFGS ### ############################################################### # setting fixed and starting parameters to be estimated fixed<-list(nugget=nugget,smooth=smooth) start<-list(mean=mean,mean1=mean1,scale=scale,sill=sill) fit1 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, neighb=3,likelihood="Conditional",optimizer="BFGS", type="Pairwise", start=start,fixed=fixed,X=X) print(fit1) ################################################################ ### ### Example 2. Standard Maximum likelihood fitting of ### a Gaussian random fields using nlminb ### ############################################################### # Define the spatial-coordinates of the points: set.seed(3) N=250 # number of location sites x <- runif(N, 0, 1) y <- runif(N, 0, 1) coords <- cbind(x,y) param<-list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth) data <- GeoSim(coordx=coords,corrmodel=corrmodel, param=param)$data # setting fixed and parameters to be estimated fixed<-list(nugget=nugget,smooth=smooth) start<-list(mean=mean,scale=scale,sill=sill) I=Inf lower<-list(mean=-I,scale=0,sill=0) upper<-list(mean=I,scale=I,sill=I) fit2 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, optimizer="nlminb",upper=upper,lower=lower, likelihood="Full",type="Standard", start=start,fixed=fixed) print(fit2) ############################################################### ############ Examples of spatial non-Gaussian random fieldss ############# ############################################################### ################################################################ ### ### Example 3. Maximum pairwise likelihood fitting of a Weibull random fields ### with Generalized Wendland correlation with Nelder-Mead ### ############################################################### set.seed(524) # Define the spatial-coordinates of the points: N=300 x <- runif(N, 0, 1) y <- runif(N, 0, 1) coords <- cbind(x,y) X=cbind(rep(1,N),runif(N)) mean=1; mean1=2 # regression parameters nugget=0 shape=2 scale=0.2 smooth=0 model="Weibull" corrmodel="GenWend" param=list(mean=mean,mean1=mean1,scale=scale, shape=shape,nugget=nugget,power2=4,smooth=smooth) # Simulation of a non stationary weibull random fields: data <- GeoSim(coordx=coords, corrmodel=corrmodel,model=model,X=X, param=param)$data fixed<-list(nugget=nugget,power2=4,smooth=smooth) start<-list(mean=mean,mean1=mean1,scale=scale,shape=shape) # Maximum independence likelihood: fit <- GeoFit(data=data, coordx=coords, X=X, likelihood="Marginal",type="Independence", corrmodel=corrmodel, ,model=model, start=start, fixed=fixed) print(unlist(fit$param)) ## estimating dependence parameter fixing vector mean parameter Xb=as.numeric(X %*% c(mean,mean1)) fixed<-list(nugget=nugget,power2=4,smooth=smooth,mean=Xb) start<-list(scale=scale,shape=shape) # Maximum conditional composite-likelihood fitting of the random fields: fit1 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model, neighb=3,likelihood="Conditional",type="Pairwise", optimizer="Nelder-Mead", start=start,fixed=fixed) print(unlist(fit1$param)) ### joint estimation of the dependence parameter and mean parameters fixed<-list(nugget=nugget,power2=4,smooth=smooth) start<-list(mean=mean,mean1=mean1,scale=scale,shape=shape) fit2 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model, neighb=3,likelihood="Conditional",type="Pairwise",X=X, optimizer="Nelder-Mead", start=start,fixed=fixed) print(unlist(fit2$param)) ################################################################ ### ### Example 4. Maximum pairwise likelihood fitting of ### a Skew-Gaussian spatial random fields with Wendland correlation ### ############################################################### set.seed(261) model="SkewGaussian" # Define the spatial-coordinates of the points: x <- runif(500, 0, 1) y <- runif(500, 0, 1) coords <- cbind(x,y) corrmodel="Wend0" mean=0;nugget=0 sill=1 skew=-4.5 power2=4 c_supp=0.2 # model parameters param=list(power2=power2,skew=skew, mean=mean,sill=sill,scale=c_supp,nugget=nugget) data <- GeoSim(coordx=coords, corrmodel=corrmodel,model=model, param=param)$data plot(density(data)) fixed=list(power2=power2,nugget=nugget) start=list(scale=c_supp,skew=skew,mean=mean,sill=sill) lower=list(scale=0,skew=-I,mean=-I,sill=0) upper=list(scale=I,skew=I,mean=I,sill=I) # Maximum marginal pairwise likelihood: fit1 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model, neighb=3,likelihood="Marginal",type="Pairwise", optimizer="bobyqa",lower=lower,upper=upper, start=start,fixed=fixed) print(unlist(fit1$param)) ################################################################ ### ### Example 5. Maximum pairwise likelihood fitting of ### a Binomial random fields with exponential correlation ### ############################################################### set.seed(422) N=250 x <- runif(N, 0, 1) y <- runif(N, 0, 1) coords <- cbind(x,y) mean=0.1; mean1=0.8; mean2=-0.5 # regression parameters X=cbind(rep(1,N),runif(N),runif(N)) # marix covariates corrmodel <- "Wend0" param=list(mean=mean,mean1=mean1,mean2=mean2,nugget=0,scale=0.2,power2=4) # Simulation of the spatial Binomial-Gaussian random fields: data <- GeoSim(coordx=coords, corrmodel=corrmodel, model="Binomial", n=10,X=X, param=param)$data ## estimating the marginal parameters using independence cl fixed <- list(power2=4,scale=0.2,nugget=0) start <- list(mean=mean,mean1=mean1,mean2=mean2) # Maximum independence likelihood: fit <- GeoFit(data=data, coordx=coords,n=10, X=X, likelihood="Marginal",type="Independence",corrmodel=corrmodel, ,model="Binomial", start=start, fixed=fixed) print(fit) ## estimating dependence parameter fixing vector mean parameter Xb=as.numeric(X %*% c(mean,mean1,mean2)) fixed <- list(nugget=0,power2=4,mean=Xb) start <- list(scale=0.2) # Maximum conditional pairwise likelihood: fit1 <- GeoFit(data=data, coordx=coords, corrmodel=corrmodel,n=10, likelihood="Conditional",type="Pairwise", neighb=3 ,model="Binomial", start=start, fixed=fixed) print(fit1) ## estimating jointly marginal and dependnce parameters fixed <- list(nugget=0,power2=4) start <- list(mean=mean,mean1=mean1,mean2=mean2,scale=0.2) # Maximum conditional pairwise likelihood: fit2 <- GeoFit(data=data, coordx=coords, corrmodel=corrmodel,n=10, X=X, likelihood="Conditional",type="Pairwise", neighb=3 ,model="Binomial", start=start, fixed=fixed) print(fit2) ############################################################### ######### Examples of Gaussian spatio-temporal random fieldss ########### ############################################################### set.seed(52) # Define the temporal sequence: time <- seq(1, 9, 1) # Define the spatial-coordinates of the points: x <- runif(20, 0, 1) y <- runif(20, 0, 1) coords=cbind(x,y) # Set the covariance model's parameters: scale_s=0.2/3;scale_t=1 smooth_s=0.5;smooth_t=0.5 sill=1 nugget=0 mean=0 param<-list(mean=0,scale_s=scale_s,scale_t=scale_t, smooth_t=smooth_t, smooth_s=smooth_s ,sill=sill,nugget=nugget) # Simulation of the spatial-temporal Gaussian random fields: data <- GeoSim(coordx=coords,coordt=time,corrmodel="Matern_Matern", param=param)$data ################################################################ ### ### Example 6. Maximum pairwise likelihood fitting of a ### space time Gaussian random fields with double-exponential correlation ### ############################################################### # Fixed parameters fixed<-list(nugget=nugget,smooth_s=smooth_s,smooth_t=smooth_t) # Starting value for the estimated parameters start<-list(mean=mean,scale_s=scale_s,scale_t=scale_t,sill=sill) # Maximum composite-likelihood fitting of the random fields: fit <- GeoFit(data=data,coordx=coords,coordt=time, corrmodel="Matern_Matern",maxtime=1,neighb=3, likelihood="Marginal",type="Pairwise", start=start,fixed=fixed) print(fit) ############################################################### ######### Examples of a bivariate Gaussian random fields ########### ############################################################### ################################################################ ### Example 7. Maximum pairwise likelihood fitting of a ### bivariate Gaussian random fields with separable Bivariate matern ### (cross) correlation model ############################################################### # Define the spatial-coordinates of the points: set.seed(89) x <- runif(300, 0, 1) y <- runif(300, 0, 1) coords=cbind(x,y) # parameters param=list(mean_1=0,mean_2=0,scale=0.1,smooth=0.5,sill_1=1,sill_2=1, nugget_1=0,nugget_2=0,pcol=0.2) # Simulation of a spatial bivariate Gaussian random fields: data <- GeoSim(coordx=coords, corrmodel="Bi_Matern_sep", param=param)$data # selecting fixed and estimated parameters fixed=list(mean_1=0,mean_2=0,nugget_1=0,nugget_2=0,smooth=0.5) start=list(sill_1=var(data[1,]),sill_2=var(data[2,]), scale=0.1,pcol=cor(data[1,],data[2,])) # Maximum marginal pairwise likelihood fitcl<- GeoFit(data=data, coordx=coords, corrmodel="Bi_Matern_sep", likelihood="Marginal",type="Pairwise", optimizer="BFGS" , start=start,fixed=fixed, neighb=c(4,4,4)) print(fitcl)
Maximum weighted composite-likelihood fitting for Gaussian and some Non-Gaussian univariate spatial, spatio-temporal and bivariate spatial RFs. A first preliminary estimation is performed using independence composite-likelihood for the marginal parameters of the model. The estimates are then used as starting values in the second final estimation step. The function allows to fix any of the parameters and setting upper/lower bound in the optimization.
GeoFit2(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, copula=NULL,corrmodel,distance="Eucl",fixed=NULL, anisopars=NULL,est.aniso=c(FALSE,FALSE),GPU=NULL, grid=FALSE, likelihood='Marginal', local=c(1,1), lower=NULL,maxdist=Inf,neighb=NULL, maxtime=Inf, memdist=TRUE,method="cholesky", model='Gaussian',n=1, onlyvar=FALSE , optimizer='Nelder-Mead', parallel=FALSE, radius=6371, sensitivity=FALSE,sparse=FALSE, start=NULL, taper=NULL, tapsep=NULL, type='Pairwise', upper=NULL, varest=FALSE, vartype='SubSamp', weighted=FALSE, winconst=NULL, winstp=NULL, winconst_t=NULL, winstp_t=NULL,X=NULL,nosym=FALSE,spobj=NULL,spdata=NULL)
GeoFit2(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, copula=NULL,corrmodel,distance="Eucl",fixed=NULL, anisopars=NULL,est.aniso=c(FALSE,FALSE),GPU=NULL, grid=FALSE, likelihood='Marginal', local=c(1,1), lower=NULL,maxdist=Inf,neighb=NULL, maxtime=Inf, memdist=TRUE,method="cholesky", model='Gaussian',n=1, onlyvar=FALSE , optimizer='Nelder-Mead', parallel=FALSE, radius=6371, sensitivity=FALSE,sparse=FALSE, start=NULL, taper=NULL, tapsep=NULL, type='Pairwise', upper=NULL, varest=FALSE, vartype='SubSamp', weighted=FALSE, winconst=NULL, winstp=NULL, winconst_t=NULL, winstp_t=NULL,X=NULL,nosym=FALSE,spobj=NULL,spdata=NULL)
data |
A |
coordx |
A numeric ( |
coordy |
A numeric vector assigning 1-dimension of
spatial coordinates; |
coordt |
A numeric vector assigning 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
copula |
String; the type of copula. It can be "Clayton" or "Gaussian" |
corrmodel |
String; the name of a correlation model, for the description see the Section Details. |
distance |
String; the name of the spatial distance. The default is |
fixed |
An optional named list giving the values of the parameters that will be considered as known values. The listed parameters for a given correlation function will be not estimated. |
anisopars |
A list of two elements: "angle" and "ratio" i.e. the anisotropy angle and the anisotropy ratio, respectively. |
est.aniso |
A bivariate logical vector providing which anisotropic parameters must be estimated. |
GPU |
Numeric; if |
grid |
Logical; if |
likelihood |
String; the configuration of the composite
likelihood. |
local |
Numeric; number of local work-items of the OpenCL setup |
lower |
An optional named list giving the values for the lower bound of the space parameter
when the optimizer is |
maxdist |
Numeric; an optional positive value indicating the maximum spatial distance considered in the composite or tapered likelihood computation. See the Section Details for more information. |
neighb |
Numeric; an optional positive integer indicating the order of neighborhood in the composite likelihood computation. See the Section Details for more information. |
maxtime |
Numeric; an optional positive integer indicating the order of temporal neighborhood in the composite likelihood computation. |
memdist |
Logical; if |
method |
String; the type of matrix decomposition used in the simulation. Default is cholesky.
The other possible choices is |
model |
String; the type of RF and therefore the densities associated to the likelihood
objects. |
n |
Numeric; number of trials in a binomial RF; number of successes in a negative binomial RF |
onlyvar |
Logical; if |
optimizer |
String; the optimization algorithm
(see |
parallel |
Logical; if |
radius |
Numeric; the radius of the sphere in the case of lon-lat coordinates. The default is 6371, the radius of the earth. |
sensitivity |
Logical; if |
sparse |
Logical; if |
start |
An optional named list with the initial values of the
parameters that are used by the numerical routines in maximization
procedure. |
taper |
String; the name of the type of covariance matrix.
It can be |
tapsep |
Numeric; an optional value indicating the separabe parameter in the space time adaptive taper (see Details). |
type |
String; the type of the likelihood objects. If |
upper |
An optional named list giving the values for the upper bound
of the space parameter when the optimizer is or |
varest |
Logical; if |
vartype |
String; ( |
weighted |
Logical; if |
winconst |
Numeric; a bivariate positive vector for computing the spatial sub-window in the sub-sampling procedure. See Details for more information. |
winstp |
Numeric; a value in |
winconst_t |
Numeric; a positive value for computing the temporal sub-window in the sub-sampling procedure. See Details for more information. |
winstp_t |
Numeric; a value in |
X |
Numeric; Matrix of spatio(temporal)covariates in the linear mean specification. |
nosym |
Logical; if TRUE simmetric weights are not considered. This allows a faster but less efficient CL estimation. |
spobj |
An object of class sp or spacetime |
spdata |
Character:The name of data in the sp or spacetime object |
The function GeoFit2
is similar to the function GeoFit
.
However GeoFit2
performs a preliminary estimation using maximum indenpendence composite likelihood
of the marginal parameters of the model and then use the obtained estimates as starting value in the global
weighted composite likelihood estimation (that includes marginal and dependence parameters).
This allows to obtain "good" starting values in the optimization algorithm for the marginal parameters.
Returns an object of class GeoFit
.
An object of class GeoFit
is a list containing
at most the following components:
bivariate |
Logical: |
clic |
The composite information criterion, if the full likelihood is considered then it coincides with the Akaike information criterion; |
coordx |
A |
coordy |
A |
coordt |
A |
coordx_dyn |
A list of dynamical (in time) spatial coordinates; |
conf.int |
Confidence intervals for standard maximum likelihood estimation; |
convergence |
A string that denotes if convergence is reached; |
copula |
The type of copula; |
corrmodel |
The correlation model; |
data |
The vector or matrix or array of data; |
distance |
The type of spatial distance; |
fixed |
A list of the fixed parameters; |
iterations |
The number of iteration used by the numerical routine; |
likelihood |
The configuration of the composite likelihood; |
logCompLik |
The value of the log composite-likelihood at the maximum; |
maxdist |
The maximum spatial distance used in the weigthed composite likelihood. If no spatial distance is specified then it is NULL; |
maxtime |
The maximum temporal distance used in the weigthed composite likelihood. If no spatial distance is specified then it is NULL; |
message |
Extra message passed from the numerical routines; |
model |
The density associated to the likelihood objects; |
missp |
True if a misspecified Gaussian model is ued in the composite likelihhod; |
n |
The number of trials in a binominal RF;the number of successes in a negative Binomial RFs; |
neighb |
The order of spatial neighborhood in the composite likelihood computation. |
ns |
The number of (different) location sites in the bivariate case; |
nozero |
In the case of tapered likelihood the percentage of non zero values in the covariance matrix. Otherwise is NULL. |
numcoord |
The number of spatial coordinates; |
numtime |
The number of the temporal realisations of the RF; |
param |
A list of the parameters' estimates; |
radius |
The radius of the sphere in the case of great circle distance; |
stderr |
The vector of standard errors for standard maximum likelihood estimation; |
sensmat |
The sensitivity matrix; |
varcov |
The matrix of the variance-covariance of the estimates; |
varimat |
The variability matrix; |
vartype |
The method used to compute the variance of the estimates; |
type |
The type of the likelihood objects. |
winconst |
The constant used to compute the window size in the spatial sub-sampling; |
winstp |
The step used for moving the window in the spatial sub-sampling; |
winconst_t |
The constant used to compute the window size in the spatio-temporal sub-sampling; |
winstp_ |
The step used for moving the window in the spatio-temporal sub-sampling; |
X |
The matrix of covariates; |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) ############################################################### ############ Examples of spatial Gaussian RFs ################ ############################################################### ################################################################ ### ### Example 1 : Maximum pairwise conditional likelihood fitting ### of a Gaussian RF with Matern correlation ### ############################################################### model="Gaussian" # Define the spatial-coordinates of the points: set.seed(3) N=400 # number of location sites x <- runif(N, 0, 1) set.seed(6) y <- runif(N, 0, 1) coords <- cbind(x,y) # Define spatial matrix covariates X=cbind(rep(1,N),runif(N)) # Set the covariance model's parameters: corrmodel <- "Matern" mean <- 0.2 mean1 <- -0.5 sill <- 1 nugget <- 0 scale <- 0.2/3 smooth=0.5 param<-list(mean=mean,mean1=mean1,sill=sill,nugget=nugget,scale=scale,smooth=smooth) # Simulation of the spatial Gaussian RF: data <- GeoSim(coordx=coords,model=model,corrmodel=corrmodel, param=param,X=X)$data fixed<-list(nugget=nugget,smooth=smooth) start<-list(mean=mean,mean1=mean1,scale=scale,sill=sill) ################################################################ ### ### Maximum pairwise likelihood fitting of ### Gaussian RFs with exponential correlation. ### ############################################################### fit1 <- GeoFit2(data=data,coordx=coords,corrmodel=corrmodel, optimizer="BFGS",neighb=3,likelihood="Conditional", type="Pairwise", start=start,fixed=fixed,X=X) print(fit1) ############################################################### ############ Examples of spatial non-Gaussian RFs ############# ############################################################### ################################################################ ### ### Example 2. Maximum pairwise likelihood fitting of ### a LogGaussian RF with Generalized Wendland correlation ### ############################################################### set.seed(524) # Define the spatial-coordinates of the points: N=500 x <- runif(N, 0, 1) y <- runif(N, 0, 1) coords <- cbind(x,y) X=cbind(rep(1,N),runif(N)) mean=1; mean1=2 # regression parameters nugget=0 sill=0.5 scale=0.2 smooth=0 model="LogGaussian" corrmodel="GenWend" param=list(mean=mean,mean1=mean1,sill=sill,scale=scale, nugget=nugget,power2=4,smooth=smooth) # Simulation of a non stationary LogGaussian RF: data <- GeoSim(coordx=coords, corrmodel=corrmodel,model=model,X=X, param=param)$data fixed<-list(nugget=nugget,power2=4,smooth=smooth) start<-list(mean=mean,mean1=mean1,scale=scale,sill=sill) I=Inf lower<-list(mean=-I,mean1=-I,scale=0,sill=0) upper<-list(mean= I,mean1= I,scale=I,sill=I) # Maximum pairwise composite-likelihood fitting of the RF: fit <- GeoFit2(data=data,coordx=coords,corrmodel=corrmodel, model=model, neighb=3,likelihood="Conditional",type="Pairwise",X=X, optimizer="nlminb",lower=lower,upper=upper, start=start,fixed=fixed) print(unlist(fit$param)) ################################################################ ### ### Example 3. Maximum pairwise likelihood fitting of ### SinhAsinh RFs with Wendland0 correlation ### ############################################################### set.seed(261) model="SinhAsinh" # Define the spatial-coordinates of the points: x <- runif(500, 0, 1) y <- runif(500, 0, 1) coords <- cbind(x,y) corrmodel="Wend0" mean=0;nugget=0 sill=1 skew=-0.5 tail=1.5 power2=4 c_supp=0.2 # model parameters param=list(power2=power2,skew=skew,tail=tail, mean=mean,sill=sill,scale=c_supp,nugget=nugget) data <- GeoSim(coordx=coords, corrmodel=corrmodel,model=model, param=param)$data plot(density(data)) fixed=list(power2=power2,nugget=nugget) start=list(scale=c_supp,skew=skew,tail=tail,mean=mean,sill=sill) # Maximum pairwise likelihood: fit1 <- GeoFit2(data=data,coordx=coords,corrmodel=corrmodel, model=model, neighb=3,likelihood="Marginal",type="Pairwise", start=start,fixed=fixed) print(unlist(fit1$param))
library(GeoModels) ############################################################### ############ Examples of spatial Gaussian RFs ################ ############################################################### ################################################################ ### ### Example 1 : Maximum pairwise conditional likelihood fitting ### of a Gaussian RF with Matern correlation ### ############################################################### model="Gaussian" # Define the spatial-coordinates of the points: set.seed(3) N=400 # number of location sites x <- runif(N, 0, 1) set.seed(6) y <- runif(N, 0, 1) coords <- cbind(x,y) # Define spatial matrix covariates X=cbind(rep(1,N),runif(N)) # Set the covariance model's parameters: corrmodel <- "Matern" mean <- 0.2 mean1 <- -0.5 sill <- 1 nugget <- 0 scale <- 0.2/3 smooth=0.5 param<-list(mean=mean,mean1=mean1,sill=sill,nugget=nugget,scale=scale,smooth=smooth) # Simulation of the spatial Gaussian RF: data <- GeoSim(coordx=coords,model=model,corrmodel=corrmodel, param=param,X=X)$data fixed<-list(nugget=nugget,smooth=smooth) start<-list(mean=mean,mean1=mean1,scale=scale,sill=sill) ################################################################ ### ### Maximum pairwise likelihood fitting of ### Gaussian RFs with exponential correlation. ### ############################################################### fit1 <- GeoFit2(data=data,coordx=coords,corrmodel=corrmodel, optimizer="BFGS",neighb=3,likelihood="Conditional", type="Pairwise", start=start,fixed=fixed,X=X) print(fit1) ############################################################### ############ Examples of spatial non-Gaussian RFs ############# ############################################################### ################################################################ ### ### Example 2. Maximum pairwise likelihood fitting of ### a LogGaussian RF with Generalized Wendland correlation ### ############################################################### set.seed(524) # Define the spatial-coordinates of the points: N=500 x <- runif(N, 0, 1) y <- runif(N, 0, 1) coords <- cbind(x,y) X=cbind(rep(1,N),runif(N)) mean=1; mean1=2 # regression parameters nugget=0 sill=0.5 scale=0.2 smooth=0 model="LogGaussian" corrmodel="GenWend" param=list(mean=mean,mean1=mean1,sill=sill,scale=scale, nugget=nugget,power2=4,smooth=smooth) # Simulation of a non stationary LogGaussian RF: data <- GeoSim(coordx=coords, corrmodel=corrmodel,model=model,X=X, param=param)$data fixed<-list(nugget=nugget,power2=4,smooth=smooth) start<-list(mean=mean,mean1=mean1,scale=scale,sill=sill) I=Inf lower<-list(mean=-I,mean1=-I,scale=0,sill=0) upper<-list(mean= I,mean1= I,scale=I,sill=I) # Maximum pairwise composite-likelihood fitting of the RF: fit <- GeoFit2(data=data,coordx=coords,corrmodel=corrmodel, model=model, neighb=3,likelihood="Conditional",type="Pairwise",X=X, optimizer="nlminb",lower=lower,upper=upper, start=start,fixed=fixed) print(unlist(fit$param)) ################################################################ ### ### Example 3. Maximum pairwise likelihood fitting of ### SinhAsinh RFs with Wendland0 correlation ### ############################################################### set.seed(261) model="SinhAsinh" # Define the spatial-coordinates of the points: x <- runif(500, 0, 1) y <- runif(500, 0, 1) coords <- cbind(x,y) corrmodel="Wend0" mean=0;nugget=0 sill=1 skew=-0.5 tail=1.5 power2=4 c_supp=0.2 # model parameters param=list(power2=power2,skew=skew,tail=tail, mean=mean,sill=sill,scale=c_supp,nugget=nugget) data <- GeoSim(coordx=coords, corrmodel=corrmodel,model=model, param=param)$data plot(density(data)) fixed=list(power2=power2,nugget=nugget) start=list(scale=c_supp,skew=skew,tail=tail,mean=mean,sill=sill) # Maximum pairwise likelihood: fit1 <- GeoFit2(data=data,coordx=coords,corrmodel=corrmodel, model=model, neighb=3,likelihood="Marginal",type="Pairwise", start=start,fixed=fixed) print(unlist(fit1$param))
For a given set of spatial location sites (and temporal instants), the function computes optimal linear prediction and associated mean square error for the Gaussian and non Gaussian case.
GeoKrig(estobj=NULL,data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel,distance="Eucl", grid=FALSE, loc, maxdist=NULL, maxtime=NULL, method="cholesky", model="Gaussian", n=1,nloc=NULL,mse=FALSE, lin_opt=TRUE, param, anisopars=NULL,radius=6371, sparse=FALSE, taper=NULL,tapsep=NULL, time=NULL, type="Standard",type_mse=NULL, type_krig="Simple",weigthed=TRUE,which=1, copula=NULL, X=NULL,Xloc=NULL,Mloc=NULL,spobj=NULL,spdata=NULL)
GeoKrig(estobj=NULL,data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel,distance="Eucl", grid=FALSE, loc, maxdist=NULL, maxtime=NULL, method="cholesky", model="Gaussian", n=1,nloc=NULL,mse=FALSE, lin_opt=TRUE, param, anisopars=NULL,radius=6371, sparse=FALSE, taper=NULL,tapsep=NULL, time=NULL, type="Standard",type_mse=NULL, type_krig="Simple",weigthed=TRUE,which=1, copula=NULL, X=NULL,Xloc=NULL,Mloc=NULL,spobj=NULL,spdata=NULL)
estobj |
An object of class Geofit that includes information about data, model and estimates. |
data |
A |
coordx |
A numeric ( |
coordy |
A numeric vector giving 1-dimension of
spatial coordinates used for prediction; |
coordt |
A numeric vector giving 1-dimension of
temporal coordinates used for prediction; the default is |
coordx_dyn |
A list of |
corrmodel |
String; the name of a correlation model, for the description see the Section Details. |
distance |
String; the name of the spatial distance. The default
is |
grid |
Logical; if |
lin_opt |
Logical;If TRUE (default) then optimal (pairwise) linear kriging is computed. Otherwise optimal (pairwise) kriging is computed in the mean square sense. |
loc |
A numeric ( |
maxdist |
Numeric; an optional positive value indicating the maximum spatial compact support in the case of covariance tapering kriging. |
maxtime |
Numeric; an optional positive value indicating the maximum temporal compact support in the case of covasriance tapering kriging. |
method |
String; the type of matrix decomposition used in the simulation. Default is |
n |
Numeric; the number of trials in a binomial random fields.
Default is |
nloc |
Numeric; the number of trials of the locations sites to be predicted in a binomial random fields type II.
Default is |
mse |
Logical; if |
model |
String; the type of RF and therefore the densities associated to the likelihood
objects. |
param |
A list of parameter values required for the correlation model.See the Section Details. |
anisopars |
A list of two elements: "angle" and "ratio" i.e. the anisotropy angle and the anisotropy ratio, respectively. |
radius |
Numeric: the radius of the sphere if coordinates are passed in lon/lat format; |
sparse |
Logical; if |
taper |
String; the name of the taper correlation function, see the Section Details. |
tapsep |
Numeric; an optional value indicating the separabe parameter in the space time quasi taper (see Details). |
time |
A numeric ( |
type |
String; if |
type_mse |
String; if |
type_krig |
String; the type of kriging. If |
weigthed |
Logical; if |
which |
Numeric; In the case of bivariate (tapered) cokriging it indicates which variable to predict. It can be 1 or 2 |
copula |
String; the type of copula. It can be "Clayton" or "Gaussian" |
X |
Numeric; Matrix of spatio(temporal)covariates in the linear mean specification. |
Xloc |
Numeric; Matrix of spatio(temporal)covariates in the linear mean specification associated to predicted locations. |
Mloc |
Numeric; Vector of spatio(temporal) estimated means associated to predicted locations. |
spobj |
An object of class sp or spacetime |
spdata |
Character:The name of data in the sp or spacetime object |
Best linear unbiased predictor and associated mean square error is computed
for Gaussian and some non Gaussian cases.
Specifically, for a spatial or spatio-temporal or spatial bivariate dataset, given a set of spatial locations and
temporal istants and a correlation model
corrmodel
with some fixed parameters and given the type of RF (model
) the function computes
simple kriging, for the specified spatial locations
loc
and temporal instants time
, providing also the respective mean square error.
For the choice of the spatial or spatio temporal correlation model see details in GeoCovmatrix
function.
The list param
specifies mean and covariance parameters, see CorrParam
and GeoCovmatrix
for details. The type_krig
parameter indicates the type of kriging. In the
case of simple kriging, the known mean can be specified by the parameter
mean
in the list param
(See examples).
Returns an object of class Kg
.
An object of class Kg
is a list containing
at most the following components:
bivariate |
|
coordx |
A |
coordy |
A |
coordt |
A |
corrmodel |
String: the correlation model; |
covmatrix |
The covariance matrix if |
data |
The vector or matrix or array of data used for prediction |
distance |
String: the type of spatial distance; |
grid |
|
loc |
A ( |
n |
The number of trial for Binomial RFs |
nozero |
In the case of tapered simple kriging the percentage of non zero values in the covariance matrix. Otherwise is NULL. |
numcoord |
Numeric:he number |
numloc |
Numeric: the number |
numtime |
Numeric: the number |
numt |
Numeric: the number |
model |
The type of RF, see |
param |
Numeric: The covariance parameters; |
pred |
A ( |
radius |
Numeric: the radius of the sphere if coordinates are pssed in lon/lat format; |
spacetime |
|
tapmod |
String: the taper model if |
time |
A |
type |
String: the type of kriging (Standard or Tapering). |
type_krig |
String: the type of kriging. |
mse |
A ( |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Gaetan, C. and Guyon, X. (2010) Spatial Statistics and Modelling. Spring Verlang, New York.
library(GeoModels) ################################################################ ########### Examples of spatial kriging ############ ################################################################ ################################################################ ### ### Example 1. Spatial kriging of a ### Gaussian random fields with Gen wendland correlation. ### ################################################################ model="Gaussian" set.seed(79) x = runif(300, 0, 1) y = runif(300, 0, 1) coords=cbind(x,y) # Set the exponential cov parameters: corrmodel = "GenWend" mean=0; sill=5; nugget=0 scale=0.2;smooth=0;power2=4 param=list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth,power2=power2) # Simulation of the spatial Gaussian random field: data = GeoSim(coordx=coords, corrmodel=corrmodel, param=param)$data ## estimation with pairwise likelihood fixed=list(nugget=nugget,smooth=0,power2=power2) start=list(mean=0,scale=scale,sill=1) I=Inf lower=list(mean=-I,scale=0,sill=0) upper=list(mean= I,scale=I,sill=I) # Maximum pairwise likelihood fitting : fit = GeoFit(data, coordx=coords, corrmodel=corrmodel,model=model, likelihood='Marginal', type='Pairwise',neighb=3, optimizer="nlminb", lower=lower,upper=upper, start=start,fixed=fixed) # locations to predict xx=seq(0,1,0.03) loc_to_pred=as.matrix(expand.grid(xx,xx)) ## first option #param=append(fit$param,fit$fixed) #pr=GeoKrig(loc=loc_to_pred,coordx=coords,corrmodel=corrmodel, # model=model,param=param,data=data,mse=TRUE) ## second option using object GeoFit pr=GeoKrig(fit,loc=loc_to_pred,mse=TRUE) colour = rainbow(100) opar=par(no.readonly = TRUE) par(mfrow=c(1,3)) quilt.plot(coords,data,col=colour) # simple kriging map prediction image.plot(xx, xx, matrix(pr$pred,ncol=length(xx)),col=colour, xlab="",ylab="", main=" Kriging ") # simple kriging MSE map prediction variance image.plot(xx, xx, matrix(pr$mse,ncol=length(xx)),col=colour, xlab="",ylab="",main="Std error") par(opar) ################################################################ ### ### Example 2. Spatial kriging of a Skew ### Gaussian random fields with Matern correlation. ### ################################################################ model="SkewGaussian" set.seed(79) x = runif(300, 0, 1) y = runif(300, 0, 1) coords=cbind(x,y) # Set the exponential cov parameters: corrmodel = "Matern" mean=0 sill=2 nugget=0 scale=0.1 smooth=0.5 skew=3 param=list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth,skew=skew) # Simulation of the spatial skew Gaussian random field: data = GeoSim(coordx=coords, corrmodel=corrmodel,model=model, param=param)$data fixed=list(nugget=nugget,smooth=smooth) start=list(mean=0,scale=scale,sill=1,skew=skew) I=Inf lower=list(mean=-I,scale=0,sill=0,skew=-I) upper=list(mean= I,scale=I,sill=I,skew=I) # Maximum pairwise likelihood fitting : fit = GeoFit2(data, coordx=coords, corrmodel=corrmodel,model=model, likelihood='Marginal', type='Pairwise',neighb=3, optimizer="nlminb", lower=lower,upper=upper, start=start,fixed=fixed) # locations to predict xx=seq(0,1,0.03) loc_to_pred=as.matrix(expand.grid(xx,xx)) ## optimal linear kriging pr=GeoKrig(fit,loc=loc_to_pred,mse=TRUE) colour = rainbow(100) opar=par(no.readonly = TRUE) par(mfrow=c(1,3)) quilt.plot(coords,data,col=colour) # simple kriging map prediction image.plot(xx, xx, matrix(pr$pred,ncol=length(xx)),col=colour, xlab="",ylab="", main=" Kriging ") # simple kriging MSE map prediction variance image.plot(xx, xx, matrix(pr$mse,ncol=length(xx)),col=colour, xlab="",ylab="",main="Std error") par(opar) ################################################################ ### ### Example 3. Spatial kriging of a ### Gamma random field with mean spatial regression ### ############################################################### set.seed(312) model="Gamma" corrmodel = "GenWend" # Define the spatial-coordinates of the points: NN=300 coords=cbind(runif(NN),runif(NN)) ## matrix covariates a0=rep(1,NN) a1=runif(NN,0,1) X=cbind(a0,a1) ##Set model parameters shape=2 ## regression parameters mean = 1;mean1= -0.2 # correlation parameters nugget = 0;power2=4 scale = 0.3;smooth=0 ## simulation param=list(shape=shape,nugget=nugget,mean=mean,mean1=mean1, scale=scale,power2=power2,smooth=smooth) data = GeoSim(coordx=coords,corrmodel=corrmodel, param=param, model=model,X=X)$data #####starting and fixed parameters fixed=list(nugget=nugget,power2=power2,smooth=smooth) start=list(mean=mean,mean1=mean1, scale=scale,shape=shape) ## estimation with pairwise likelihood fit2 = GeoFit(data=data,coordx=coords,corrmodel=corrmodel,X=X, neighb=3,likelihood="Conditional",type="Pairwise", start=start,fixed=fixed, model = model) # locations to predict with associated covariates xx=seq(0,1,0.03) loc_to_pred=as.matrix(expand.grid(xx,xx)) NP=nrow(loc_to_pred) a0=rep(1,NP) a1=runif(NP,0,1) Xloc=cbind(a0,a1) #optimal linear kriging pr=GeoKrig(fit2,loc=loc_to_pred,Xloc=Xloc,sparse=TRUE,mse=TRUE) ## map opar=par(no.readonly = TRUE) par(mfrow=c(1,3)) quilt.plot(coords,data,main="Data") map=matrix(pr$pred,ncol=length(xx)) mapmse=matrix(pr$mse,ncol=length(xx)) image.plot(xx, xx, map, xlab="",ylab="",main="Kriging ") image.plot(xx, xx, mapmse, xlab="",ylab="",main="MSE") par(opar) ################################################################ ########### Examples of spatio temporal kriging ############ ################################################################ ################################################################ ### ### Example 4. Spatio temporal simple kriging of n locations ### sites and m temporal instants for a Gaussian random fields ### with estimated double Wendland correlation. ### ############################################################### model="Gaussian" # Define the spatial-coordinates of the points: x = runif(300, 0, 1) y = runif(300, 0, 1) coords=cbind(x,y) times=1:4 # Define model correlation modek and associated parameters corrmodel="Wend0_Wend0" param=list(nugget=0,mean=0,power2_s=4,power2_t=4, scale_s=0.2,scale_t=2,sill=1) # Simulation of the space time Gaussian random field: set.seed(31) data=GeoSim(coordx=coords,coordt=times,corrmodel=corrmodel,sparse=TRUE, param=param)$data # Maximum pairwise likelihood fitting of the space time random field: start = list(scale_s=0.15,scale_t=2,sill=1,mean=0) fixed = list(nugget=0,power2_s=4,power2_t=4) fit = GeoFit(data, coordx=coords, coordt=times, model=model, corrmodel=corrmodel, likelihood='Conditional', type='Pairwise',start=start,fixed=fixed, neighb=3,maxtime=1) # locations to predict xx=seq(0,1,0.04) loc_to_pred=as.matrix(expand.grid(xx,xx)) # Define the times to predict times_to_pred=2 pr=GeoKrig(fit,loc=loc_to_pred,time=times_to_pred,sparse=TRUE,mse=TRUE) opar=par(no.readonly = TRUE) par(mfrow=c(1,3)) zlim=c(-2.5,2.5) colour = rainbow(100) quilt.plot(coords,data[2,] ,col=colour,main = paste(" data at Time 2")) image.plot(xx, xx, matrix(pr$pred,ncol=length(xx)),col=colour, main = paste(" Kriging at Time 2"),ylab="") image.plot(xx, xx, matrix(pr$mse,ncol=length(xx)),col=colour, main = paste("Std err Time at time 2"),ylab="") par(opar) ################################################################ ### ### Example r. Spatial bivariate simple cokriging of n locations ### sites for a bivariate Gaussian random fields ### with estimated Matern correlation. ### ############################################################### #set.seed(6) #NN=1500 # number of spatial locations #x = runif(NN, 0, 1); #y = runif(NN, 0, 1) #coords=cbind(x,y) ## setting parameters #mean_1 = 2; mean_2= -1 #nugget_1 =0;nugget_2=0 #sill_1 =0.5; sill_2 =1; ### correlation parameters #CorrParam("Bi_Matern") #scale_1=0.2/3; scale_2=0.15/3; scale_12=0.5*(scale_2+scale_1) #smooth_1=smooth_2=smooth_12=0.5 #pcol = -0.4 #param= list(nugget_1=nugget_1,nugget_2=nugget_2, # sill_1=sill_1,sill_2=sill_2, # mean_1=mean_1,mean_2=mean_2, # smooth_1=smooth_1, smooth_2=smooth_2,smooth_12=smooth_12, # scale_1=scale_1, scale_2=scale_2,scale_12=scale_12, # pcol=pcol) ## simulation #data = GeoSim(coordx=coords, corrmodel="Bi_Matern",model=model,param=param)$data #fixed=list(mean_1=mean_1,mean_2=mean_2, nugget_1=nugget_1,nugget_2=nugget_2, # smooth_1=smooth_1, smooth_2=smooth_2,smooth_12=smooth_12) #start=list( sill_1=sill_1,sill_2=sill_2, # scale_1=scale_1,scale_2=scale_2,scale_12=scale_12, pcol=pcol) ## estimation with maximum likelihood #fit = GeoFit(data=data,coordx=coords, corrmodel="Bi_Matern", #likelihood="Full",type="Standard",optimizer="BFGS", #likelihood="Marginal",type="Pairwise",optimizer="BFGS",neighb=5, #start=start,fixed=fixed) ###### co-kriging for the fist component ############## #xx=seq(0,1,0.022) #loc_to_pred=as.matrix(expand.grid(xx,xx)) #pr1 = GeoKrig(fit,which=1,mse=TRUE,loc=loc_to_pred) #opar=par(no.readonly = TRUE) #par(mfrow=c(1,2)) #zlim=c(-2.5,2.5) #colour = rainbow(100) #quilt.plot(coords,data[1,] ,col=colour,main = paste(" Fist component")) #quilt.plot(loc_to_pred,pr1$pred,col=colour, # main = paste(" Kriging first component"),ylab="") #par(opar)
library(GeoModels) ################################################################ ########### Examples of spatial kriging ############ ################################################################ ################################################################ ### ### Example 1. Spatial kriging of a ### Gaussian random fields with Gen wendland correlation. ### ################################################################ model="Gaussian" set.seed(79) x = runif(300, 0, 1) y = runif(300, 0, 1) coords=cbind(x,y) # Set the exponential cov parameters: corrmodel = "GenWend" mean=0; sill=5; nugget=0 scale=0.2;smooth=0;power2=4 param=list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth,power2=power2) # Simulation of the spatial Gaussian random field: data = GeoSim(coordx=coords, corrmodel=corrmodel, param=param)$data ## estimation with pairwise likelihood fixed=list(nugget=nugget,smooth=0,power2=power2) start=list(mean=0,scale=scale,sill=1) I=Inf lower=list(mean=-I,scale=0,sill=0) upper=list(mean= I,scale=I,sill=I) # Maximum pairwise likelihood fitting : fit = GeoFit(data, coordx=coords, corrmodel=corrmodel,model=model, likelihood='Marginal', type='Pairwise',neighb=3, optimizer="nlminb", lower=lower,upper=upper, start=start,fixed=fixed) # locations to predict xx=seq(0,1,0.03) loc_to_pred=as.matrix(expand.grid(xx,xx)) ## first option #param=append(fit$param,fit$fixed) #pr=GeoKrig(loc=loc_to_pred,coordx=coords,corrmodel=corrmodel, # model=model,param=param,data=data,mse=TRUE) ## second option using object GeoFit pr=GeoKrig(fit,loc=loc_to_pred,mse=TRUE) colour = rainbow(100) opar=par(no.readonly = TRUE) par(mfrow=c(1,3)) quilt.plot(coords,data,col=colour) # simple kriging map prediction image.plot(xx, xx, matrix(pr$pred,ncol=length(xx)),col=colour, xlab="",ylab="", main=" Kriging ") # simple kriging MSE map prediction variance image.plot(xx, xx, matrix(pr$mse,ncol=length(xx)),col=colour, xlab="",ylab="",main="Std error") par(opar) ################################################################ ### ### Example 2. Spatial kriging of a Skew ### Gaussian random fields with Matern correlation. ### ################################################################ model="SkewGaussian" set.seed(79) x = runif(300, 0, 1) y = runif(300, 0, 1) coords=cbind(x,y) # Set the exponential cov parameters: corrmodel = "Matern" mean=0 sill=2 nugget=0 scale=0.1 smooth=0.5 skew=3 param=list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth,skew=skew) # Simulation of the spatial skew Gaussian random field: data = GeoSim(coordx=coords, corrmodel=corrmodel,model=model, param=param)$data fixed=list(nugget=nugget,smooth=smooth) start=list(mean=0,scale=scale,sill=1,skew=skew) I=Inf lower=list(mean=-I,scale=0,sill=0,skew=-I) upper=list(mean= I,scale=I,sill=I,skew=I) # Maximum pairwise likelihood fitting : fit = GeoFit2(data, coordx=coords, corrmodel=corrmodel,model=model, likelihood='Marginal', type='Pairwise',neighb=3, optimizer="nlminb", lower=lower,upper=upper, start=start,fixed=fixed) # locations to predict xx=seq(0,1,0.03) loc_to_pred=as.matrix(expand.grid(xx,xx)) ## optimal linear kriging pr=GeoKrig(fit,loc=loc_to_pred,mse=TRUE) colour = rainbow(100) opar=par(no.readonly = TRUE) par(mfrow=c(1,3)) quilt.plot(coords,data,col=colour) # simple kriging map prediction image.plot(xx, xx, matrix(pr$pred,ncol=length(xx)),col=colour, xlab="",ylab="", main=" Kriging ") # simple kriging MSE map prediction variance image.plot(xx, xx, matrix(pr$mse,ncol=length(xx)),col=colour, xlab="",ylab="",main="Std error") par(opar) ################################################################ ### ### Example 3. Spatial kriging of a ### Gamma random field with mean spatial regression ### ############################################################### set.seed(312) model="Gamma" corrmodel = "GenWend" # Define the spatial-coordinates of the points: NN=300 coords=cbind(runif(NN),runif(NN)) ## matrix covariates a0=rep(1,NN) a1=runif(NN,0,1) X=cbind(a0,a1) ##Set model parameters shape=2 ## regression parameters mean = 1;mean1= -0.2 # correlation parameters nugget = 0;power2=4 scale = 0.3;smooth=0 ## simulation param=list(shape=shape,nugget=nugget,mean=mean,mean1=mean1, scale=scale,power2=power2,smooth=smooth) data = GeoSim(coordx=coords,corrmodel=corrmodel, param=param, model=model,X=X)$data #####starting and fixed parameters fixed=list(nugget=nugget,power2=power2,smooth=smooth) start=list(mean=mean,mean1=mean1, scale=scale,shape=shape) ## estimation with pairwise likelihood fit2 = GeoFit(data=data,coordx=coords,corrmodel=corrmodel,X=X, neighb=3,likelihood="Conditional",type="Pairwise", start=start,fixed=fixed, model = model) # locations to predict with associated covariates xx=seq(0,1,0.03) loc_to_pred=as.matrix(expand.grid(xx,xx)) NP=nrow(loc_to_pred) a0=rep(1,NP) a1=runif(NP,0,1) Xloc=cbind(a0,a1) #optimal linear kriging pr=GeoKrig(fit2,loc=loc_to_pred,Xloc=Xloc,sparse=TRUE,mse=TRUE) ## map opar=par(no.readonly = TRUE) par(mfrow=c(1,3)) quilt.plot(coords,data,main="Data") map=matrix(pr$pred,ncol=length(xx)) mapmse=matrix(pr$mse,ncol=length(xx)) image.plot(xx, xx, map, xlab="",ylab="",main="Kriging ") image.plot(xx, xx, mapmse, xlab="",ylab="",main="MSE") par(opar) ################################################################ ########### Examples of spatio temporal kriging ############ ################################################################ ################################################################ ### ### Example 4. Spatio temporal simple kriging of n locations ### sites and m temporal instants for a Gaussian random fields ### with estimated double Wendland correlation. ### ############################################################### model="Gaussian" # Define the spatial-coordinates of the points: x = runif(300, 0, 1) y = runif(300, 0, 1) coords=cbind(x,y) times=1:4 # Define model correlation modek and associated parameters corrmodel="Wend0_Wend0" param=list(nugget=0,mean=0,power2_s=4,power2_t=4, scale_s=0.2,scale_t=2,sill=1) # Simulation of the space time Gaussian random field: set.seed(31) data=GeoSim(coordx=coords,coordt=times,corrmodel=corrmodel,sparse=TRUE, param=param)$data # Maximum pairwise likelihood fitting of the space time random field: start = list(scale_s=0.15,scale_t=2,sill=1,mean=0) fixed = list(nugget=0,power2_s=4,power2_t=4) fit = GeoFit(data, coordx=coords, coordt=times, model=model, corrmodel=corrmodel, likelihood='Conditional', type='Pairwise',start=start,fixed=fixed, neighb=3,maxtime=1) # locations to predict xx=seq(0,1,0.04) loc_to_pred=as.matrix(expand.grid(xx,xx)) # Define the times to predict times_to_pred=2 pr=GeoKrig(fit,loc=loc_to_pred,time=times_to_pred,sparse=TRUE,mse=TRUE) opar=par(no.readonly = TRUE) par(mfrow=c(1,3)) zlim=c(-2.5,2.5) colour = rainbow(100) quilt.plot(coords,data[2,] ,col=colour,main = paste(" data at Time 2")) image.plot(xx, xx, matrix(pr$pred,ncol=length(xx)),col=colour, main = paste(" Kriging at Time 2"),ylab="") image.plot(xx, xx, matrix(pr$mse,ncol=length(xx)),col=colour, main = paste("Std err Time at time 2"),ylab="") par(opar) ################################################################ ### ### Example r. Spatial bivariate simple cokriging of n locations ### sites for a bivariate Gaussian random fields ### with estimated Matern correlation. ### ############################################################### #set.seed(6) #NN=1500 # number of spatial locations #x = runif(NN, 0, 1); #y = runif(NN, 0, 1) #coords=cbind(x,y) ## setting parameters #mean_1 = 2; mean_2= -1 #nugget_1 =0;nugget_2=0 #sill_1 =0.5; sill_2 =1; ### correlation parameters #CorrParam("Bi_Matern") #scale_1=0.2/3; scale_2=0.15/3; scale_12=0.5*(scale_2+scale_1) #smooth_1=smooth_2=smooth_12=0.5 #pcol = -0.4 #param= list(nugget_1=nugget_1,nugget_2=nugget_2, # sill_1=sill_1,sill_2=sill_2, # mean_1=mean_1,mean_2=mean_2, # smooth_1=smooth_1, smooth_2=smooth_2,smooth_12=smooth_12, # scale_1=scale_1, scale_2=scale_2,scale_12=scale_12, # pcol=pcol) ## simulation #data = GeoSim(coordx=coords, corrmodel="Bi_Matern",model=model,param=param)$data #fixed=list(mean_1=mean_1,mean_2=mean_2, nugget_1=nugget_1,nugget_2=nugget_2, # smooth_1=smooth_1, smooth_2=smooth_2,smooth_12=smooth_12) #start=list( sill_1=sill_1,sill_2=sill_2, # scale_1=scale_1,scale_2=scale_2,scale_12=scale_12, pcol=pcol) ## estimation with maximum likelihood #fit = GeoFit(data=data,coordx=coords, corrmodel="Bi_Matern", #likelihood="Full",type="Standard",optimizer="BFGS", #likelihood="Marginal",type="Pairwise",optimizer="BFGS",neighb=5, #start=start,fixed=fixed) ###### co-kriging for the fist component ############## #xx=seq(0,1,0.022) #loc_to_pred=as.matrix(expand.grid(xx,xx)) #pr1 = GeoKrig(fit,which=1,mse=TRUE,loc=loc_to_pred) #opar=par(no.readonly = TRUE) #par(mfrow=c(1,2)) #zlim=c(-2.5,2.5) #colour = rainbow(100) #quilt.plot(coords,data[1,] ,col=colour,main = paste(" Fist component")) #quilt.plot(loc_to_pred,pr1$pred,col=colour, # main = paste(" Kriging first component"),ylab="") #par(opar)
For a given set of spatial location sites (and temporal instants),
the function computes optmal local linear prediction and the associated mean squared error
for the Gaussian and non Gaussian case using a spatial (temporal) neighborhood
computed using the function GeoNeighborhood
GeoKrigloc(estobj=NULL,data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel, distance="Eucl", grid=FALSE, loc, neighb=NULL, maxdist=NULL, maxtime=NULL, method="cholesky", model="Gaussian", n=1,nloc=NULL, mse=FALSE, param, anisopars=NULL,radius=6371, sparse=FALSE, time=NULL, type="Standard",type_mse=NULL, type_krig="Simple",weigthed=TRUE, which=1, copula=NULL,X=NULL,Xloc=NULL, Mloc=NULL,spobj=NULL,spdata=NULL,parallel=FALSE,ncores=NULL)
GeoKrigloc(estobj=NULL,data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel, distance="Eucl", grid=FALSE, loc, neighb=NULL, maxdist=NULL, maxtime=NULL, method="cholesky", model="Gaussian", n=1,nloc=NULL, mse=FALSE, param, anisopars=NULL,radius=6371, sparse=FALSE, time=NULL, type="Standard",type_mse=NULL, type_krig="Simple",weigthed=TRUE, which=1, copula=NULL,X=NULL,Xloc=NULL, Mloc=NULL,spobj=NULL,spdata=NULL,parallel=FALSE,ncores=NULL)
estobj |
An object of class Geofit that includes information about data, model and estimates. |
data |
A |
coordx |
A numeric ( |
coordy |
A numeric vector giving 1-dimension of
spatial coordinates used for prediction; |
coordt |
A numeric vector giving 1-dimension of
temporal coordinates used for prediction; the default is |
coordx_dyn |
A list of |
corrmodel |
String; the name of a correlation model, for the description see the Section Details. |
distance |
String; the name of the spatial distance. The default
is |
grid |
Logical; if |
loc |
A numeric ( |
neighb |
Numeric; an optional positive integer indicating the order of the neighborhood. |
maxdist |
Numeric; an optional positive value indicating the distance in the spatial neighborhood. |
maxtime |
Numeric; an optional positive integer value indicating the order of the temporal neighborhood. |
method |
String; the type of matrix decomposition used in the simulation. Default is |
n |
Numeric; the number of trials in a binomial random fields.
Default is |
nloc |
Numeric; the number of trials of the locations sites to be predicted in the binomial random field. If missing then a rounded mean of n is considered. |
mse |
Logical; if |
model |
String; the type of RF and therefore the densities associated to the likelihood
objects. |
param |
A list of parameter values required for the correlation model.See the Section Details. |
anisopars |
A list of two elements: "angle" and "ratio" i.e. the anisotropy angle and the anisotropy ratio, respectively. |
radius |
Numeric: the radius of the sphere if coordinates are passed in lon/lat format; |
sparse |
Logical; if |
time |
A numeric ( |
type |
String; if |
type_mse |
String; if |
type_krig |
String; the type of kriging. If |
weigthed |
Logical; if |
which |
Numeric; In the case of bivariate (tapered) cokriging it indicates which variable to predict. It can be 1 or 2 |
copula |
String; the type of copula. It can be "Clayton" or "Gaussian" |
X |
Numeric; Matrix of spatio(temporal)covariates in the linear mean specification. |
Xloc |
Numeric; Matrix of spatio(temporal)covariates in the linear mean specification associated to predicted locations. |
Mloc |
Numeric; Vector of spatio(temporal) estimated means associated to predicted locations. |
spobj |
An object of class sp or spacetime |
spdata |
Character:The name of data in the sp or spacetime object |
parallel |
Logical; if |
ncores |
Numeric; number of cores involved in parallelization. |
This function use the GeoKrig
with a
spatial or spatio-temporal neighborhood computed using the function GeoNeighborhood
.
The neighborhood is specified with the option maxdist
and maxtime
.
Returns an object of class Kg
.
An object of class Kg
is a list containing
at most the following components:
bivariate |
|
coordx |
A |
coordy |
A |
coordt |
A |
corrmodel |
String: the correlation model; |
covmatrix |
The covariance matrix if |
data |
The vector or matrix or array of data used for prediction |
distance |
String: the type of spatial distance; |
grid |
|
loc |
A ( |
n |
The number of trial for Binomial RFs |
nozero |
In the case of tapered simple kriging the percentage of non zero values in the covariance matrix. Otherwise is NULL. |
numcoord |
Numeric:he number |
numloc |
Numeric: the number |
numtime |
Numeric: the number |
numt |
Numeric: the number |
model |
The type of RF, see |
param |
Numeric: The covariance parameters; |
pred |
A ( |
radius |
Numeric: the radius of the sphere if coordinates are pssed in lon/lat format; |
spacetime |
|
tapmod |
String: the taper model if |
time |
A |
type |
String: the type of kriging (Standard or Tapering). |
type_krig |
String: the type of kriging. |
mse |
A ( |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Gaetan, C. and Guyon, X. (2010) Spatial Statistics and Modelling. Spring Verlang, New York. Furrer R., Genton, M.G. and Nychka D. (2006). Covariance Tapering for Interpolation of Large Spatial Datasets. Journal of Computational and Graphical Statistics, 15-3, 502–523.
################################################################ ############### Examples of Spatial local kriging ############# ################################################################ require(GeoModels) #### model="Gaussian" # Define the spatial-coordinates of the points: set.seed(759) x = runif(1000, 0, 1) y = runif(1000, 0, 1) coords=cbind(x,y) # Set the exponential cov parameters: corrmodel = "GenWend" mean=0; sill=1 nugget=0; scale=0.2 param=list(mean=mean,sill=sill,nugget=nugget,smooth=0, scale=scale,power2=4) # Simulation of the spatial Gaussian random field: data = GeoSim(coordx=coords, corrmodel=corrmodel, param=param)$data # Maximum pairwise likelihood fitting of the space time random field: start=list(scale=scale,sill=sill,mean=mean) fixed=list(power2=4,smooth=0,nugget=0) fit = GeoFit(data, coordx=coords, corrmodel=corrmodel, start=start,fixed=fixed, likelihood='Conditional', type='Pairwise', neighb=3) # locations to predict loc_to_pred=matrix(runif(8),4,2) ################################################################ ### ### Example 1. Comparing spatial kriging with local kriging for ### a Gaussian random field with GenWend correlation. ### ############################################################### param=append(fit$param,fit$fixed) pr=GeoKrig(fit,loc=loc_to_pred,mse=TRUE) pr_loc=GeoKrigloc(fit,loc=loc_to_pred,neighb=100,mse=TRUE) pr$pred; pr_loc$pred ############################################################ #### Example: spatio temporal Gaussian local kriging ###### ############################################################ require(GeoModels) require(fields) set.seed(78) coords=cbind(runif(100),runif(100)) coordt=seq(0,5,0.25) corrmodel="Matern_Matern" param=list(nugget=0,mean=0,scale_s=0.2/3,scale_t=0.25/3,sill=2, smooth_s=0.5,smooth_t=0.5) data = GeoSim(coordx=coords, coordt=coordt, corrmodel=corrmodel, param=param)$data # Maximum pairwise likelihood fitting of the space time random field: start = list(scale_s=0.2/3,scale_t=0.25,sill=2,mean=0) fixed = list(smooth_s=0.5,smooth_t=0.5,nugget=0) I=Inf lower=list(scale_s=0,scale_t=0,sill=0,mean=-I) upper=list(scale_s=I,scale_t=I,sill=I,mean=I) fit = GeoFit(data, coordx=coords, coordt=coordt, model=model, corrmodel=corrmodel, likelihood='Conditional', type='Pairwise',start=start,fixed=fixed, optimizer="nlminb",lower=lower,upper=upper, neighb=3,maxtime=1) ## four location to predict loc_to_pred=matrix(runif(8),4,2) ## three temporal instants to predict time=c(0.5,1.5,3.5) pr=GeoKrig(fit,loc=loc_to_pred,time=time,mse=TRUE) pr_loc=GeoKrigloc(fit,loc=loc_to_pred,time=time, neigh=25,maxtime=1, mse=TRUE) ## full and local prediction pr$pred pr_loc$pred ############################################################ #### Example: spatio bivariate Gaussian local cokriging ###### ############################################################ #set.seed(6) #NN=1500 # number of spatial locations #x = runif(NN, 0, 1); #y = runif(NN, 0, 1) #coords=cbind(x,y) ## setting parameters #mean_1 = 2; mean_2= -1 #nugget_1 =0;nugget_2=0 #sill_1 =0.5; sill_2 =1; ### correlation parameters #CorrParam("Bi_Matern") #scale_1=0.2/3; scale_2=0.15/3; scale_12=0.5*(scale_2+scale_1) #smooth_1=smooth_2=smooth_12=0.5 #pcol = -0.4 #param= list(nugget_1=nugget_1,nugget_2=nugget_2, # sill_1=sill_1,sill_2=sill_2, # mean_1=mean_1,mean_2=mean_2, # smooth_1=smooth_1, smooth_2=smooth_2,smooth_12=smooth_12, # scale_1=scale_1, scale_2=scale_2,scale_12=scale_12, # pcol=pcol) ## simulation #data = GeoSim(coordx=coords, corrmodel="Bi_Matern",model=model,param=param)$data #fixed=list(mean_1=mean_1,mean_2=mean_2, nugget_1=nugget_1,nugget_2=nugget_2, # smooth_1=smooth_1, smooth_2=smooth_2,smooth_12=smooth_12) #start=list( sill_1=sill_1,sill_2=sill_2, # scale_1=scale_1,scale_2=scale_2,scale_12=scale_12, pcol=pcol) ## estimation with maximum likelihood #fit = GeoFit(data=data,coordx=coords, corrmodel="Bi_Matern", #likelihood="Full",type="Standard",optimizer="BFGS", # likelihood="Marginal",type="Pairwise",optimizer="BFGS",neighb=5, #start=start,fixed=fixed) ###### co-kriging for the fist component ############## #xx=seq(0,1,0.022) #loc_to_pred=as.matrix(expand.grid(xx,xx)) #pr1 = GeoKrigloc(fit,which=1,mse=TRUE,loc=loc_to_pred,neighb=100) #opar=par(no.readonly = TRUE) #par(mfrow=c(1,2)) #zlim=c(-2.5,2.5) #colour = rainbow(100) #quilt.plot(coords,data[1,] ,col=colour,main = paste(" Fist component")) #quilt.plot(loc_to_pred,pr1$pred,col=colour, # main = paste(" Kriging first component"),ylab="") #par(opar)
################################################################ ############### Examples of Spatial local kriging ############# ################################################################ require(GeoModels) #### model="Gaussian" # Define the spatial-coordinates of the points: set.seed(759) x = runif(1000, 0, 1) y = runif(1000, 0, 1) coords=cbind(x,y) # Set the exponential cov parameters: corrmodel = "GenWend" mean=0; sill=1 nugget=0; scale=0.2 param=list(mean=mean,sill=sill,nugget=nugget,smooth=0, scale=scale,power2=4) # Simulation of the spatial Gaussian random field: data = GeoSim(coordx=coords, corrmodel=corrmodel, param=param)$data # Maximum pairwise likelihood fitting of the space time random field: start=list(scale=scale,sill=sill,mean=mean) fixed=list(power2=4,smooth=0,nugget=0) fit = GeoFit(data, coordx=coords, corrmodel=corrmodel, start=start,fixed=fixed, likelihood='Conditional', type='Pairwise', neighb=3) # locations to predict loc_to_pred=matrix(runif(8),4,2) ################################################################ ### ### Example 1. Comparing spatial kriging with local kriging for ### a Gaussian random field with GenWend correlation. ### ############################################################### param=append(fit$param,fit$fixed) pr=GeoKrig(fit,loc=loc_to_pred,mse=TRUE) pr_loc=GeoKrigloc(fit,loc=loc_to_pred,neighb=100,mse=TRUE) pr$pred; pr_loc$pred ############################################################ #### Example: spatio temporal Gaussian local kriging ###### ############################################################ require(GeoModels) require(fields) set.seed(78) coords=cbind(runif(100),runif(100)) coordt=seq(0,5,0.25) corrmodel="Matern_Matern" param=list(nugget=0,mean=0,scale_s=0.2/3,scale_t=0.25/3,sill=2, smooth_s=0.5,smooth_t=0.5) data = GeoSim(coordx=coords, coordt=coordt, corrmodel=corrmodel, param=param)$data # Maximum pairwise likelihood fitting of the space time random field: start = list(scale_s=0.2/3,scale_t=0.25,sill=2,mean=0) fixed = list(smooth_s=0.5,smooth_t=0.5,nugget=0) I=Inf lower=list(scale_s=0,scale_t=0,sill=0,mean=-I) upper=list(scale_s=I,scale_t=I,sill=I,mean=I) fit = GeoFit(data, coordx=coords, coordt=coordt, model=model, corrmodel=corrmodel, likelihood='Conditional', type='Pairwise',start=start,fixed=fixed, optimizer="nlminb",lower=lower,upper=upper, neighb=3,maxtime=1) ## four location to predict loc_to_pred=matrix(runif(8),4,2) ## three temporal instants to predict time=c(0.5,1.5,3.5) pr=GeoKrig(fit,loc=loc_to_pred,time=time,mse=TRUE) pr_loc=GeoKrigloc(fit,loc=loc_to_pred,time=time, neigh=25,maxtime=1, mse=TRUE) ## full and local prediction pr$pred pr_loc$pred ############################################################ #### Example: spatio bivariate Gaussian local cokriging ###### ############################################################ #set.seed(6) #NN=1500 # number of spatial locations #x = runif(NN, 0, 1); #y = runif(NN, 0, 1) #coords=cbind(x,y) ## setting parameters #mean_1 = 2; mean_2= -1 #nugget_1 =0;nugget_2=0 #sill_1 =0.5; sill_2 =1; ### correlation parameters #CorrParam("Bi_Matern") #scale_1=0.2/3; scale_2=0.15/3; scale_12=0.5*(scale_2+scale_1) #smooth_1=smooth_2=smooth_12=0.5 #pcol = -0.4 #param= list(nugget_1=nugget_1,nugget_2=nugget_2, # sill_1=sill_1,sill_2=sill_2, # mean_1=mean_1,mean_2=mean_2, # smooth_1=smooth_1, smooth_2=smooth_2,smooth_12=smooth_12, # scale_1=scale_1, scale_2=scale_2,scale_12=scale_12, # pcol=pcol) ## simulation #data = GeoSim(coordx=coords, corrmodel="Bi_Matern",model=model,param=param)$data #fixed=list(mean_1=mean_1,mean_2=mean_2, nugget_1=nugget_1,nugget_2=nugget_2, # smooth_1=smooth_1, smooth_2=smooth_2,smooth_12=smooth_12) #start=list( sill_1=sill_1,sill_2=sill_2, # scale_1=scale_1,scale_2=scale_2,scale_12=scale_12, pcol=pcol) ## estimation with maximum likelihood #fit = GeoFit(data=data,coordx=coords, corrmodel="Bi_Matern", #likelihood="Full",type="Standard",optimizer="BFGS", # likelihood="Marginal",type="Pairwise",optimizer="BFGS",neighb=5, #start=start,fixed=fixed) ###### co-kriging for the fist component ############## #xx=seq(0,1,0.022) #loc_to_pred=as.matrix(expand.grid(xx,xx)) #pr1 = GeoKrigloc(fit,which=1,mse=TRUE,loc=loc_to_pred,neighb=100) #opar=par(no.readonly = TRUE) #par(mfrow=c(1,2)) #zlim=c(-2.5,2.5) #colour = rainbow(100) #quilt.plot(coords,data[1,] ,col=colour,main = paste(" Fist component")) #quilt.plot(loc_to_pred,pr1$pred,col=colour, # main = paste(" Kriging first component"),ylab="") #par(opar)
The function deletes NA values from a spatial or spatio-temporal dataset
GeoNA(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, grid=FALSE, X=NULL, setting="spatial")
GeoNA(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, grid=FALSE, X=NULL, setting="spatial")
data |
A |
coordx |
A numeric ( |
coordy |
A numeric vector giving 1-dimension of
spatial coordinates ; |
coordt |
A numeric vector giving 1-dimension of
temporal coordinates; the default is |
coordx_dyn |
A list of |
grid |
Logical; if |
X |
Numeric; Matrix of spatio(temporal) covariates in the linear mean specification. |
setting |
String; are data spatial, spatio-temporal or spatial bivariate
(respectively |
Returns a list containing the following components:
coordx |
A |
coordy |
A |
coordt |
A |
data |
The data without NAvalues |
grid |
|
perc |
The percentage of NA values . |
setting |
Are data of spatial or spatio-temporal or spatial bivariate type |
X |
Covariates matrix |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) # Define the spatial-coordinates of the points: set.seed(79) x = runif(200, 0, 1) y = runif(200, 0, 1) coords=cbind(x,y) # Set the exponential cov parameters: corrmodel = "Matern" mean=0 sill=1 nugget=0 scale=0.3/3 smooth=0.5 param=list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth) # Simulation of the spatial Gaussian random field: data = GeoSim(coordx=coords, corrmodel=corrmodel, param=param)$data data[1:100]=NA # removing NA a=GeoNA(data,coordx=coords) a$perc # percentage of NA values #a$coordx# spatial coordinates without missing values #a$data # data without missinng values
library(GeoModels) # Define the spatial-coordinates of the points: set.seed(79) x = runif(200, 0, 1) y = runif(200, 0, 1) coords=cbind(x,y) # Set the exponential cov parameters: corrmodel = "Matern" mean=0 sill=1 nugget=0 scale=0.3/3 smooth=0.5 param=list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth) # Simulation of the spatial Gaussian random field: data = GeoSim(coordx=coords, corrmodel=corrmodel, param=param)$data data[1:100]=NA # removing NA a=GeoNA(data,coordx=coords) a$perc # percentage of NA values #a$coordx# spatial coordinates without missing values #a$data # data without missinng values
Given a set of spatio (temporal) locations and data, the procedure selects a spatio (temporal) neighborhood associated to some given spatio (temporal) locations. The neighborhood is computed using a fixed spatio (temporal) threshold or considering a fixed number of spatio (temporal) neighbors.
GeoNeighborhood(data=NULL, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, bivariate=FALSE, distance="Eucl", grid=FALSE, loc, neighb=NULL,maxdist=NULL, maxtime=NULL, radius=6371, time=NULL, X=NULL,M=NULL,spobj=NULL,spdata=NULL, parallel=FALSE,ncores=NULL)
GeoNeighborhood(data=NULL, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, bivariate=FALSE, distance="Eucl", grid=FALSE, loc, neighb=NULL,maxdist=NULL, maxtime=NULL, radius=6371, time=NULL, X=NULL,M=NULL,spobj=NULL,spdata=NULL, parallel=FALSE,ncores=NULL)
data |
An optional |
coordx |
A numeric ( |
coordy |
A numeric vector giving 1-dimension of
spatial coordinates; |
coordt |
A numeric vector giving 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
bivariate |
If TRUE then data is considered as spatial bivariate data. |
distance |
String; the name of the spatial distance. The default
is |
grid |
Logical; if |
loc |
A ( |
neighb |
Numeric; an optional positive integer indicating the order of spatial neighborhood. |
maxdist |
Numeric; a positive value indicating the maximum spatial distance considered in the spatial neighborhood selection. |
maxtime |
Numeric; an optional positive integer indicating the order of temporal neighborhood. |
radius |
Numeric; a value indicating the radius of the sphere when using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371) |
time |
Numeric; a value giving the temporal instant for which a neighborhood is computed. |
X |
Numeric; an optional Matrix of spatio (temporal) covariates. |
M |
Numeric; an estimated spatio (temporal) mean vector. |
spobj |
An object of class sp or spacetime |
spdata |
Character:The name of data in the sp or spacetime object |
parallel |
Logical; if |
ncores |
Numeric; number of cores involved in parallelization. |
Returns a list containing the following informations:
coordx |
A list of the matrix coordinates of the computed spatial neighborhood ; |
coordt |
A vector of the computed temporal neighborhood; |
data |
A list of the vector of data associated with the spatio (temporal) neighborhood; |
distance |
The type of spatial distance; |
numcoord |
The vector of numbers of location sites involved the spatial neighborhood; |
numtime |
The vector of numbers of temporal insttants involved the temporal neighborhood; |
radius |
The radius of the sphere if coordinates are passed in lon/lat format; |
spacetime |
|
X |
The matrix of spatio (temporal) covariates associated with the computed spatio (temporal) neighborhood; |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) ########################################## #### Example: spatial neighborhood ###### ########################################## set.seed(75) coords=cbind(runif(500),runif(500)) param=list(nugget=0,mean=0,scale=0.2,sill=1, power2=4,smooth=1) data_all = GeoSim(coordx=coords, corrmodel="GenWend", param=param)$data plot(coords) ##two locations loc_to_pred=matrix(c(0.3,0.5,0.7,0.2),2,2) points(loc_to_pred,pch=20) neigh=GeoNeighborhood(data_all, coordx=coords, loc=loc_to_pred,neighb=8) # two Neighborhoods neigh$coordx points(neigh$coordx[[1]],pch=20,col="red") points(neigh$coordx[[2]],pch=20,col="blue") # associated data neigh$data ################################################### #### Example: spatio temporal spatial neighborhood# ################################################### set.seed(78) coords=matrix(runif(80),40,2) coordt=seq(0,6,0.25) param=list(nugget=0,mean=0,scale_s=0.2/3,scale_t=0.25/3,sill=2) data_all = GeoSim(coordx=coords, coordt=coordt,corrmodel="Exp_Exp", param=param)$data ## two location to predict loc_to_pred=matrix(runif(4),2,2) ## three temporal instants to predict time=c(1,2) plot(coords,xlim=c(0,1),ylim=c(0,1)) points(loc_to_pred,pch=20) neigh=GeoNeighborhood(data_all, coordx=coords, coordt=coordt, loc=loc_to_pred,time=time,neighb=3,maxtime=0.5) # first spatio-temporal neighborhoods # with associated data neigh$coordx[[1]] neigh$coordt[[1]] neigh$data[[1]] ################################################### #### Example: bivariate spatial neighborhood ##### ################################################### set.seed(79) coords=matrix(runif(100),50,2) param=list(mean_1=0,mean_2=0,scale=0.12,smooth=0.5, sill_1=1,sill_2=1,nugget_1=0,nugget_2=0,pcol=0.5) data_all = GeoSim(coordx=coords,corrmodel="Bi_matern_sep", param=param)$data ## two location to predict loc_to_pred=matrix(runif(4),2,2) neigh=GeoNeighborhood(data_all, coordx=coords,bivariate=TRUE, loc=loc_to_pred,maxdist=0.25) plot(coords) points(loc_to_pred,pch=20) points(neigh$coordx[[1]],col="red",pch=20) points(neigh$coordx[[2]],col="red",pch=20)
library(GeoModels) ########################################## #### Example: spatial neighborhood ###### ########################################## set.seed(75) coords=cbind(runif(500),runif(500)) param=list(nugget=0,mean=0,scale=0.2,sill=1, power2=4,smooth=1) data_all = GeoSim(coordx=coords, corrmodel="GenWend", param=param)$data plot(coords) ##two locations loc_to_pred=matrix(c(0.3,0.5,0.7,0.2),2,2) points(loc_to_pred,pch=20) neigh=GeoNeighborhood(data_all, coordx=coords, loc=loc_to_pred,neighb=8) # two Neighborhoods neigh$coordx points(neigh$coordx[[1]],pch=20,col="red") points(neigh$coordx[[2]],pch=20,col="blue") # associated data neigh$data ################################################### #### Example: spatio temporal spatial neighborhood# ################################################### set.seed(78) coords=matrix(runif(80),40,2) coordt=seq(0,6,0.25) param=list(nugget=0,mean=0,scale_s=0.2/3,scale_t=0.25/3,sill=2) data_all = GeoSim(coordx=coords, coordt=coordt,corrmodel="Exp_Exp", param=param)$data ## two location to predict loc_to_pred=matrix(runif(4),2,2) ## three temporal instants to predict time=c(1,2) plot(coords,xlim=c(0,1),ylim=c(0,1)) points(loc_to_pred,pch=20) neigh=GeoNeighborhood(data_all, coordx=coords, coordt=coordt, loc=loc_to_pred,time=time,neighb=3,maxtime=0.5) # first spatio-temporal neighborhoods # with associated data neigh$coordx[[1]] neigh$coordt[[1]] neigh$data[[1]] ################################################### #### Example: bivariate spatial neighborhood ##### ################################################### set.seed(79) coords=matrix(runif(100),50,2) param=list(mean_1=0,mean_2=0,scale=0.12,smooth=0.5, sill_1=1,sill_2=1,nugget_1=0,nugget_2=0,pcol=0.5) data_all = GeoSim(coordx=coords,corrmodel="Bi_matern_sep", param=param)$data ## two location to predict loc_to_pred=matrix(runif(4),2,2) neigh=GeoNeighborhood(data_all, coordx=coords,bivariate=TRUE, loc=loc_to_pred,maxdist=0.25) plot(coords) points(loc_to_pred,pch=20) points(neigh$coordx[[1]],col="red",pch=20) points(neigh$coordx[[2]],col="red",pch=20)
The procedure performs different pairwise composite likelihood estimation using user's specified spatial or spatiotemporal neighboords in the weight function. The neighbor minimizing the sum of the squared differences between the estimated semivariogram and the empirical semivariogram is selected. The procedure needs an object obtained using the GeoVariogram function.
GeoNeighbSelect(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, copula=NULL,corrmodel=NULL, distance="Eucl",fixed=NULL,anisopars=NULL, est.aniso=c(FALSE,FALSE), grid=FALSE, likelihood='Marginal',lower=NULL, neighb=c(1,2,3,4,5),maxtime=Inf, memdist=TRUE,model='Gaussian', n=1, ncores=NULL,optimizer='Nelder-Mead', parallel=FALSE, bivariate=FALSE,radius=6371, start=NULL,type='Pairwise', upper=NULL, weighted=FALSE,X=NULL,nosym=FALSE,spobj=NULL,spdata=NULL,vario=NULL)
GeoNeighbSelect(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, copula=NULL,corrmodel=NULL, distance="Eucl",fixed=NULL,anisopars=NULL, est.aniso=c(FALSE,FALSE), grid=FALSE, likelihood='Marginal',lower=NULL, neighb=c(1,2,3,4,5),maxtime=Inf, memdist=TRUE,model='Gaussian', n=1, ncores=NULL,optimizer='Nelder-Mead', parallel=FALSE, bivariate=FALSE,radius=6371, start=NULL,type='Pairwise', upper=NULL, weighted=FALSE,X=NULL,nosym=FALSE,spobj=NULL,spdata=NULL,vario=NULL)
data |
A |
coordx |
A numeric ( |
coordy |
A numeric vector assigning 1-dimension of
spatial coordinates; |
coordt |
A numeric vector assigning 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
copula |
String; the type of copula. It can be "Clayton" or "Gaussian" |
corrmodel |
String; the name of a correlation model, for the description see the Section Details. |
distance |
String; the name of the spatial distance. The default is |
fixed |
An optional named list giving the values of the parameters that will be considered as known values. The listed parameters for a given correlation function will be not estimated. |
anisopars |
A list of two elements: "angle" and "ratio" i.e. the anisotropy angle and the anisotropy ratio, respectively. |
est.aniso |
A bivariate logical vector providing which anisotropic parameters must be estimated. |
grid |
Logical; if |
likelihood |
String; the configuration of the composite
likelihood. |
lower |
An optional named list giving the values for the lower bound of the space parameter
when the optimizer is |
neighb |
Numeric; a vector of positive integers indicating the order of neighborhood in the weight function of composite likelihood (see Section Details in GeoFit). |
maxtime |
Numeric; an optional positive integer indicating the order of temporal neighborhood in the composite likelihood computation. |
memdist |
Logical; if |
model |
String; the type of random fields and therefore the densities associated to the likelihood
objects. |
n |
Numeric; number of trials in a binomial random fields; number of successes in a negative binomial random fields |
ncores |
Numeric; the number of cores involved in the parallelization |
optimizer |
String; the optimization algorithm
(see |
parallel |
Logical; if |
bivariate |
Logical; if |
radius |
Numeric; the radius of the sphere in the case of lon-lat coordinates. The default is 6371, the radius of the earth. |
start |
An optional named list with the initial values of the
parameters that are used by the numerical routines in maximization
procedure. |
type |
String; the type of the likelihood objects. If |
upper |
An optional named list giving the values for the upper bound
of the space parameter when the optimizer is or |
weighted |
Logical; if |
X |
Numeric; Matrix of spatio(temporal)covariates in the linear mean specification. |
nosym |
Logical; if TRUE simmetric weights are not considered. This allows a faster but less efficient CL estimation. |
spobj |
An object of class sp or spacetime |
spdata |
Character:The name of data in the sp or spacetime object |
vario |
An object of the class GeoVariogram obtained using the GeoVariogram function |
The procedure performs different pairwise composite likelihood estimation using user's specified spatial or spatiotemporal neighboords in the weight function. The neighbor minimizing the sum of the squared differences between the estimated semivariogram and the empirical semivariogram is selected. The procedure needs an object obtained using the GeoVariogram function.
Returns a list with information on the best selected neighbor.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) ######### spatial case set.seed(32) N=500 # number of location sites x <- runif(N, 0, 1) y <- runif(N, 0, 1) coords <- cbind(x,y) mean <- 0.2 # Set the covariance model's parameters: corrmodel <- "Matern" sill <- 1;nugget <- 0 scale <- 0.2/3;smooth=0.5 model="Gaussian" param<-list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth) # Simulation data <- GeoSim(coordx=coords,corrmodel=corrmodel, param=param,model=model)$data I=Inf fixed<-list(nugget=nugget) start<-list(mean=mean,scale=scale,smooth=smooth,sill=sill) lower<-list(mean=-I,scale=0,sill=0,smooth=0) upper<-list(mean=I,scale=I,sill=I,smooth=I) vario = GeoVariogram(coordx=coords,data=data,maxdist=0.3,numbins=15) neighb=c(1,2,3,4) ## trying different neighbs selK <- GeoNeighbSelect(vario=vario,data=data,coordx=coords,corrmodel=corrmodel, model=model,neighb=neighb, likelihood="Conditional",type="Pairwise",parallel=FALSE, optimizer="nlminb",lower=lower,upper=upper, start=start,fixed=fixed) print(selK$best_neighb) ## selected neighbor
library(GeoModels) ######### spatial case set.seed(32) N=500 # number of location sites x <- runif(N, 0, 1) y <- runif(N, 0, 1) coords <- cbind(x,y) mean <- 0.2 # Set the covariance model's parameters: corrmodel <- "Matern" sill <- 1;nugget <- 0 scale <- 0.2/3;smooth=0.5 model="Gaussian" param<-list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth) # Simulation data <- GeoSim(coordx=coords,corrmodel=corrmodel, param=param,model=model)$data I=Inf fixed<-list(nugget=nugget) start<-list(mean=mean,scale=scale,smooth=smooth,sill=sill) lower<-list(mean=-I,scale=0,sill=0,smooth=0) upper<-list(mean=I,scale=I,sill=I,smooth=I) vario = GeoVariogram(coordx=coords,data=data,maxdist=0.3,numbins=15) neighb=c(1,2,3,4) ## trying different neighbs selK <- GeoNeighbSelect(vario=vario,data=data,coordx=coords,corrmodel=corrmodel, model=model,neighb=neighb, likelihood="Conditional",type="Pairwise",parallel=FALSE, optimizer="nlminb",lower=lower,upper=upper, start=start,fixed=fixed) print(selK$best_neighb) ## selected neighbor
The function returns the indices associated with a given spatial (temporal) neighbour and/or distance
GeoNeighIndex(coordx,coordy=NULL,coordx_dyn=NULL, coordt=NULL,distance="Eucl",neighb=4,maxdist=NULL, maxtime=1,radius=6371,bivariate=FALSE)
GeoNeighIndex(coordx,coordy=NULL,coordx_dyn=NULL, coordt=NULL,distance="Eucl",neighb=4,maxdist=NULL, maxtime=1,radius=6371,bivariate=FALSE)
coordx |
A numeric ( |
coordy |
A numeric vector assigning 1-dimension of
spatial coordinates; |
coordt |
A numeric vector assigning 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
distance |
String; the name of the spatial distance. The default
is |
neighb |
Numeric; an optional (vector of) positive integer indicating the order of neighborhood. See the Section Details for more information. |
maxdist |
A numeric value denoting the spatial distance Details. |
maxtime |
A numeric value denoting the temporal distance Details. |
radius |
Numeric; a value indicating the radius of the sphere when using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371) |
bivariate |
Logical; if |
The function returns the spatial or spatiotemporal indices of the pairs tha are neighboords of a certain order and/or with a certain fixed distance
Returns a list containing the following components:
colidx |
First vector of indices |
rowidx |
Second vector of indices |
lags |
Vector of spatial distances |
lagt |
Vector of temporal distances |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
require(GeoModels) NN = 400 coords = cbind(runif(NN),runif(NN)) scale=0.5/3 param = list(mean=0,sill=1,nugget=0,scale=0.5/3,smooth=0.5) corrmodel = "Matern"; param = list(mean=0,sill=1,nugget=0,scale=scale,smooth=0.5) set.seed(951) data = GeoSim(coordx = coords,corrmodel = corrmodel, model = "Gaussian",param = param)$data sel=GeoNeighIndex(coordx=coords,maxdist=0.05) data1=data[sel$colidx]; data2=data[sel$rowidx] ## plotting pairs that are neighboord of order 5 plot(data1,data2,xlab="",ylab="",main="h-scatterplot, dist=0.05")
require(GeoModels) NN = 400 coords = cbind(runif(NN),runif(NN)) scale=0.5/3 param = list(mean=0,sill=1,nugget=0,scale=0.5/3,smooth=0.5) corrmodel = "Matern"; param = list(mean=0,sill=1,nugget=0,scale=scale,smooth=0.5) set.seed(951) data = GeoSim(coordx = coords,corrmodel = corrmodel, model = "Gaussian",param = param)$data sel=GeoNeighIndex(coordx=coords,maxdist=0.05) data1=data[sel$colidx]; data2=data[sel$rowidx] ## plotting pairs that are neighboord of order 5 plot(data1,data2,xlab="",ylab="",main="h-scatterplot, dist=0.05")
Given a matrix of indices and associated distances the function return a matrix of indices and associated distances, deleting the symmetric indices.
GeoNosymindices(X,Y)
GeoNosymindices(X,Y)
X |
A matrix of indices |
Y |
Associated distances |
The function return the matrix of indices and associated distances, deleting the symmetric indices.
Returns a list containing the following components:
xy |
Matrix of indices |
d |
Associated distance |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Given a set of spatio (temporal) locations and data, the procedure select the spatial or spatiotemporal ouliers using a specific algorithm.
GeoOutlier(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, distance="Eucl", grid=FALSE, neighb=10,alpha=0.001, method="Z-Median", radius=6371, bivariate=FALSE,X=NULL)
GeoOutlier(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, distance="Eucl", grid=FALSE, neighb=10,alpha=0.001, method="Z-Median", radius=6371, bivariate=FALSE,X=NULL)
data |
An optional |
coordx |
A numeric ( |
coordy |
A numeric vector giving 1-dimension of
spatial coordinates; |
coordt |
A numeric vector giving 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
distance |
String; the name of the spatial distance. The default
is |
grid |
Logical; if |
neighb |
Numeric; an optional positive integer indicating the order of neighborhoodused for Z-Median algorithm. |
alpha |
Numeric; a numeric value between 0 and 1 used for Z-Median algorithm. |
method |
String; The name of the algorithm for detecting spatial ouliers. Default is Z-median proposed in Chen et al. (2008) |
radius |
Numeric; a value indicating the radius of the sphere when using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371) |
bivariate |
If TRUE then data is considered as spatial bivariate data. |
X |
Numeric; an optional Matrix of spatio (temporal) covariates. |
Return a matrix or a list containing the dected spatial or spatio-temporal outliers
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Chen D, Lu C, Kou Y, Chen F (2008) On detecting spatial outliers. Geoinformatica 12:455–475
Bevilacqua M., Caamaño C., Arellano-Valle R. B., Camilo Gomez C. (2022) A class of random fields with two-piece marginal distributions for modeling point-referenced data with spatial outliers. Test 10.1007/s11749-021-00797-5
library(GeoModels) set.seed(1428) NN = 1500 coords = cbind(runif(NN),runif(NN)) ### scale=0.5/3 corrmodel = "Matern"; param = list(mean=0,sill=1,nugget=0,scale=scale,smooth=0.5,skew=0) data = GeoSim(coordx = coords,corrmodel = corrmodel, model = "TwoPieceGaussian",param = param)$data K=15 #parameter for outliers detection alghoritm alpha=0.005 #parameter for outliers detection alghoritm outlier=GeoOutlier(data=data, coordx = coords,neighb=K,alpha=alpha) quilt.plot(coords,data) for (i in 1:nrow(outlier)) plotrix::draw.circle(outlier[i,1], outlier[i,2],radius=0.02,lwd=2) nrow(outlier) # number of outliers param = list(mean=0,sill=1,nugget=0.4,scale=scale,smooth=0.5) data = GeoSim(coordx = coords,corrmodel = corrmodel, model = "Gaussian",param = param)$data K=15 #parameter for outliers detection alghoritm alpha=0.005 #parameter for outliers detection alghoritm outlier=GeoOutlier(data=data, coordx = coords,neighb=K,alpha=alpha) quilt.plot(coords,data) for (i in 1:nrow(outlier)) plotrix::draw.circle(outlier[i,1], outlier[i,2],radius=0.02,lwd=2) nrow(outlier) # number of outliers
library(GeoModels) set.seed(1428) NN = 1500 coords = cbind(runif(NN),runif(NN)) ### scale=0.5/3 corrmodel = "Matern"; param = list(mean=0,sill=1,nugget=0,scale=scale,smooth=0.5,skew=0) data = GeoSim(coordx = coords,corrmodel = corrmodel, model = "TwoPieceGaussian",param = param)$data K=15 #parameter for outliers detection alghoritm alpha=0.005 #parameter for outliers detection alghoritm outlier=GeoOutlier(data=data, coordx = coords,neighb=K,alpha=alpha) quilt.plot(coords,data) for (i in 1:nrow(outlier)) plotrix::draw.circle(outlier[i,1], outlier[i,2],radius=0.02,lwd=2) nrow(outlier) # number of outliers param = list(mean=0,sill=1,nugget=0.4,scale=scale,smooth=0.5) data = GeoSim(coordx = coords,corrmodel = corrmodel, model = "Gaussian",param = param)$data K=15 #parameter for outliers detection alghoritm alpha=0.005 #parameter for outliers detection alghoritm outlier=GeoOutlier(data=data, coordx = coords,neighb=K,alpha=alpha) quilt.plot(coords,data) for (i in 1:nrow(outlier)) plotrix::draw.circle(outlier[i,1], outlier[i,2],radius=0.02,lwd=2) nrow(outlier) # number of outliers
The procedure for a given GeoFit object applies the probability integral tranformation or the normal score transformation to the data
GeoPit(object,type="Uniform")
GeoPit(object,type="Uniform")
object |
A GeoFit object |
.
type |
The type of transformation. If "Uniform" then the probability integral tranformation is performed. If "Gaussian" then the normal score transformation is performed. |
Returns an (updated) object of class GeoFit
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) model="Beta2" copula="Clayton" set.seed(221) NN=800 x <- runif(NN);y <- runif(NN) coords=cbind(x,y) shape=1.5 scale=0.2;power2=4 smooth=0 nugget=0 nu=8 corrmodel="GenWend" min=-2;max=1 mean=0 param=list(smooth=smooth,power2=power2, min=min,max=max, mean=mean, nu=nu, scale=scale,nugget=nugget,shape=shape) optimizer="nlminb" data <- GeoSimCopula(coordx=coords, corrmodel=corrmodel, model=model,param=param,copula=copula)$data I=50 fixed<-list(nugget=nugget,sill=1,scale=scale,smooth=smooth,power2=power2,min=min,max=max,nu=nu) start<-list(shape=shape,mean=mean) lower<-list(shape=0,mean=-I) upper<-list(shape=10,mean=I) #### maximum independence likelihood fit1 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model,likelihood="Marginal",type="Independence", optimizer=optimizer,lower=lower, upper=upper,copula=copula, start=start,fixed=fixed) ## PIT transformation aa=GeoPit(fit1,type="Uniform") hist(aa$data,freq=FALSE) GeoScatterplot(aa$data,coords,neighb=c(1,2)) ## Normal score transformation bb=GeoPit(fit1,type="Gaussian") hist(bb$data,freq=FALSE) GeoScatterplot(bb$data,coords,neighb=c(1,2))
library(GeoModels) model="Beta2" copula="Clayton" set.seed(221) NN=800 x <- runif(NN);y <- runif(NN) coords=cbind(x,y) shape=1.5 scale=0.2;power2=4 smooth=0 nugget=0 nu=8 corrmodel="GenWend" min=-2;max=1 mean=0 param=list(smooth=smooth,power2=power2, min=min,max=max, mean=mean, nu=nu, scale=scale,nugget=nugget,shape=shape) optimizer="nlminb" data <- GeoSimCopula(coordx=coords, corrmodel=corrmodel, model=model,param=param,copula=copula)$data I=50 fixed<-list(nugget=nugget,sill=1,scale=scale,smooth=smooth,power2=power2,min=min,max=max,nu=nu) start<-list(shape=shape,mean=mean) lower<-list(shape=0,mean=-I) upper<-list(shape=10,mean=I) #### maximum independence likelihood fit1 <- GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model,likelihood="Marginal",type="Independence", optimizer=optimizer,lower=lower, upper=upper,copula=copula, start=start,fixed=fixed) ## PIT transformation aa=GeoPit(fit1,type="Uniform") hist(aa$data,freq=FALSE) GeoScatterplot(aa$data,coords,neighb=c(1,2)) ## Normal score transformation bb=GeoPit(fit1,type="Gaussian") hist(bb$data,freq=FALSE) GeoScatterplot(bb$data,coords,neighb=c(1,2))
Based on a GeoFit object, the procedure plots a quantile-quantile plot or compares the fitted density with the histogram of the data. It is useful as diagnostic tool.
GeoQQ(fit,type="Q",add=FALSE,ylim=c(0,1),breaks=10,...)
GeoQQ(fit,type="Q",add=FALSE,ylim=c(0,1),breaks=10,...)
fit |
A GeoFit object possibly obtained from |
type |
The type of plot. If Q then a qq-plot (default) is performed. If D then a comparison between histrogram and the estimated marginal density is performed |
add |
Logical; if TRUE the the estimated density ia added over an existing one |
ylim |
Numeric; a vector of length 2 used for the ylab parameter of the histogram plot. |
breaks |
Numeric; an integer number specifyng the number of cells ofthe histogram plot if the option type=D is chosen. |
... |
Optional parameters passed to the plot function. |
Produces a plot. No values are returned.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) ################## ### Example 1 ################## set.seed(21) model="Tukeyh";tail=0.1 N=400 # number of location sites # Set the coordinates of the points: x = runif(N, 0, 1) y = runif(N, 0, 1) coords=cbind(x,y) # regression parameters mean = 5 mean1=0.8 X=cbind(rep(1,N),runif(N)) # correlation parameters: corrmodel = "Wend0" sill = 1 nugget = 0 scale = 0.3 power2=4 param=list(mean=mean,mean1=mean1, sill=sill, nugget=nugget, scale=scale,tail=tail,power2=power2) # Simulation of the Gaussian RF: data = GeoSim(coordx=coords, corrmodel=corrmodel, X=X,model=model,param=param)$data start=list(mean=mean,mean1=mean1, scale=scale,tail=tail) fixed=list(nugget=nugget,sill=sill,power2=power2) # Maximum composite-likelihood fitting fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model,X=X, likelihood="Conditional",type='Pairwise',start=start, fixed=fixed,neighb=4) res=GeoResiduals(fit) GeoQQ(res,type="Q") GeoQQ(res,type="D",lwd=2,ylim=c(0,0.5),breaks=20) ################## ### Example 2 ################## set.seed(21) model="Weibull";shape=1.5 N=600 # number of location sites # Set the coordinates of the points: x = runif(N, 0, 1) y = runif(N, 0, 1) coords=cbind(x,y) # regression parameters mean = 0 # correlation parameters: corrmodel = "Matern" smooth=0.5 nugget = 0 scale = 0.2/3 param=list(mean=mean, sill=1, nugget=nugget, scale=scale,smooth=smooth, shape=shape) # Simulation of the Gaussian RF: data = GeoSim(coordx=coords, corrmodel=corrmodel,model=model,param=param)$data start=list(mean=mean, scale=scale,shape=shape) I=Inf lower=list(mean=-I, scale=0,shape=0) upper=list(mean= I, scale=I,shape=I) I=Inf fixed=list(nugget=nugget,sill=1,smooth=smooth) # Maximum composite-likelihood fitting fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model, likelihood="Conditional",type='Pairwise',start=start, optimizer="nlminb",lower=lower,upper=upper, fixed=fixed,neighb=3) GeoQQ(fit,type="Q") GeoQQ(fit,type="D",lwd=2,ylim=c(0,1),breaks=20)
library(GeoModels) ################## ### Example 1 ################## set.seed(21) model="Tukeyh";tail=0.1 N=400 # number of location sites # Set the coordinates of the points: x = runif(N, 0, 1) y = runif(N, 0, 1) coords=cbind(x,y) # regression parameters mean = 5 mean1=0.8 X=cbind(rep(1,N),runif(N)) # correlation parameters: corrmodel = "Wend0" sill = 1 nugget = 0 scale = 0.3 power2=4 param=list(mean=mean,mean1=mean1, sill=sill, nugget=nugget, scale=scale,tail=tail,power2=power2) # Simulation of the Gaussian RF: data = GeoSim(coordx=coords, corrmodel=corrmodel, X=X,model=model,param=param)$data start=list(mean=mean,mean1=mean1, scale=scale,tail=tail) fixed=list(nugget=nugget,sill=sill,power2=power2) # Maximum composite-likelihood fitting fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model,X=X, likelihood="Conditional",type='Pairwise',start=start, fixed=fixed,neighb=4) res=GeoResiduals(fit) GeoQQ(res,type="Q") GeoQQ(res,type="D",lwd=2,ylim=c(0,0.5),breaks=20) ################## ### Example 2 ################## set.seed(21) model="Weibull";shape=1.5 N=600 # number of location sites # Set the coordinates of the points: x = runif(N, 0, 1) y = runif(N, 0, 1) coords=cbind(x,y) # regression parameters mean = 0 # correlation parameters: corrmodel = "Matern" smooth=0.5 nugget = 0 scale = 0.2/3 param=list(mean=mean, sill=1, nugget=nugget, scale=scale,smooth=smooth, shape=shape) # Simulation of the Gaussian RF: data = GeoSim(coordx=coords, corrmodel=corrmodel,model=model,param=param)$data start=list(mean=mean, scale=scale,shape=shape) I=Inf lower=list(mean=-I, scale=0,shape=0) upper=list(mean= I, scale=I,shape=I) I=Inf fixed=list(nugget=nugget,sill=1,smooth=smooth) # Maximum composite-likelihood fitting fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model, likelihood="Conditional",type='Pairwise',start=start, optimizer="nlminb",lower=lower,upper=upper, fixed=fixed,neighb=3) GeoQQ(fit,type="Q") GeoQQ(fit,type="D",lwd=2,ylim=c(0,1),breaks=20)
The procedure return a GeoFit object associated to the estimated residuals. For a random field Y defined on the real line (Gaussian, Skew Gaussian, Tukeyh etcc) they are computed as (Y-m)/sqrt(v) where m and v are the estimated mean and variance respectively. For a random field Y defined on the positive real line (Gamma, Weibull, Log-Gaussian) they are computed as Y/m where m is estimated mean.
GeoResiduals(fit)
GeoResiduals(fit)
fit |
A fitted object obtained from the
|
Returns an (updated) object of class GeoFit
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) ############## ###Example 1 ############## set.seed(211) model="Gaussian"; N=700 # number of location sites # Set the coordinates of the points: x = runif(N, 0, 1) y = runif(N, 0, 1) coords=cbind(x,y) # regression parameters mean = 5 mean1=0.8 X=cbind(rep(1,N),runif(N)) # correlation parameters: corrmodel = "Wend0" sill = 1 nugget = 0 scale = 0.3 power2=4 param=list(mean=mean,mean1=mean1, sill=sill, nugget=nugget, scale=scale,power2=power2) # Simulation of the Gaussian RF: data = GeoSim(coordx=coords, corrmodel=corrmodel, X=X,model=model,param=param)$data start=list(mean=mean,mean1=mean1, scale=scale,sill=sill) fixed=list(nugget=nugget,power2=power2) # Maximum composite-likelihood fitting fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model,X=X, likelihood="Conditional",type='Pairwise',start=start, fixed=fixed,neighb=3) res=GeoResiduals(fit) mean(res$data) # should be approx 0 var(res$data) # should be approx 1 # checking goodness of fit marginal model GeoQQ(res);GeoQQ(res,type="D",col="red",ylim=c(0,0.5),breaks=20); # Empirical estimation of the variogram for the residuals: vario = GeoVariogram(res$data,coordx=coords,maxdist=0.5) # Comparison between empirical amd estimated semivariogram for the residuals GeoCovariogram(res, show.vario=TRUE, vario=vario,pch=20) ############## ###Example 2 ############## model="Weibull";shape=4 N=700 # number of location sites # Set the coordinates of the points: x = runif(N, 0, 1) y = runif(N, 0, 1) coords=cbind(x,y) # regression parameters mean = 5 mean1=0.8 X=cbind(rep(1,N),runif(N)) # correlation parameters: corrmodel = "Wend0" sill = 1 nugget = 0 scale = 0.3 power2=4 param=list(mean=mean,mean1=mean1, sill=sill, nugget=nugget, scale=scale,shape=shape,power2=power2) # Simulation of the Gaussian RF: data = GeoSim(coordx=coords, corrmodel=corrmodel, X=X,model=model,param=param)$data I=Inf start=list(mean=mean,mean1=mean1, scale=scale,shape=shape) lower=list(mean=-I,mean1=-I, scale=0,shape=0) upper=list(mean= I,mean1= I, scale=I,shape=I) fixed=list(nugget=nugget,sill=sill,power2=power2) # Maximum composite-likelihood fitting fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model,X=X, likelihood="Conditional",type='Pairwise',start=start, optimizer="nlminb", lower=lower,upper=upper, fixed=fixed,neighb=3) res=GeoResiduals(fit) mean(res$data) # should be approx 1 # checking goodness of fit marginal model GeoQQ(res);GeoQQ(res,type="D",col="red",ylim=c(0,1.7),breaks=20); # Empirical estimation of the variogram for the residuals: vario = GeoVariogram(res$data,coordx=coords,maxdist=0.5) # Comparison between empirical amd estimated semivariogram for the residuals GeoCovariogram(res, show.vario=TRUE, vario=vario,pch=20)
library(GeoModels) ############## ###Example 1 ############## set.seed(211) model="Gaussian"; N=700 # number of location sites # Set the coordinates of the points: x = runif(N, 0, 1) y = runif(N, 0, 1) coords=cbind(x,y) # regression parameters mean = 5 mean1=0.8 X=cbind(rep(1,N),runif(N)) # correlation parameters: corrmodel = "Wend0" sill = 1 nugget = 0 scale = 0.3 power2=4 param=list(mean=mean,mean1=mean1, sill=sill, nugget=nugget, scale=scale,power2=power2) # Simulation of the Gaussian RF: data = GeoSim(coordx=coords, corrmodel=corrmodel, X=X,model=model,param=param)$data start=list(mean=mean,mean1=mean1, scale=scale,sill=sill) fixed=list(nugget=nugget,power2=power2) # Maximum composite-likelihood fitting fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model,X=X, likelihood="Conditional",type='Pairwise',start=start, fixed=fixed,neighb=3) res=GeoResiduals(fit) mean(res$data) # should be approx 0 var(res$data) # should be approx 1 # checking goodness of fit marginal model GeoQQ(res);GeoQQ(res,type="D",col="red",ylim=c(0,0.5),breaks=20); # Empirical estimation of the variogram for the residuals: vario = GeoVariogram(res$data,coordx=coords,maxdist=0.5) # Comparison between empirical amd estimated semivariogram for the residuals GeoCovariogram(res, show.vario=TRUE, vario=vario,pch=20) ############## ###Example 2 ############## model="Weibull";shape=4 N=700 # number of location sites # Set the coordinates of the points: x = runif(N, 0, 1) y = runif(N, 0, 1) coords=cbind(x,y) # regression parameters mean = 5 mean1=0.8 X=cbind(rep(1,N),runif(N)) # correlation parameters: corrmodel = "Wend0" sill = 1 nugget = 0 scale = 0.3 power2=4 param=list(mean=mean,mean1=mean1, sill=sill, nugget=nugget, scale=scale,shape=shape,power2=power2) # Simulation of the Gaussian RF: data = GeoSim(coordx=coords, corrmodel=corrmodel, X=X,model=model,param=param)$data I=Inf start=list(mean=mean,mean1=mean1, scale=scale,shape=shape) lower=list(mean=-I,mean1=-I, scale=0,shape=0) upper=list(mean= I,mean1= I, scale=I,shape=I) fixed=list(nugget=nugget,sill=sill,power2=power2) # Maximum composite-likelihood fitting fit = GeoFit(data,coordx=coords, corrmodel=corrmodel,model=model,X=X, likelihood="Conditional",type='Pairwise',start=start, optimizer="nlminb", lower=lower,upper=upper, fixed=fixed,neighb=3) res=GeoResiduals(fit) mean(res$data) # should be approx 1 # checking goodness of fit marginal model GeoQQ(res);GeoQQ(res,type="D",col="red",ylim=c(0,1.7),breaks=20); # Empirical estimation of the variogram for the residuals: vario = GeoVariogram(res$data,coordx=coords,maxdist=0.5) # Comparison between empirical amd estimated semivariogram for the residuals GeoCovariogram(res, show.vario=TRUE, vario=vario,pch=20)
The function produces h-scatterplots for the spatial, spatio-temporal and bivariate setting.
GeoScatterplot(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, distance='Eucl', grid=FALSE, maxdist=NULL,neighb=NULL, times=NULL, numbins=4, radius=6371, bivariate=FALSE,...)
GeoScatterplot(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, distance='Eucl', grid=FALSE, maxdist=NULL,neighb=NULL, times=NULL, numbins=4, radius=6371, bivariate=FALSE,...)
data |
A |
coordx |
A numeric ( |
coordy |
A numeric vector assigning 1-dimension of
spatial coordinates; |
coordt |
A numeric vector assigning 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
distance |
String; the name of the spatial distance. The default
is |
grid |
Logical; if |
maxdist |
A numeric value denoting the spatial maximum distance, see the Section Details. |
neighb |
Numeric; an optional positive integer indicating the order of neighborhood. See the Section Details for more information. |
times |
A numeric vector denoting the temporal instants involved Details. |
numbins |
A numeric value denoting the numbers of bins, see the Section Details. |
radius |
Numeric; a value indicating the radius of the sphere when using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371) |
bivariate |
Logical; if |
... |
Optional parameters passed to the plot function. |
h-scatterplot is the plot of the pair values that are neighborhood of a certain order or with distances belonging to a certain interval. In the first case a (vector of) neighborhood must be specified. In the second case a maximum distance (maxdist) and a number of lag-bins (numbins) must be specified. The method based on neighborhoods is recommended in particular for large datasets.
Produces a plot. No values are returned.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) set.seed(514) NN = 600 coords = cbind(runif(NN),runif(NN)) param = list(mean=0,sill=1,nugget=0,power2=4,scale=0.4,smooth=0) corrmodel = "GenWend"; model = "Gaussian" data = GeoSim(coordx = coords,corrmodel = corrmodel, model = model,param = param)$data # h-scatterplots for given a vector of neighborhoods GeoScatterplot(data,coords,neighb=c(2,4))
library(GeoModels) set.seed(514) NN = 600 coords = cbind(runif(NN),runif(NN)) param = list(mean=0,sill=1,nugget=0,power2=4,scale=0.4,smooth=0) corrmodel = "GenWend"; model = "Gaussian" data = GeoSim(coordx = coords,corrmodel = corrmodel, model = model,param = param)$data # h-scatterplots for given a vector of neighborhoods GeoScatterplot(data,coords,neighb=c(2,4))
The function computes some predictive scores for a spatial, spatiotemporal and bivariate Gaussian RFs
GeoScores(data_to_pred, probject=NULL,pred=NULL,mse=NULL, score=c("brie","crps","lscore","pit","pe"))
GeoScores(data_to_pred, probject=NULL,pred=NULL,mse=NULL, score=c("brie","crps","lscore","pit","pe"))
data_to_pred |
A numeric vector of data to predict about a response |
probject |
A Geokrig object obtained using the function Geokrig |
pred |
A numeric vector with predictions for the response. |
mse |
a numeric vector with prediction variances. |
score |
A character defining what statistic of the prediction errors should be computed. Possible values are lscore, crps, brie and pe. In the latter case scores based on prediction errors such as rmse, mae, mad are computed. Finally, the character pit allows to compute the probability integral transform for each value |
GeoScores computes the items required to evaluate the diagnostic criteria proposed by Gneiting et al. (2007) for assessing the calibration and the sharpness of probabilistic predictions of (cross-) validation data. To this aim, GeoScores uses the assumption that the prediction errors are Gaussian with zero mean and standard deviations equal to the Kriging standard errors. This assumption is an approximation if the errors are not Gaussian.
Returns a list containing the following informations:
LSCORE |
Logarithmic predictive score |
CRPS |
Continuous ranked probability predictive score |
RMSE |
Root mean squared error |
MAE |
Mean absolute error |
MAD |
Median absolute error |
PIT |
A vector of probability integral transformation |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Gneiting T. and Raftery A. Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association, 102
library(GeoModels) ################################################################ ######### Examples of predictive score computation ############ ################################################################ library(GeoModels) model="Gaussian" set.seed(79) N=1000 x = runif(N, 0, 1) y = runif(N, 0, 1) coords=cbind(x,y) # Set the exponential cov parameters: corrmodel = "GenWend" mean=0; sill=5; nugget=0 scale=0.2;smooth=0;power2=4 param=list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth,power2=power2) # Simulation of the spatial Gaussian random field: data = GeoSim(coordx=coords, corrmodel=corrmodel, param=param)$data sel=sample(1:N,N*0.8) coords_est=coords[sel,]; coords_to_pred=coords[-sel,] data_est=data[sel]; data_to_pred=data[-sel] ## estimation with pairwise likelihood fixed=list(nugget=nugget,smooth=0,power2=power2) start=list(mean=0,scale=scale,sill=1) I=Inf lower=list(mean=-I,scale=0,sill=0) upper=list(mean= I,scale=I,sill=I) # Maximum pairwise likelihood fitting : fit = GeoFit(data_est, coordx=coords_est, corrmodel=corrmodel,model=model, likelihood='Marginal', type='Pairwise',neighb=3, optimizer="nlminb", lower=lower,upper=upper, start=start,fixed=fixed) # locations to predict xx=seq(0,1,0.03) loc_to_pred=as.matrix(expand.grid(xx,xx)) pr=GeoKrig(loc=coords_to_pred,coordx=coords_est,corrmodel=corrmodel, model=model,param= param, data=data_est,mse=TRUE) Pr_scores =GeoScores(data_to_pred,pred=pr$pred,mse=pr$mse) Pr_scores$rmse;Pr_scores$brie hist(Pr_scores$pit,freq=FALSE)
library(GeoModels) ################################################################ ######### Examples of predictive score computation ############ ################################################################ library(GeoModels) model="Gaussian" set.seed(79) N=1000 x = runif(N, 0, 1) y = runif(N, 0, 1) coords=cbind(x,y) # Set the exponential cov parameters: corrmodel = "GenWend" mean=0; sill=5; nugget=0 scale=0.2;smooth=0;power2=4 param=list(mean=mean,sill=sill,nugget=nugget,scale=scale,smooth=smooth,power2=power2) # Simulation of the spatial Gaussian random field: data = GeoSim(coordx=coords, corrmodel=corrmodel, param=param)$data sel=sample(1:N,N*0.8) coords_est=coords[sel,]; coords_to_pred=coords[-sel,] data_est=data[sel]; data_to_pred=data[-sel] ## estimation with pairwise likelihood fixed=list(nugget=nugget,smooth=0,power2=power2) start=list(mean=0,scale=scale,sill=1) I=Inf lower=list(mean=-I,scale=0,sill=0) upper=list(mean= I,scale=I,sill=I) # Maximum pairwise likelihood fitting : fit = GeoFit(data_est, coordx=coords_est, corrmodel=corrmodel,model=model, likelihood='Marginal', type='Pairwise',neighb=3, optimizer="nlminb", lower=lower,upper=upper, start=start,fixed=fixed) # locations to predict xx=seq(0,1,0.03) loc_to_pred=as.matrix(expand.grid(xx,xx)) pr=GeoKrig(loc=coords_to_pred,coordx=coords_est,corrmodel=corrmodel, model=model,param= param, data=data_est,mse=TRUE) Pr_scores =GeoScores(data_to_pred,pred=pr$pred,mse=pr$mse) Pr_scores$rmse;Pr_scores$brie hist(Pr_scores$pit,freq=FALSE)
Simulation of Gaussian and some non Gaussian spatial, spatio-temporal and spatial bivariate random fields. The function return a realization of a random Field for a given covariance model and covariance parameters.Simulation is based on Cholesky decomposition.
GeoSim(coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel, distance="Eucl", GPU=NULL, grid=FALSE, local=c(1,1),method="cholesky", model='Gaussian', n=1, param, anisopars=NULL,radius=6371, sparse=FALSE,X=NULL,spobj=NULL,nrep=1,progress=TRUE)
GeoSim(coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel, distance="Eucl", GPU=NULL, grid=FALSE, local=c(1,1),method="cholesky", model='Gaussian', n=1, param, anisopars=NULL,radius=6371, sparse=FALSE,X=NULL,spobj=NULL,nrep=1,progress=TRUE)
coordx |
A numeric ( |
coordy |
A numeric vector giving 1-dimension of
spatial coordinates; |
coordt |
A numeric vector giving 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
corrmodel |
String; the name of a correlation model, for the description see the Section Details. |
distance |
String; the name of the spatial distance. The default
is |
GPU |
Numeric; if |
grid |
Logical; if |
local |
Numeric; number of local work-items of the GPU |
method |
String; the type of matrix decomposition used in the simulation. Default is cholesky. The other possible choices is |
model |
String; the type of RF and therefore the densities associated to the likelihood
objects. |
n |
Numeric; the number of trials for binomial RFs. The number of successes in the negative Binomial RFs. Default is |
param |
A list of parameter values required in the simulation procedure of RFs, see Examples. |
anisopars |
A list of two elements "angle" and "ratio" i.e. the anisotropy angle and the anisotropy ratio, respectively. |
radius |
Numeric; a value indicating the radius of the sphere when using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371) |
sparse |
Logical; if |
X |
Numeric; Matrix of space-time covariates. |
spobj |
An object of class sp or spacetime |
nrep |
Numeric; Numbers of indipendent replicates. |
progress |
Logic; If TRUE then a progress bar is shown. |
Returns an object of class GeoSim
.
An object of class GeoSim
is a list containing
at most the following components:
bivariate |
Logical: |
coordx |
A |
coordy |
A |
coordt |
A |
coordx_dyn |
A list of dynamical (in time) spatial coordinates; |
corrmodel |
The correlation model; see |
data |
The vector or matrix or array of data, see
|
distance |
The type of spatial distance; |
method |
The method of simulation |
model |
The type of RF, see |
n |
The number of trial for Binomial RFs;the number of successes in a negative Binomial RFs; |
numcoord |
The number of spatial coordinates; |
numtime |
The number the temporal realisations of the RF; |
param |
The vector of parameters' estimates; |
radius |
The radius of the sphere if coordinates are passed in lon/lat format; |
spacetime |
|
nrep |
The number of indipendent replicates; |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) library(mapproj) ################################################################ ### ### Example 1. Simulation of a spatial Gaussian RF ### with Matern and Generalized Wendland correlations ############################################################### # Define the spatial-coordinates of the points: x <- runif(500);y <- runif(500) coords=cbind(x,y) set.seed(261) # Simulation of a spatial Gaussian RF with Matern correlation function data1 <- GeoSim(coordx=coords, corrmodel="Matern", param=list(smooth=0.5, mean=0,sill=1,scale=0.4/3,nugget=0))$data set.seed(261) data2 <- GeoSim(coordx=coords, corrmodel="GenWend", param=list(smooth=0, power2=4,mean=0,sill=1,scale=0.4,nugget=0))$data opar=par(no.readonly = TRUE) par(mfrow=c(1,2)) quilt.plot(coords,data1,main="Matern",xlab="",ylab="") quilt.plot(coords,data2,main="Wendland",xlab="",ylab="") par(opar) ################################################################ ### ### Example 2. Simulation of a spatial geometric RF ### with underlying Wend0 correlation ### ################################################################ # Define the spatial-coordinates of the points: x <- runif(800);y <- runif(800) coords <- cbind(x,y) set.seed(251) # Simulation of a spatial Binomial RF: sim <- GeoSim(coordx=coords, corrmodel="Wend0", model="BinomialNeg",n=1,sparse=TRUE, param=list(nugget=0,mean=0,scale=.2,power2=4)) quilt.plot(coords,sim$data,nlevel=max(sim$data),col=terrain.colors(max(sim$data+1))) ################################################################ ### ### Example 3. Simulation of a spatial Weibull RF ### with underlying Matern correlation on a regular grid ### ############################################################### # Define the spatial-coordinates of the points: x <- seq(0,1,0.032) y <- seq(0,1,0.032) set.seed(261) # Simulation of a spatial Gaussian RF with Matern correlation function data1 <- GeoSim(x,y,grid=TRUE, corrmodel="Matern",model="Weibull", param=list(shape=1.2,mean=0,scale=0.3/3,nugget=0,smooth=0.5))$data image.plot(x,y,data1,main="Weibull RF",xlab="",ylab="") ################################################################ ### ### Example 4. Simulation of a spatial t RF ### with with underlying Generalized Wendland correlation ### ############################################################### # Define the spatial-coordinates of the points: x <- seq(0,1,0.03) y <- seq(0,1,0.03) set.seed(268) # Simulation of a spatial Gaussian RF with Matern correlation function data1 <- GeoSim(x,y,grid=TRUE, corrmodel="GenWend",model="StudentT", sparse=TRUE, param=list(df=1/4,mean=0,sill=1,scale=0.3,nugget=0,smooth=1,power2=5))$data image.plot(x,y,data1,col=terrain.colors(100),main="Student-t RF",xlab="",ylab="") ################################################################ ### ### Example 5. Simulation of a sinhasinh RF ### with underlying Wend0 correlation. ### ############################################################### # Define the spatial-coordinates of the points: x <- runif(500, 0, 2) y <- runif(500, 0, 2) coords <- cbind(x,y) set.seed(261) corrmodel="Wend0" # Simulation of a spatial Gaussian RF: param=list(power2=4,skew=0,tail=1, mean=0,sill=1,scale=0.2,nugget=0) ## gaussian case data0 <- GeoSim(coordx=coords, corrmodel=corrmodel, model="SinhAsinh", param=param,sparse=TRUE)$data plot(density(data0),xlim=c(-7,7)) param=list(power2=4,skew=0,tail=0.7, mean=0,sill=1,scale=0.2,nugget=0) ## heavy tails data1 <- GeoSim(coordx=coords, corrmodel=corrmodel, model="SinhAsinh", param=param,sparse=TRUE)$data lines(density(data1),lty=2) param=list(power2=4,skew=0.5,tail=1, mean=0,sill=1,scale=0.2,nugget=0) ## asymmetry data2 <- GeoSim(coordx=coords, corrmodel=corrmodel, model="SinhAsinh", param=param,sparse=TRUE)$data lines(density(data2),lty=3) ################################################################ ### ### Example 6. Simulation of a bivariate Gaussian RF ### with bivariate Matern correlation model ### ############################################################### # Define the spatial-coordinates of the points: x <- runif(500, 0, 2) y <- runif(500, 0, 2) coords <- cbind(x,y) # Simulation of a bivariate spatial Gaussian RF: # with a separable Bivariate Matern set.seed(12) param=list(mean_1=4,mean_2=2,smooth_1=0.5,smooth_2=0.5,smooth_12=0.5, scale_1=0.12,scale_2=0.1,scale_12=0.15, sill_1=1,sill_2=1,nugget_1=0,nugget_2=0,pcol=0.5) data <- GeoSim(coordx=coords,corrmodel="Bi_matern", param=param)$data opar=par(no.readonly = TRUE) par(mfrow=c(1,2)) quilt.plot(coords,data[1,],col=terrain.colors(100),main="1",xlab="",ylab="") quilt.plot(coords,data[2,],col=terrain.colors(100),main="2",xlab="",ylab="") par(opar) ################################################################ ### ### Example 7. Simulation of a spatio temporal Gaussian RF. ### observed on dynamical location sites with double exponential correlation ### ############################################################### # Define the dynamical spatial-coordinates of the points: coordt=1:5 coordx_dyn=list() maxN=30 set.seed(8) for(k in 1:length(coordt)) { NN=sample(1:maxN,size=1) x <- runif(NN, 0, 1) y <- runif(NN, 0, 1) coordx_dyn[[k]]=cbind(x,y) } coordx_dyn param<-list(nugget=0,mean=0,scale_s=0.2/3,scale_t=2/3,sill=1) data <- GeoSim(coordx_dyn=coordx_dyn, coordt=coordt, corrmodel="Exp_Exp", param=param)$data ## spatial realization at first temporal instants data[[1]] ## spatial realization at third temporal instants data[[3]] ################################################################ ### ### Example 8. Simulation of a Gaussian RF ### with a Wend0 correlation in the north emisphere of the planet earth ### using geodesic distance ############################################################### distance="Geod";radius=6371 NN=3000 ## total point on the sphere on lon/lat format set.seed(80) coords=cbind(runif(NN,-180,180),runif(NN,0,90)) ## Set the wendland parameters corrmodel <- "Wend0" param<-list(mean=0,sill=1,nugget=0,scale=1000,power2=3) # Simulation of a spatial Gaussian RF on the sphere #set.seed(2) data <- GeoSim(coordx=coords,corrmodel=corrmodel,sparse=TRUE, distance=distance,radius=radius,param=param)$data #require(globe) #globe::globeearth(eye=place("newyorkcity")) #globe::globepoints(loc=coords,pch=20,col = cm.colors(length(data),alpha=0.1)[rank(data)])
library(GeoModels) library(mapproj) ################################################################ ### ### Example 1. Simulation of a spatial Gaussian RF ### with Matern and Generalized Wendland correlations ############################################################### # Define the spatial-coordinates of the points: x <- runif(500);y <- runif(500) coords=cbind(x,y) set.seed(261) # Simulation of a spatial Gaussian RF with Matern correlation function data1 <- GeoSim(coordx=coords, corrmodel="Matern", param=list(smooth=0.5, mean=0,sill=1,scale=0.4/3,nugget=0))$data set.seed(261) data2 <- GeoSim(coordx=coords, corrmodel="GenWend", param=list(smooth=0, power2=4,mean=0,sill=1,scale=0.4,nugget=0))$data opar=par(no.readonly = TRUE) par(mfrow=c(1,2)) quilt.plot(coords,data1,main="Matern",xlab="",ylab="") quilt.plot(coords,data2,main="Wendland",xlab="",ylab="") par(opar) ################################################################ ### ### Example 2. Simulation of a spatial geometric RF ### with underlying Wend0 correlation ### ################################################################ # Define the spatial-coordinates of the points: x <- runif(800);y <- runif(800) coords <- cbind(x,y) set.seed(251) # Simulation of a spatial Binomial RF: sim <- GeoSim(coordx=coords, corrmodel="Wend0", model="BinomialNeg",n=1,sparse=TRUE, param=list(nugget=0,mean=0,scale=.2,power2=4)) quilt.plot(coords,sim$data,nlevel=max(sim$data),col=terrain.colors(max(sim$data+1))) ################################################################ ### ### Example 3. Simulation of a spatial Weibull RF ### with underlying Matern correlation on a regular grid ### ############################################################### # Define the spatial-coordinates of the points: x <- seq(0,1,0.032) y <- seq(0,1,0.032) set.seed(261) # Simulation of a spatial Gaussian RF with Matern correlation function data1 <- GeoSim(x,y,grid=TRUE, corrmodel="Matern",model="Weibull", param=list(shape=1.2,mean=0,scale=0.3/3,nugget=0,smooth=0.5))$data image.plot(x,y,data1,main="Weibull RF",xlab="",ylab="") ################################################################ ### ### Example 4. Simulation of a spatial t RF ### with with underlying Generalized Wendland correlation ### ############################################################### # Define the spatial-coordinates of the points: x <- seq(0,1,0.03) y <- seq(0,1,0.03) set.seed(268) # Simulation of a spatial Gaussian RF with Matern correlation function data1 <- GeoSim(x,y,grid=TRUE, corrmodel="GenWend",model="StudentT", sparse=TRUE, param=list(df=1/4,mean=0,sill=1,scale=0.3,nugget=0,smooth=1,power2=5))$data image.plot(x,y,data1,col=terrain.colors(100),main="Student-t RF",xlab="",ylab="") ################################################################ ### ### Example 5. Simulation of a sinhasinh RF ### with underlying Wend0 correlation. ### ############################################################### # Define the spatial-coordinates of the points: x <- runif(500, 0, 2) y <- runif(500, 0, 2) coords <- cbind(x,y) set.seed(261) corrmodel="Wend0" # Simulation of a spatial Gaussian RF: param=list(power2=4,skew=0,tail=1, mean=0,sill=1,scale=0.2,nugget=0) ## gaussian case data0 <- GeoSim(coordx=coords, corrmodel=corrmodel, model="SinhAsinh", param=param,sparse=TRUE)$data plot(density(data0),xlim=c(-7,7)) param=list(power2=4,skew=0,tail=0.7, mean=0,sill=1,scale=0.2,nugget=0) ## heavy tails data1 <- GeoSim(coordx=coords, corrmodel=corrmodel, model="SinhAsinh", param=param,sparse=TRUE)$data lines(density(data1),lty=2) param=list(power2=4,skew=0.5,tail=1, mean=0,sill=1,scale=0.2,nugget=0) ## asymmetry data2 <- GeoSim(coordx=coords, corrmodel=corrmodel, model="SinhAsinh", param=param,sparse=TRUE)$data lines(density(data2),lty=3) ################################################################ ### ### Example 6. Simulation of a bivariate Gaussian RF ### with bivariate Matern correlation model ### ############################################################### # Define the spatial-coordinates of the points: x <- runif(500, 0, 2) y <- runif(500, 0, 2) coords <- cbind(x,y) # Simulation of a bivariate spatial Gaussian RF: # with a separable Bivariate Matern set.seed(12) param=list(mean_1=4,mean_2=2,smooth_1=0.5,smooth_2=0.5,smooth_12=0.5, scale_1=0.12,scale_2=0.1,scale_12=0.15, sill_1=1,sill_2=1,nugget_1=0,nugget_2=0,pcol=0.5) data <- GeoSim(coordx=coords,corrmodel="Bi_matern", param=param)$data opar=par(no.readonly = TRUE) par(mfrow=c(1,2)) quilt.plot(coords,data[1,],col=terrain.colors(100),main="1",xlab="",ylab="") quilt.plot(coords,data[2,],col=terrain.colors(100),main="2",xlab="",ylab="") par(opar) ################################################################ ### ### Example 7. Simulation of a spatio temporal Gaussian RF. ### observed on dynamical location sites with double exponential correlation ### ############################################################### # Define the dynamical spatial-coordinates of the points: coordt=1:5 coordx_dyn=list() maxN=30 set.seed(8) for(k in 1:length(coordt)) { NN=sample(1:maxN,size=1) x <- runif(NN, 0, 1) y <- runif(NN, 0, 1) coordx_dyn[[k]]=cbind(x,y) } coordx_dyn param<-list(nugget=0,mean=0,scale_s=0.2/3,scale_t=2/3,sill=1) data <- GeoSim(coordx_dyn=coordx_dyn, coordt=coordt, corrmodel="Exp_Exp", param=param)$data ## spatial realization at first temporal instants data[[1]] ## spatial realization at third temporal instants data[[3]] ################################################################ ### ### Example 8. Simulation of a Gaussian RF ### with a Wend0 correlation in the north emisphere of the planet earth ### using geodesic distance ############################################################### distance="Geod";radius=6371 NN=3000 ## total point on the sphere on lon/lat format set.seed(80) coords=cbind(runif(NN,-180,180),runif(NN,0,90)) ## Set the wendland parameters corrmodel <- "Wend0" param<-list(mean=0,sill=1,nugget=0,scale=1000,power2=3) # Simulation of a spatial Gaussian RF on the sphere #set.seed(2) data <- GeoSim(coordx=coords,corrmodel=corrmodel,sparse=TRUE, distance=distance,radius=radius,param=param)$data #require(globe) #globe::globeearth(eye=place("newyorkcity")) #globe::globepoints(loc=coords,pch=20,col = cm.colors(length(data),alpha=0.1)[rank(data)])
Simulation of Gaussian and some non Gaussian spatial, spatio-temporal and spatial bivariate random fields using two approximate methods of simulation: circulant embeeding and turning band. (see Examples).
GeoSimapprox(coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL,corrmodel, distance="Eucl",GPU=NULL, grid=FALSE,local=c(1,1),max.ext=1, method="TB", L=1000,model='Gaussian',parallel=FALSE,ncores=NULL, n=1,param,anisopars=NULL, radius=6371,X=NULL,spobj=NULL, nrep=1,progress=TRUE)
GeoSimapprox(coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL,corrmodel, distance="Eucl",GPU=NULL, grid=FALSE,local=c(1,1),max.ext=1, method="TB", L=1000,model='Gaussian',parallel=FALSE,ncores=NULL, n=1,param,anisopars=NULL, radius=6371,X=NULL,spobj=NULL, nrep=1,progress=TRUE)
coordx |
A numeric ( |
coordy |
A numeric vector giving 1-dimension of
spatial coordinates; |
coordt |
A numeric vector giving 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
corrmodel |
String; the name of a correlation model, for the description see the Section Details. |
parallel |
Logical; if |
ncores |
Numeric; number of cores involved in parallelization. |
distance |
String; the name of the spatial distance. The default
is |
GPU |
Numeric; if |
grid |
Logical; if |
local |
Numeric; number of local work-items of the GPU |
max.ext |
Numeric; The maximum extension of the simulation window (for the spatial CE method). |
method |
String; the type of approximation method. Default is |
L |
Numeric; the number of lines in the turning band method. |
model |
String; the type of RF and therefore the densities associated to the likelihood
objects. |
n |
Numeric; the number of trials for binomial RFs. The number of successes in the negative Binomial RFs. Default is |
param |
A list of parameter values required in the simulation procedure of RFs, see Examples. |
anisopars |
A list of two elements "angle" and "ratio" i.e. the anisotropy angle and the anisotropy ratio, respectively. |
radius |
Numeric; a value indicating the radius of the sphere when using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371) |
X |
Numeric; Matrix of space-time covariates. |
spobj |
An object of class sp or spacetime |
nrep |
Numeric; Numbers of indipendent replicates. |
progress |
Logic; If TRUE then a progress bar is shown. |
Returns an object of class GeoSim
.
An object of class GeoSim
is a list containing
at most the following components:
bivariate |
Logical: |
coordx |
A |
coordy |
A |
coordt |
A |
coordx_dyn |
A list of dynamical (in time) spatial coordinates; |
corrmodel |
The correlation model; see |
data |
The vector or matrix or array of data, see
|
distance |
The type of spatial distance; |
method |
The method of simulation |
model |
The type of RF, see |
n |
The number of trial for Binomial RFs;the number of successes in a negative Binomial RFs; |
numcoord |
The number of spatial coordinates; |
numtime |
The number the temporal realisations of the RF; |
param |
The vector of parameters' estimates; |
radius |
The radius of the sphere if coordinates are passed in lon/lat format; |
spacetime |
|
nrep |
The number of indipendent replicates; |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
T. Gneiting, H. Sevcikova, D. B. Percival, M. Schlather and Y. Jiang (2006) Fast and Exact Simulation of Large Gaussian Lattice Systems in R2: Exploring the Limits Journal of Computational and Graphical Statistics 15 (3)
D. Arroyo, X. Emery (2020) An R Implementation of a Continuous Spectral Algorithm for Simulating Vector Gaussian Random Fields in Euclidean Spaces ACM Transactions on Mathematical Software 47(1)
library(GeoModels) ################################################################ ### ### Example 1. Simulation of a large spatial Gaussian RF ### with Matern covariance model ### using circulant embeeding method ### It works only for regular grid ############################################################### set.seed(68) x = seq(0,1,0.005) y = seq(0,1,0.005) param=list(smooth=1.5,mean=0,sill=1,scale=0.2/3,nugget=0) # Simulation of a spatial Gaussian RF with Matern correlation function data1 <- GeoSimapprox(coordx=x,coordy=y, grid=TRUE,corrmodel="Matern", model="Gaussian", method="CE",param=param)$data fields::image.plot( matrix(data1, length(x), length(y), byrow = TRUE) ) ################################################################ ### ### Example 2. Simulation of a large spatial Tukey-h RF ### with GenWend-Matern covariance model ### using Turning band method ### It works for (ir)regular grid ############################################################### set.seed(68) x = runif(50000) y = runif(50000) coords=cbind(x,y) param=list(smooth=0.5,mean=0,sill=1,scale=0.04,nugget=0,tail=0.15,power2=1/4) # Simulation of a spatial Gaussian RF with Matern correlation function data1 <- GeoSimapprox(coords, corrmodel="GenWend_Matern", model="Tukeyh", method="TB",param=param)$data quilt.plot(coords,data1) ################################################################ ### ### Example 3. Simulation of a large spacetime Gaussian RF ### with separable matern covariance model ### using Circular embeeding method ### It works for (large) regular time grid ############################################################### set.seed(68) coordt <- (0:100) coords <- cbind( runif(100, 0 ,1), runif(100, 0 ,1)) param <- list(mean = 0, sill = 1, nugget = 0.25, scale_s = 0.05, scale_t = 2, smooth_s = 0.5, smooth_t = 0.5) # Simulation of a spatial Gaussian RF with Matern correlation function param<-list(nugget=0,mean=0,scale_s=0.2/3,scale_t=2/3,sill=1,smooth_s=0.5,smooth_t=0.5) data <- GeoSimapprox(coordx=coords, coordt=coordt, corrmodel="Matern_Matern", model="Gaussian",method="CE",param=param)$data dim(data) ################################################################ ### ### Example 4. Simulation of a large spacetime Gaussian RF ### with separable GenWend covariance model ### using Circular embeeding method in time ############################################################### set.seed(68) # Simulation of a spatial Gaussian RF with Matern correlation function param<-list(nugget=0,mean=0,scale_s=0.2,scale_t=3,sill=1, smooth_s=0,smooth_t=0, power2_s=4,power2_t=4) data <- GeoSimapprox(coordx=coords, coordt=coordt, corrmodel="GenWend_GenWend", model="Gaussian",method="CE",param=param)$data dim(data) ################################################################ ### ### Example 6. Simulation of a large bivariate Gaussian RF ### with bivariate Matern correlation model ### ############################################################### # Define the spatial-coordinates of the points: #x <- runif(20000, 0, 2) #y <- runif(20000, 0, 2) #coords <- cbind(x,y) # Simulation of a bivariate spatial Gaussian RF: # with a Bivariate Matern #set.seed(12) #param=list(mean_1=4,mean_2=2,smooth_1=0.5,smooth_2=0.5,smooth_12=0.5, # scale_1=0.12,scale_2=0.1,scale_12=0.15, # sill_1=1,sill_2=1,nugget_1=0,nugget_2=0,pcol=0.5) #data <- GeoSimapprox(coordx=coords,corrmodel="Bi_matern", # param=param,method="TB",L=1000)$data #opar=par(no.readonly = TRUE) #par(mfrow=c(1,2)) #quilt.plot(coords,data[1,],col=terrain.colors(100),main="1",xlab="",ylab="") #quilt.plot(coords,data[2,],col=terrain.colors(100),main="2",xlab="",ylab="")
library(GeoModels) ################################################################ ### ### Example 1. Simulation of a large spatial Gaussian RF ### with Matern covariance model ### using circulant embeeding method ### It works only for regular grid ############################################################### set.seed(68) x = seq(0,1,0.005) y = seq(0,1,0.005) param=list(smooth=1.5,mean=0,sill=1,scale=0.2/3,nugget=0) # Simulation of a spatial Gaussian RF with Matern correlation function data1 <- GeoSimapprox(coordx=x,coordy=y, grid=TRUE,corrmodel="Matern", model="Gaussian", method="CE",param=param)$data fields::image.plot( matrix(data1, length(x), length(y), byrow = TRUE) ) ################################################################ ### ### Example 2. Simulation of a large spatial Tukey-h RF ### with GenWend-Matern covariance model ### using Turning band method ### It works for (ir)regular grid ############################################################### set.seed(68) x = runif(50000) y = runif(50000) coords=cbind(x,y) param=list(smooth=0.5,mean=0,sill=1,scale=0.04,nugget=0,tail=0.15,power2=1/4) # Simulation of a spatial Gaussian RF with Matern correlation function data1 <- GeoSimapprox(coords, corrmodel="GenWend_Matern", model="Tukeyh", method="TB",param=param)$data quilt.plot(coords,data1) ################################################################ ### ### Example 3. Simulation of a large spacetime Gaussian RF ### with separable matern covariance model ### using Circular embeeding method ### It works for (large) regular time grid ############################################################### set.seed(68) coordt <- (0:100) coords <- cbind( runif(100, 0 ,1), runif(100, 0 ,1)) param <- list(mean = 0, sill = 1, nugget = 0.25, scale_s = 0.05, scale_t = 2, smooth_s = 0.5, smooth_t = 0.5) # Simulation of a spatial Gaussian RF with Matern correlation function param<-list(nugget=0,mean=0,scale_s=0.2/3,scale_t=2/3,sill=1,smooth_s=0.5,smooth_t=0.5) data <- GeoSimapprox(coordx=coords, coordt=coordt, corrmodel="Matern_Matern", model="Gaussian",method="CE",param=param)$data dim(data) ################################################################ ### ### Example 4. Simulation of a large spacetime Gaussian RF ### with separable GenWend covariance model ### using Circular embeeding method in time ############################################################### set.seed(68) # Simulation of a spatial Gaussian RF with Matern correlation function param<-list(nugget=0,mean=0,scale_s=0.2,scale_t=3,sill=1, smooth_s=0,smooth_t=0, power2_s=4,power2_t=4) data <- GeoSimapprox(coordx=coords, coordt=coordt, corrmodel="GenWend_GenWend", model="Gaussian",method="CE",param=param)$data dim(data) ################################################################ ### ### Example 6. Simulation of a large bivariate Gaussian RF ### with bivariate Matern correlation model ### ############################################################### # Define the spatial-coordinates of the points: #x <- runif(20000, 0, 2) #y <- runif(20000, 0, 2) #coords <- cbind(x,y) # Simulation of a bivariate spatial Gaussian RF: # with a Bivariate Matern #set.seed(12) #param=list(mean_1=4,mean_2=2,smooth_1=0.5,smooth_2=0.5,smooth_12=0.5, # scale_1=0.12,scale_2=0.1,scale_12=0.15, # sill_1=1,sill_2=1,nugget_1=0,nugget_2=0,pcol=0.5) #data <- GeoSimapprox(coordx=coords,corrmodel="Bi_matern", # param=param,method="TB",L=1000)$data #opar=par(no.readonly = TRUE) #par(mfrow=c(1,2)) #quilt.plot(coords,data[1,],col=terrain.colors(100),main="1",xlab="",ylab="") #quilt.plot(coords,data[2,],col=terrain.colors(100),main="2",xlab="",ylab="")
Simulation of Gaussian and some non Gaussian spatial, spatio-temporal and spatial bivariate random fields using Gaussian or Clayton copula. The function return a realization of a Random Field for a given covariance model and covariance parameters. Simulation is based on Cholesky decomposition.
GeoSimCopula(coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel, distance="Eucl", GPU=NULL, grid=FALSE, local=c(1,1), method="cholesky", model='Gaussian', n=1, param, anisopars=NULL,radius=6371, sparse=FALSE, copula="Gaussian",seed=NULL, X=NULL,spobj=NULL,nrep=1)
GeoSimCopula(coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel, distance="Eucl", GPU=NULL, grid=FALSE, local=c(1,1), method="cholesky", model='Gaussian', n=1, param, anisopars=NULL,radius=6371, sparse=FALSE, copula="Gaussian",seed=NULL, X=NULL,spobj=NULL,nrep=1)
coordx |
A numeric ( |
coordy |
A numeric vector giving 1-dimension of
spatial coordinates; |
coordt |
A numeric vector giving 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
corrmodel |
String; the name of a correlation model, for the description see the Section Details. |
distance |
String; the name of the spatial distance. The default
is |
GPU |
Numeric; if |
grid |
Logical; if |
local |
Numeric; number of local work-items of the GPU |
method |
String; the type of matrix decomposition used in the simulation. Default is cholesky. The other possible choices is |
model |
String; the type of RF and therefore the densities associated to the likelihood
objects. |
n |
Numeric; the number of trials for binomial RFs. The number of successes in the negative Binomial RFs. Default is |
param |
A list of parameter values required in the simulation procedure of RFs, see Examples. |
anisopars |
A list of two elements "angle" and "ratio" i.e. the anisotropy angle and the anisotropy ratio, respectively. |
radius |
Numeric; a value indicating the radius of the sphere when using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371) |
sparse |
Logical; if |
copula |
String; the type of copula. It can be "Clayton" or "Gaussian" |
seed |
Numeric; an integer used in set.seed function to reproduce the simulation. |
X |
Numeric; Matrix of space-time covariates. |
spobj |
An object of class sp or spacetime |
nrep |
Numeric; Numbers of indipendent replicates. |
Returns an object of class GeoSimCopula
.
An object of class GeoSimCopula
is a list containing
at most the following components:
bivariate |
Logical: |
coordx |
A |
coordy |
A |
coordt |
A |
coordx_dyn |
A list of dynamical (in time) spatial coordinates; |
corrmodel |
The correlation model; see |
data |
The vector or matrix or array of data, see
|
distance |
The type of spatial distance; |
method |
The method of simulation |
model |
The type of RF, see |
n |
The number of trial for Binomial RFs;the number of successes in a negative Binomial RFs; |
numcoord |
The number of spatial coordinates; |
numtime |
The number the temporal realisations of the RF; |
param |
A list of the parameters |
radius |
The radius of the sphere if coordinates are passed in lon/lat format; |
randseed |
The seed used for the random simulation; |
spacetime |
|
copula |
The type of copula |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Bevilacqua M., Alvarado E., Caamano C. (2024) A flexible Clayton-like spatial copula with application to bounded support data. Journal of Multivariate Analysis 201
library(GeoModels) ################################################################ ### ### Example q. Simulation of a reparametrized Beta RF ### for beta regression ### with Gaussian and Clayton Copula ### with underlying Wendland correlation. ### ############################################################### set.seed(261) NN=1400 x <- runif(NN);y <- runif(NN) coords=cbind(x,y) shape1=3 shape2=3 smooth=0 corrmodel="GenWend" min=0;max=1 X=cbind(rep(1,NN),runif(NN)) NuisParam("Beta2",num_betas=2,copula="Gaussian") CorrParam("GenWend") #### Gaussian copula param=list(smooth=smooth,power2=4, min=min,max=max, mean=0.1,mean1=0.1,scale=0.3,nugget=0,shape=5) data <- GeoSimCopula(coordx=coords, corrmodel=corrmodel, model="Beta2",param=param, copula="Gaussian",sparse=TRUE,X=X)$data quilt.plot(coords,data) #### Clayton copula NuisParam("Beta2",num_betas=2,copula="Clayton") CorrParam("GenWend") param=list(smooth=smooth,power2=4, min=min,max=max, mean=0.2,mean1=0.1,scale=0.3,nugget=0,shape=6,nu=4) data1 <- GeoSimCopula(coordx=coords, corrmodel=corrmodel, model="Beta2",param=param, copula="Clayton",sparse=TRUE,X=X)$data hist(data1,freq=FALSE) quilt.plot(coords,data1)
library(GeoModels) ################################################################ ### ### Example q. Simulation of a reparametrized Beta RF ### for beta regression ### with Gaussian and Clayton Copula ### with underlying Wendland correlation. ### ############################################################### set.seed(261) NN=1400 x <- runif(NN);y <- runif(NN) coords=cbind(x,y) shape1=3 shape2=3 smooth=0 corrmodel="GenWend" min=0;max=1 X=cbind(rep(1,NN),runif(NN)) NuisParam("Beta2",num_betas=2,copula="Gaussian") CorrParam("GenWend") #### Gaussian copula param=list(smooth=smooth,power2=4, min=min,max=max, mean=0.1,mean1=0.1,scale=0.3,nugget=0,shape=5) data <- GeoSimCopula(coordx=coords, corrmodel=corrmodel, model="Beta2",param=param, copula="Gaussian",sparse=TRUE,X=X)$data quilt.plot(coords,data) #### Clayton copula NuisParam("Beta2",num_betas=2,copula="Clayton") CorrParam("GenWend") param=list(smooth=smooth,power2=4, min=min,max=max, mean=0.2,mean1=0.1,scale=0.3,nugget=0,shape=6,nu=4) data1 <- GeoSimCopula(coordx=coords, corrmodel=corrmodel, model="Beta2",param=param, copula="Clayton",sparse=TRUE,X=X)$data hist(data1,freq=FALSE) quilt.plot(coords,data1)
The function performs statistical hypothesis tests for nested models based on composite or standard likelihood versions of Wald-type and Wilks-type (likelihood ratio) statistics.
GeoTests(object1, object2, ..., statistic)
GeoTests(object1, object2, ..., statistic)
object1 |
An object of class |
object2 |
An object of class |
... |
Further successively nested objects. |
statistic |
String; the name of the statistic used within the hypothesis test (see Details). |
The implemented hypothesis tests for nested models are based on the following statistics:
Wald-type (Wald
);
Likelihood ratio or Wilks-type (Wilks
under standard likelihood);
For composite likelihood available variants of the basic version are:
Rotnitzky and Jewell adjustment (WilksRJ
);
Satterhwaite adjustment (WilksS
);
Chandler and Bate adjustment (WilksCB
);
Pace, Salvan and Sartori adjustment (WilksPSS
);
More specifically,
consider an -dimensional random vector
with
probability density function
,
where
is a
-dimensional vector of parameters. Suppose that
can be partitioned in a
-dimensional subvector
and
-dimensional subvector
. Assume also to be
interested in testing the specific values of the vector
. Then, one can use some statistical
hypothesis tests for testing the null hypothesis
against the alternative
. Composite likelihood versions
of 'Wald' statistis have the usual asymptotic
chi-square distribution with
degree of freedom. The Wald-type statistic is
where is the
submatrix of the Godambe or Fisher information pertaining to
and
is the maximum likelihood estimator from
the full model.
This statistic can be called from the
routine
GeoTests
assigning at the argument statistic
the value: Wald
.
Alternatively to the Wald-type statistic one can use the composite version of the Wilks-type or likelihood ratio statistic, given by
In the composite likelihood case, the asymptotic distribution of the composite likelihood ratio statistic is given by
for , where
are
iid copies of a chi-square one random variable and
are the eigenvalues of the matrix
. There exist several adjustments
to the composite likelihood ratio statistic in order to get an
approximated
. For example, Rotnitzky and Jewell
(1990) proposed the adjustment
where
is the average
of the eigenvalues
. This statistic can be
called within the routine by the value:
WilksRJ
. A better
solution is proposed by Satterhwaite (1946) defining , where
for
, is the effective number of the degree of
freedom. Note that in this case the distribution of the likelihood ratio
statistic is a chi-square random variable with
degree of
freedom. This statistic can be called from the routine assigning the
value:
WilksS
. For the adjustments suggested by Chandler and
Bate (2007) we refere to the article (see
References). This versions can be called from the routine assigning
respectively the values: WilksCB
.
An object of class c("data.frame")
. The object contain a table
with the results of the tested models. The rows represent the
responses for each model and the columns the following results:
Num.Par |
The number of the model's parameters. |
Diff.Par |
The difference between the number of parameters of the model in the previous row and those in the actual row. |
Df |
The effective number of degree of freedom of the chi-square distribution. |
Chisq |
The observed value of the statistic. |
Pr(>chisq) |
The p-value of the quantile
|
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Chandler, R. E., and Bate, S. (2007). Inference for Clustered Data Using the Independence log-likelihood. Biometrika, 94, 167–183.
Rotnitzky, A. and Jewell, N. P. (1990). Hypothesis Testing of Regression Parameters in Semiparametric Generalized Linear Models for Cluster Correlated Data. Biometrika, 77, 485–497.
Satterthwaite, F. E. (1946). An Approximate Distribution of Estimates of Variance Components. Biometrics Bulletin, 2, 110–114.
Varin, C., Reid, N. and Firth, D. (2011). An Overview of Composite Likelihood Methods. Statistica Sinica, 21, 5–42.
library(GeoModels) ################################################################ ### ### Example 1. Test on the parameter ### of a regression model using conditional composite likelihood ### ############################################################### set.seed(342) model="Gaussian" # Define the spatial-coordinates of the points: NN=1500 x = runif(NN, 0, 1) y = runif(NN, 0, 1) coords = cbind(x,y) # Parameters mean=1; mean1=-1.25; # regression parameters nugget=0; sill=1 # matrix covariates X=cbind(rep(1,nrow(coords)),runif(nrow(coords))) # model correlation corrmodel="Wend0" power2=4;c_supp=0.15 # simulation param=list(power2=power2,mean=mean,mean1=mean1, sill=sill,scale=c_supp,nugget=nugget) data = GeoSim(coordx=coords, corrmodel=corrmodel,model=model, param=param,X=X)$data I=Inf ##### H1: (regressian mean) fixed=list(nugget=nugget,power2=power2) start=list(mean=mean,mean1=mean1,scale=c_supp,sill=sill) lower=list(mean=-I,mean1=-I,scale=0,sill=0) upper=list(mean=I,mean1=I,scale=I,sill=I) # Maximum pairwise composite-likelihood fitting of the RF: fitH1 = GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model, likelihood="Conditional",type="Pairwise",sensitivity=TRUE, lower=lower,upper=upper,neighb=3, optimizer="nlminb",X=X, start=start,fixed=fixed) unlist(fitH1$param) ##### H0: (constant mean i.e beta1=0) fixed=list(power2=power2,nugget=nugget,mean1=0) start=list(mean=mean,scale=c_supp,sill=sill) lower0=list(mean=-I,scale=0,sill=0) upper0=list(mean=I,scale=I,sill=I) # Maximum pairwise composite-likelihood fitting of the RF: fitH0 = GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model, likelihood="Conditional",type="Pairwise",sensitivity=TRUE, lower=lower0,upper=upper0,neighb=3, optimizer="nlminb",X=X, start=start,fixed=fixed) unlist(fitH0$param) # not run ##fitH1=GeoVarestbootstrap(fitH1,K=100,optimizer="nlminb", ## lower=lower, upper=upper) ##fitH0=GeoVarestbootstrap(fitH0,K=100,optimizer="nlminb", ## lower=lower0, upper=upper0) # Composite likelihood Wald and ratio statistic statistic tests # rejecting null hypothesis beta1=0 ##GeoTests(fitH1, fitH0 ,statistic='Wald') ##GeoTests(fitH1, fitH0 , statistic='WilksS') ##GeoTests(fitH1, fitH0 , statistic='WilksCB') ################################################################ ### ### Example 2. Parametric test of Gaussianity ### using SinhAsinh random fields using standard likelihood ### ############################################################### set.seed(99) model="SinhAsinh" # Define the spatial-coordinates of the points: NN=200 x = runif(NN, 0, 1) y = runif(NN, 0, 1) coords = cbind(x,y) # Parameters mean=0; nugget=0; sill=1 ### skew and tail parameters skew=0;tail=1 ## H0 is Gaussianity # underlying model correlation corrmodel="Wend0" power2=4;c_supp=0.2 # simulation from Gaussian model (H0) param=list(power2=power2,skew=skew,tail=tail, mean=mean,sill=sill,scale=c_supp,nugget=nugget) data = GeoSim(coordx=coords, corrmodel=corrmodel,model=model, param=param)$data ##### H1: SinhAsinh model fixed=list(power2=power2,nugget=nugget,mean=mean) start=list(scale=c_supp,skew=skew,tail=tail,sill=sill) lower=list(scale=0,skew=-I, tail=0,sill=0) upper=list(scale=I,skew= I,tail=I,sill=I) # Maximum pairwise composite-likelihood fitting of the RF: fitH1 = GeoFit2(data=data,coordx=coords,corrmodel=corrmodel, model=model, likelihood="Full",type="Standard",varest=TRUE, lower=lower,upper=upper, optimizer="nlminb", start=start,fixed=fixed) unlist(fitH1$param) ##### H0: Gaussianity (i.e tail1=1, skew=0 fixed) fixed=list(power2=power2,nugget=nugget,mean=mean,tail=1,skew=0) start=list(scale=c_supp,sill=sill) lower=list(scale=0,sill=0) upper=list(scale=2,sill=5) # Maximum pairwise composite-likelihood fitting of the RF: fitH0 = GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model, likelihood="Full",type="Standard",varest=TRUE, lower=lower,upper=upper, optimizer="nlminb", start=start,fixed=fixed) unlist(fitH0$param) # Standard likelihood Wald and ratio statistic statistic tests # not rejecting null hypothesis tail=1,skew=0 (Gaussianity) GeoTests(fitH1, fitH0,statistic='Wald') GeoTests(fitH1, fitH0,statistic='Wilks')
library(GeoModels) ################################################################ ### ### Example 1. Test on the parameter ### of a regression model using conditional composite likelihood ### ############################################################### set.seed(342) model="Gaussian" # Define the spatial-coordinates of the points: NN=1500 x = runif(NN, 0, 1) y = runif(NN, 0, 1) coords = cbind(x,y) # Parameters mean=1; mean1=-1.25; # regression parameters nugget=0; sill=1 # matrix covariates X=cbind(rep(1,nrow(coords)),runif(nrow(coords))) # model correlation corrmodel="Wend0" power2=4;c_supp=0.15 # simulation param=list(power2=power2,mean=mean,mean1=mean1, sill=sill,scale=c_supp,nugget=nugget) data = GeoSim(coordx=coords, corrmodel=corrmodel,model=model, param=param,X=X)$data I=Inf ##### H1: (regressian mean) fixed=list(nugget=nugget,power2=power2) start=list(mean=mean,mean1=mean1,scale=c_supp,sill=sill) lower=list(mean=-I,mean1=-I,scale=0,sill=0) upper=list(mean=I,mean1=I,scale=I,sill=I) # Maximum pairwise composite-likelihood fitting of the RF: fitH1 = GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model, likelihood="Conditional",type="Pairwise",sensitivity=TRUE, lower=lower,upper=upper,neighb=3, optimizer="nlminb",X=X, start=start,fixed=fixed) unlist(fitH1$param) ##### H0: (constant mean i.e beta1=0) fixed=list(power2=power2,nugget=nugget,mean1=0) start=list(mean=mean,scale=c_supp,sill=sill) lower0=list(mean=-I,scale=0,sill=0) upper0=list(mean=I,scale=I,sill=I) # Maximum pairwise composite-likelihood fitting of the RF: fitH0 = GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model, likelihood="Conditional",type="Pairwise",sensitivity=TRUE, lower=lower0,upper=upper0,neighb=3, optimizer="nlminb",X=X, start=start,fixed=fixed) unlist(fitH0$param) # not run ##fitH1=GeoVarestbootstrap(fitH1,K=100,optimizer="nlminb", ## lower=lower, upper=upper) ##fitH0=GeoVarestbootstrap(fitH0,K=100,optimizer="nlminb", ## lower=lower0, upper=upper0) # Composite likelihood Wald and ratio statistic statistic tests # rejecting null hypothesis beta1=0 ##GeoTests(fitH1, fitH0 ,statistic='Wald') ##GeoTests(fitH1, fitH0 , statistic='WilksS') ##GeoTests(fitH1, fitH0 , statistic='WilksCB') ################################################################ ### ### Example 2. Parametric test of Gaussianity ### using SinhAsinh random fields using standard likelihood ### ############################################################### set.seed(99) model="SinhAsinh" # Define the spatial-coordinates of the points: NN=200 x = runif(NN, 0, 1) y = runif(NN, 0, 1) coords = cbind(x,y) # Parameters mean=0; nugget=0; sill=1 ### skew and tail parameters skew=0;tail=1 ## H0 is Gaussianity # underlying model correlation corrmodel="Wend0" power2=4;c_supp=0.2 # simulation from Gaussian model (H0) param=list(power2=power2,skew=skew,tail=tail, mean=mean,sill=sill,scale=c_supp,nugget=nugget) data = GeoSim(coordx=coords, corrmodel=corrmodel,model=model, param=param)$data ##### H1: SinhAsinh model fixed=list(power2=power2,nugget=nugget,mean=mean) start=list(scale=c_supp,skew=skew,tail=tail,sill=sill) lower=list(scale=0,skew=-I, tail=0,sill=0) upper=list(scale=I,skew= I,tail=I,sill=I) # Maximum pairwise composite-likelihood fitting of the RF: fitH1 = GeoFit2(data=data,coordx=coords,corrmodel=corrmodel, model=model, likelihood="Full",type="Standard",varest=TRUE, lower=lower,upper=upper, optimizer="nlminb", start=start,fixed=fixed) unlist(fitH1$param) ##### H0: Gaussianity (i.e tail1=1, skew=0 fixed) fixed=list(power2=power2,nugget=nugget,mean=mean,tail=1,skew=0) start=list(scale=c_supp,sill=sill) lower=list(scale=0,sill=0) upper=list(scale=2,sill=5) # Maximum pairwise composite-likelihood fitting of the RF: fitH0 = GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model, likelihood="Full",type="Standard",varest=TRUE, lower=lower,upper=upper, optimizer="nlminb", start=start,fixed=fixed) unlist(fitH0$param) # Standard likelihood Wald and ratio statistic statistic tests # not rejecting null hypothesis tail=1,skew=0 (Gaussianity) GeoTests(fitH1, fitH0,statistic='Wald') GeoTests(fitH1, fitH0,statistic='Wilks')
GeoFit
object using parametric bootstrap for std error estimationThe procedure update a GeoFit
object computing stderr estimation, confidence intervals
and p-values using parametric bootstrap.
GeoVarestbootstrap(fit,K=100,sparse=FALSE, GPU=NULL,local=c(1,1), optimizer=NULL, lower=NULL, upper=NULL, method="cholesky",alpha=0.95, L=1000,parallel=FALSE,ncores=NULL)
GeoVarestbootstrap(fit,K=100,sparse=FALSE, GPU=NULL,local=c(1,1), optimizer=NULL, lower=NULL, upper=NULL, method="cholesky",alpha=0.95, L=1000,parallel=FALSE,ncores=NULL)
fit |
A fitted object obtained from the
|
K |
The number of simulations in the parametric bootstrap. |
sparse |
Logical; if |
GPU |
Numeric; if |
local |
Numeric; number of local work-items of the OpenCL setup |
optimizer |
The type of optimization algorithm (see |
lower |
An optional named list giving the values for the lower bound of the space parameter
when the optimizer is |
upper |
An optional named list giving the values for the upper bound of the space parameter
when the optimizer is |
method |
String; The method of simulation. Default is |
alpha |
Numeric; The level of the confidence interval. |
L |
Numeric; the number of lines in the turning band method. |
parallel |
Logical; if |
ncores |
Numeric; number of cores involved in parallelization. |
The function update a GeoFit
object estimating stderr estimation
and confidence interval using parametric bootstrap.
Returns an (updated) object of class GeoFit
.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) ################################################################ ### ### Example 1. Test on the parameter ### of a regression model using conditional composite likelihood ### ############################################################### set.seed(342) model="Gaussian" # Define the spatial-coordinates of the points: NN=3500 x = runif(NN, 0, 1) y = runif(NN, 0, 1) coords = cbind(x,y) # Parameters mean=1; mean1=-1.25; # regression parameters sill=1 # variance # matrix covariates X=cbind(rep(1,nrow(coords)),runif(nrow(coords))) # model correlation corrmodel="Matern" smooth=0.5;scale=0.1; nugget=0; # simulation param=list(smooth=smooth,mean=mean,mean1=mean1, sill=sill,scale=scale,nugget=nugget) data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model, param=param,X=X)$data I=Inf fixed=list(nugget=nugget,smooth=smooth) start=list(mean=mean,mean1=mean1,scale=scale,sill=sill) lower=list(mean=-I,mean1=-I,scale=0,sill=0) upper=list(mean=I,mean1=I,scale=I,sill=I) # Maximum pairwise composite-likelihood fitting of the RF: fit = GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model, likelihood="Conditional",type="Pairwise",sensitivity=TRUE, lower=lower,upper=upper,neighb=3, optimizer="nlminb",X=X, start=start,fixed=fixed) unlist(fit$param) #fit_update=GeoVarestbootstrap(fit,K=100,parallel=TRUE) #fit_update$stderr #fit_update$conf.int #fit_update$pvalues
library(GeoModels) ################################################################ ### ### Example 1. Test on the parameter ### of a regression model using conditional composite likelihood ### ############################################################### set.seed(342) model="Gaussian" # Define the spatial-coordinates of the points: NN=3500 x = runif(NN, 0, 1) y = runif(NN, 0, 1) coords = cbind(x,y) # Parameters mean=1; mean1=-1.25; # regression parameters sill=1 # variance # matrix covariates X=cbind(rep(1,nrow(coords)),runif(nrow(coords))) # model correlation corrmodel="Matern" smooth=0.5;scale=0.1; nugget=0; # simulation param=list(smooth=smooth,mean=mean,mean1=mean1, sill=sill,scale=scale,nugget=nugget) data = GeoSim(coordx=coords, corrmodel=corrmodel, model=model, param=param,X=X)$data I=Inf fixed=list(nugget=nugget,smooth=smooth) start=list(mean=mean,mean1=mean1,scale=scale,sill=sill) lower=list(mean=-I,mean1=-I,scale=0,sill=0) upper=list(mean=I,mean1=I,scale=I,sill=I) # Maximum pairwise composite-likelihood fitting of the RF: fit = GeoFit(data=data,coordx=coords,corrmodel=corrmodel, model=model, likelihood="Conditional",type="Pairwise",sensitivity=TRUE, lower=lower,upper=upper,neighb=3, optimizer="nlminb",X=X, start=start,fixed=fixed) unlist(fit$param) #fit_update=GeoVarestbootstrap(fit,K=100,parallel=TRUE) #fit_update$stderr #fit_update$conf.int #fit_update$pvalues
The function returns an empirical estimate of the semi-variogram for spatio (temporal) and bivariate random fields.
GeoVariogram(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL,cloud=FALSE, distance="Eucl", grid=FALSE, maxdist=NULL,neighb=NULL, maxtime=NULL, numbins=NULL, radius=6371, type='variogram',bivariate=FALSE)
GeoVariogram(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL,cloud=FALSE, distance="Eucl", grid=FALSE, maxdist=NULL,neighb=NULL, maxtime=NULL, numbins=NULL, radius=6371, type='variogram',bivariate=FALSE)
data |
A |
coordx |
A numeric ( |
coordy |
A numeric vector assigning 1-dimension of
spatial coordinates; |
coordt |
A numeric vector assigning 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
cloud |
Logical; if |
distance |
String; the name of the spatial distance. The default
is |
grid |
Logical; if |
maxdist |
A numeric value denoting the spatial maximum distance, see the Section Details. |
neighb |
Numeric; an optional positive integer indicating the order of neighborhood. See the Section Details for more information. |
maxtime |
A numeric value denoting the temporal maximum distance, see the Section Details. |
numbins |
A numeric value denoting the numbers of bins, see the Section Details. |
radius |
Numeric; a value indicating the radius of the sphere when using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371) |
type |
A String denoting the type of semivariogram. The option
available is : |
bivariate |
Logical; if |
We briefly report the definitions of semi-variogram used for the spatial case. It can be easily extended to the space-time or spatial bivariate case. In the case of a spatial Gaussian random field the sample semivariogram estimator is defined by
where is the set of all the sample pairs whose distances fall into a tolerance region with size
(equispaced intervalls are considered).
The numbins
parameter indicates the number of adjacent
intervals to consider in order to grouped distances with which to
compute the (weighted) lest squares.
The maxdist
parameter indicates the maximum spatial distance below which
the shorter distances will be considered in the calculation of
the semivariogram.
The maxdist
parameter can be coupled with the neighb
parameter. This is useful when handling large dataset.
The maxtime
parameter indicates the maximum temporal distance below which
the shorter distances will be considered in the calculation of
the spatio-temoral semivariogram.
Returns an object of class Variogram
.
An object of class Variogram
is a list containing
at most the following components:
bins |
Adjacent intervals of grouped spatial distances if
|
bint |
Adjacent intervals of grouped temporal distances if
|
cloud |
If the variogram cloud is returned ( |
centers |
The centers of the spatial bins; |
distance |
The type of spatial distance; |
lenbins |
The number of pairs in each spatial bin; |
lenbinst |
The number of pairs in each spatial-temporal bin; |
lenbint |
The number of pairs in each temporal bin; |
maxdist |
The maximum spatial distance used for the calculation of the variogram. If no spatial distance is specified then it is NULL; |
maxtime |
The maximum temporal distance used for the calculation of the variogram. If no temporal distance is specified then it is NULL; |
spacetime_dyn |
If the space-time variogram is obtained using dynamical coordinates
then it is( |
variograms |
The empirical spatial variogram; |
variogramst |
The empirical spatial-temporal variogram; |
variogramt |
The empirical temporal variogram; |
type |
The type of estimated variogram |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Cressie, N. A. C. (1993) Statistics for Spatial Data. New York: Wiley.
Gaetan, C. and Guyon, X. (2010) Spatial Statistics and Modelling. Spring Verlang, New York.
library(GeoModels) ################################################################ ### ### Example 1. Empirical estimation of the semi-variogram from a ### spatial Gaussian random field with exponential correlation. ### ############################################################### set.seed(514) # Set the coordinates of the sites: x = runif(200, 0, 1) y = runif(200, 0, 1) coords = cbind(x,y) # Set the model's parameters: corrmodel = "Exponential" mean = 0 sill = 1 nugget = 0 scale = 0.3/3 # Simulation of the spatial Gaussian random field: data = GeoSim(coordx=coords, corrmodel=corrmodel, param=list(mean=mean, sill=sill, nugget=nugget, scale=scale))$data # Empirical spatial semi-variogram estimation: vario = GeoVariogram(coordx=coords,data=data,maxdist=0.6) plot(vario,pch=20,ylim=c(0,1),ylab="Semivariogram",xlab="Distance") ################################################################ ### ### Example 2. Empirical estimation of the variogram from a ### spatio-temporal Gaussian random fields with Gneiting ### correlation function. ### ############################################################### set.seed(331) # Define the temporal sequence: # Set the coordinates of the sites: x = runif(200, 0, 1) y = runif(200, 0, 1) coords = cbind(x,y) times = seq(1,10,1) # Simulation of a spatio-temporal Gaussian random field: data = GeoSim(coordx=coords, coordt=times, corrmodel="gneiting", param=list(mean=0,scale_s=0.08,scale_t=0.4,sill=1, nugget=0,power_s=1,power_t=1,sep=0.5))$data # Empirical spatio-temporal semi-variogram estimation: vario_st = GeoVariogram(data=data, coordx=coords, coordt=times, maxtime=7,maxdist=0.5) plot(vario_st) ################################################################ ### ### Example 3. Empirical estimation of the (cross) semivariograms ### from a bivariate Gaussian random fields with Matern ### correlation function. ### ############################################################### # Simulation of a bivariate spatial Gaussian random field: set.seed(293) # Define the spatial-coordinates of the points: x = runif(400, 0, 1) y = runif(400, 0, 1) coords=cbind(x,y) # Simulation of a bivariate Gaussian Random field # with matern (cross) covariance function param=list(mean_1=0,mean_2=0,scale_1=0.1/3,scale_2=0.15/3,scale_12=0.15/3, sill_1=1,sill_2=1,nugget_1=0,nugget_2=0, smooth_1=0.5,smooth_12=0.5,smooth_2=0.5,pcol=0.3) data = GeoSim(coordx=coords, corrmodel="Bi_matern", param=param)$data # Empirical semi-(cross)variogram estimation: biv_vario=GeoVariogram(data,coordx=coords, bivariate=TRUE,maxdist=0.5) plot(biv_vario,pch=20)
library(GeoModels) ################################################################ ### ### Example 1. Empirical estimation of the semi-variogram from a ### spatial Gaussian random field with exponential correlation. ### ############################################################### set.seed(514) # Set the coordinates of the sites: x = runif(200, 0, 1) y = runif(200, 0, 1) coords = cbind(x,y) # Set the model's parameters: corrmodel = "Exponential" mean = 0 sill = 1 nugget = 0 scale = 0.3/3 # Simulation of the spatial Gaussian random field: data = GeoSim(coordx=coords, corrmodel=corrmodel, param=list(mean=mean, sill=sill, nugget=nugget, scale=scale))$data # Empirical spatial semi-variogram estimation: vario = GeoVariogram(coordx=coords,data=data,maxdist=0.6) plot(vario,pch=20,ylim=c(0,1),ylab="Semivariogram",xlab="Distance") ################################################################ ### ### Example 2. Empirical estimation of the variogram from a ### spatio-temporal Gaussian random fields with Gneiting ### correlation function. ### ############################################################### set.seed(331) # Define the temporal sequence: # Set the coordinates of the sites: x = runif(200, 0, 1) y = runif(200, 0, 1) coords = cbind(x,y) times = seq(1,10,1) # Simulation of a spatio-temporal Gaussian random field: data = GeoSim(coordx=coords, coordt=times, corrmodel="gneiting", param=list(mean=0,scale_s=0.08,scale_t=0.4,sill=1, nugget=0,power_s=1,power_t=1,sep=0.5))$data # Empirical spatio-temporal semi-variogram estimation: vario_st = GeoVariogram(data=data, coordx=coords, coordt=times, maxtime=7,maxdist=0.5) plot(vario_st) ################################################################ ### ### Example 3. Empirical estimation of the (cross) semivariograms ### from a bivariate Gaussian random fields with Matern ### correlation function. ### ############################################################### # Simulation of a bivariate spatial Gaussian random field: set.seed(293) # Define the spatial-coordinates of the points: x = runif(400, 0, 1) y = runif(400, 0, 1) coords=cbind(x,y) # Simulation of a bivariate Gaussian Random field # with matern (cross) covariance function param=list(mean_1=0,mean_2=0,scale_1=0.1/3,scale_2=0.15/3,scale_12=0.15/3, sill_1=1,sill_2=1,nugget_1=0,nugget_2=0, smooth_1=0.5,smooth_12=0.5,smooth_2=0.5,pcol=0.3) data = GeoSim(coordx=coords, corrmodel="Bi_matern", param=param)$data # Empirical semi-(cross)variogram estimation: biv_vario=GeoVariogram(data,coordx=coords, bivariate=TRUE,maxdist=0.5) plot(biv_vario,pch=20)
the function returns the parameters' estimates of a random field obtained by the weigthed least squares estimator.
GeoWLS(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel, distance="Eucl", fixed=NULL, grid=FALSE, maxdist=NULL,neighb=NULL, maxtime=NULL, model='Gaussian', optimizer='Nelder-Mead', numbins=NULL, radius=6371, start=NULL, weighted=FALSE,optimization=TRUE)
GeoWLS(data, coordx, coordy=NULL, coordt=NULL, coordx_dyn=NULL, corrmodel, distance="Eucl", fixed=NULL, grid=FALSE, maxdist=NULL,neighb=NULL, maxtime=NULL, model='Gaussian', optimizer='Nelder-Mead', numbins=NULL, radius=6371, start=NULL, weighted=FALSE,optimization=TRUE)
data |
A |
coordx |
A numeric ( |
coordy |
A numeric vector giving 1-dimension of
spatial coordinates; |
coordt |
A numeric vector giving 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
corrmodel |
String; the name of a correlation model, for the
description (see |
distance |
String; the name of the spatial distance. The default is |
fixed |
A named list giving the values of the parameters that
will be considered as known values. The listed parameters for a
given correlation function will be not estimated, i.e. if
|
grid |
Logical; if |
maxdist |
A numeric value denoting the maximum distance, see
Details in |
neighb |
Numeric; an optional positive integer indicating the
order of neighborhood. See Details and |
maxtime |
Numeric; an optional positive value indicating the maximum
temporal lag considered.See Details and |
model |
String; the type of random field. |
optimizer |
String; the optimization algorithm
(see |
numbins |
A numeric value denoting the numbers of bins, see the Section Details |
radius |
Numeric; a value indicating the radius of the sphere when using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371) |
start |
A named list with the initial values of the
parameters that are used by the numerical routines in maximization
procedure. |
weighted |
Logical; if |
optimization |
Logical; if |
The numbins
parameter indicates the number of adjacent
intervals to consider in order to grouped distances with which to
compute the (weighted) lest squares.
The maxdist
parameter indicates the maximum distance below which
the shorter distances will be considered in the calculation of
the (weigthed) least squares.
Returns an object of class WLS
.
An object of class WLS
is a list containing
at most the following components:
bins |
Adjacent intervals of grouped distances; |
bint |
Adjacent intervals of grouped temporal separations |
centers |
The centers of the bins; |
coordx |
The vector or matrix of spatial coordinates; |
coordy |
The vector of spatial coordinates; |
coordt |
The vector of temporal coordinates; |
convergence |
A string that denotes if convergence is reached; |
corrmodel |
The correlation model; |
data |
The vector or matrix of data; |
distance |
The type of spatial distance; |
fixed |
The vector of fixed parameters; |
iterations |
The number of iteration used by the numerical routine; |
maxdist |
The maximum spatial distance used for the calculation of the variogram used in least square estimation. If no spatial distance is specified then it is NULL; |
maxtime |
The maximum temporal distance used for the calculation of the variogram used in least square estimation. If no temporal distance is specified then it is NULL; |
message |
Extra message passed from the numerical routines; |
model |
The type of random fields; |
numcoord |
The number of spatial coordinates; |
numtime |
The number the temporal realisations of the random field; |
param |
The vector of parameters' estimates; |
variograms |
The empirical spatial variogram; |
variogramt |
The empirical temporal variogram; |
variogramst |
The empirical spatial-temporal variogram; |
weighted |
A logical value indicating if its the weighted method; |
wls |
The value of the least squares at the minimum. |
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Cressie, N. A. C. (1993) Statistics for Spatial Data. New York: Wiley.
Gaetan, C. and Guyon, X. (2010) Spatial Statistics and Modelling. Spring Verlang, New York.
library(GeoModels) # Set the coordinates of the sites: set.seed(211) x <- runif(200, 0, 1) set.seed(98) y <- runif(200, 0, 1) coords <- cbind(x,y) ################################################################ ### ### Example 1. Least square fitting of a Gaussian random field ### with exponential correlation. ### ############################################################### # Set the model's parameters: corrmodel <- "Exponential" mean <- 0 sill <- 1 nugget <- 0 scale <- 0.15/3 param <- list(mean=0,sill=sill, nugget=nugget, scale=scale) # Simulation of the Gaussian random field: set.seed(2) data <- GeoSim(coordx=coords, corrmodel=corrmodel, param=param)$data fixed=list(nugget=0,mean=mean) start=list(scale=scale,sill=sill) # Least square fitting of the random field: fit <- GeoWLS(data=data,coordx=coords, corrmodel=corrmodel, fixed=fixed,start=start,maxdist=0.5) # Results: print(fit)
library(GeoModels) # Set the coordinates of the sites: set.seed(211) x <- runif(200, 0, 1) set.seed(98) y <- runif(200, 0, 1) coords <- cbind(x,y) ################################################################ ### ### Example 1. Least square fitting of a Gaussian random field ### with exponential correlation. ### ############################################################### # Set the model's parameters: corrmodel <- "Exponential" mean <- 0 sill <- 1 nugget <- 0 scale <- 0.15/3 param <- list(mean=0,sill=sill, nugget=nugget, scale=scale) # Simulation of the Gaussian random field: set.seed(2) data <- GeoSim(coordx=coords, corrmodel=corrmodel, param=param)$data fixed=list(nugget=0,mean=mean) start=list(scale=scale,sill=sill) # Least square fitting of the random field: fit <- GeoWLS(data=data,coordx=coords, corrmodel=corrmodel, fixed=fixed,start=start,maxdist=0.5) # Results: print(fit)
A ()-matrix containing spatial december average temperature (°C) observed
between 1970-2000 in Jamaica with associated UTM coordinates. The data has been retrieved using the package geodata
that allows to download climate data from WorldClim version 2.1.
UTM coordinates has been obtained using zone 18 and datum WGS84 and rescaled by 1000 to have distances in KM.
data(Jamaicatemp)
data(Jamaicatemp)
A numerical matrix of dimension .
Fick, S.E., Hijmans, R.J. (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315.
Subroutine called by GeoFit. The procedure estimates the model parameters by maximization of the log-likelihood.
Lik(copula,bivariate,coordx,coordy,coordt, coordx_dyn,corrmodel,data,fixed,flagcor,flagnuis, grid,lower,mdecomp,model,namescorr, namesnuis,namesparam,numcoord, numpairs,numparamcor,numtime,optimizer, onlyvar,parallel,param,radius,setup, spacetime,sparse,varest,taper,type, upper,ns,X,neighb,MM,aniso)
Lik(copula,bivariate,coordx,coordy,coordt, coordx_dyn,corrmodel,data,fixed,flagcor,flagnuis, grid,lower,mdecomp,model,namescorr, namesnuis,namesparam,numcoord, numpairs,numparamcor,numtime,optimizer, onlyvar,parallel,param,radius,setup, spacetime,sparse,varest,taper,type, upper,ns,X,neighb,MM,aniso)
copula |
String; the type of copula. It can be "Beta" or "Gaussian" |
bivariate |
Logical; if |
coordx |
A numeric ( |
coordy |
A numeric vector assigning 1-dimension of
spatial coordinates; |
coordt |
A numeric vector assigning 1-dimension of
temporal coordinates. Optional argument, the default is |
coordx_dyn |
A list of |
corrmodel |
Numeric; the id of the correlation model. |
data |
A numeric vector or a ( |
flagcor |
A numeric vector of flags denoting which correlation parameters have to be estimated. |
flagnuis |
A numeric verctor of flags denoting which nuisance parameters have to estimated. |
fixed |
A numeric vector of parameters that will be considered as known values. |
grid |
Logical; if |
lower |
An optional named list giving the values for the lower bound of the space parameter
when the optimizer is |
model |
Numeric; the id value of the density associated to the likelihood objects. |
namescorr |
String; the names of the correlation parameters. |
namesnuis |
String; the names of the nuisance parameters. |
namesparam |
String; the names of the parameters to be maximised. |
numcoord |
Numeric; the number of coordinates. |
numpairs |
Numeric; the number of pairs. |
numparamcor |
Numeric; the number of the correlation parameters. |
numtime |
Numeric; the number of temporal observations. |
mdecomp |
String; the type of matrix decomposition used in the simulation. Default is cholesky.
The other possible choices is |
optimizer |
String; the optimization algorithm
(see |
onlyvar |
Logical; if |
parallel |
Logical; if |
param |
A numeric vector of parameters. |
sparse |
Logical; if |
radius |
Numeric; the radius of the sphere when considering data on a sphere. |
ns |
Numeric: vector of number of location sites for each temporal instants |
setup |
A List of useful components for the estimation based on the maximum tapered likelihood. |
spacetime |
Logical; if the random field is spatial
( |
varest |
Logical; if |
taper |
String; the name of the taper correlation function. |
type |
String; the type of the likelihood objects. If |
upper |
An optional named list giving the values for the upper bound
of the space parameter when the optimizer is or |
X |
Numeric; Matrix of spatio(temporal)covariates in the linear mean specification. |
neighb |
Numeric;parameter for vecchia approximation using GPvecchia package |
MM |
Numeric;a non constant fixed mean |
aniso |
Logical; should anisotropy be considered? |
Return a list from an optim
call.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
A ()-matrix containing lon/lat coordinates
and soil ph in H20 at 300649 location sites in Madagascar at one meter depth over the period 2008–2014. Data obtained using the Geodata package with the function
soil_af
. For more info, see https://www.isric.org/projects/soil-property-maps-africa-250-m-resolution
data(madagascarph)
data(madagascarph)
A numerical matrix of dimension .
Hengl T, Heuvelink GBM, Kempen B, Leenaars JGB, Walsh MG, Shepherd KD, et al. (2015) Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. PLoS ONE 10(6): e0125814. doi:10.1371/journal.pone.0125814
Matrix decomposition.
MatDecomp(mtx, method)
MatDecomp(mtx, method)
mtx |
numeric; a square positive or semipositive definite matrix. |
method |
string; the type of matrix decomposition.
Two possible choices: |
Decomposition of a square positive or positive semidefinite matrix.
Return a matrix decomposition
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Square root, inverse and log determinant of a (semi)positive definite matrix, given a matrix decomposition.
MatSqrt(mat.decomp,method) MatInv(mtx) MatLogDet(mat.decomp,method)
MatSqrt(mat.decomp,method) MatInv(mtx) MatLogDet(mat.decomp,method)
mtx |
numeric; a squared symmetric positive definite matrix. |
mat.decomp |
numeric; a matrix decomposition. |
method |
string; the type of matrix decomposition. Two possible choices: |
The function returna a square root or inverse or log determinant of a (semi)positive definite matrix using the function in the FastGP package.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) ################################################################ ### ### Example 1. Inverse of Covariance matrix associated to ### a Matern correlation model ### ############################################################### # Define the spatial-coordinates of the points: x <- runif(15, 0, 1) y <- runif(15, 0, 1) coords <- cbind(x,y) # Matern Parameters param=list(smooth=0.5,sill=1,scale=0.2,nugget=0) a=matrix <- GeoCovmatrix(coordx=coords, corrmodel="Matern", param=param) ## decomposition with cholesky method b=MatDecomp(a$covmat,method="cholesky") ## inverse of covariance matrix inverse=MatInv(a$covmat)
library(GeoModels) ################################################################ ### ### Example 1. Inverse of Covariance matrix associated to ### a Matern correlation model ### ############################################################### # Define the spatial-coordinates of the points: x <- runif(15, 0, 1) y <- runif(15, 0, 1) coords <- cbind(x,y) # Matern Parameters param=list(smooth=0.5,sill=1,scale=0.2,nugget=0) a=matrix <- GeoCovmatrix(coordx=coords, corrmodel="Matern", param=param) ## decomposition with cholesky method b=MatDecomp(a$covmat,method="cholesky") ## inverse of covariance matrix inverse=MatInv(a$covmat)
The procedure returns a list with the nuisance parameters of a given random field model.
NuisParam(model, bivariate=FALSE,num_betas=c(1,1),copula=NULL)
NuisParam(model, bivariate=FALSE,num_betas=c(1,1),copula=NULL)
model |
String; the name of a random field. |
bivariate |
Logical; if |
num_betas |
Numerical; the nunber of mean parameters in the linear specification (default is 1) |
copula |
The type of copula. |
The function returns a list with the nuisance parameters of a given random field model.
Return a vector string of nuisance parameters.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
library(GeoModels) NuisParam("Gaussian") NuisParam("Binomial") NuisParam("Weibull",num_betas=2) NuisParam("SkewGaussian", num_betas=3) NuisParam("SinhAsinh") NuisParam("Beta2",copula="Clayton") NuisParam("StudentT") ## note that in the bivariate case sill and nugget are considered as correlation parameteres NuisParam("Gaussian", bivariate=TRUE)
library(GeoModels) NuisParam("Gaussian") NuisParam("Binomial") NuisParam("Weibull",num_betas=2) NuisParam("SkewGaussian", num_betas=3) NuisParam("SinhAsinh") NuisParam("Beta2",copula="Clayton") NuisParam("StudentT") ## note that in the bivariate case sill and nugget are considered as correlation parameteres NuisParam("Gaussian", bivariate=TRUE)
Internal function handling Nuisance Parameters of a Random Field.
NuisParam2(model, bivariate=FALSE,num_betas=c(1,1),copula=NULL)
NuisParam2(model, bivariate=FALSE,num_betas=c(1,1),copula=NULL)
model |
String; the name of a random field. |
bivariate |
Logical; if |
num_betas |
Numerical; the nunber of mean parameters in the linear specification (default is 1) |
copula |
The type of copula. |
The function returns a list with the nuisance parameters of a given random field model.
Return a vector string of nuisance parameters.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Plot Spatial and Spatio-temporal correlation or covariance of (non) Gaussian random fields
for a given set of spatial or spatiotemporal distances
GeoCorrFct
.
## S3 method for class 'GeoCorrFct' plot(x,type="p", ...)
## S3 method for class 'GeoCorrFct' plot(x,type="p", ...)
x |
an object of the class |
type |
The type of graphic. The possible options are "p" and "l". If "p" then a point type graphic is displayed. Otherwise a lines type graphic displayed. |
... |
Other graphical options arguments.
|
Plot Spatial and Spatio-temporal correlation or covariance of (non) Gaussian random fields
Produces a plot. No values are returned.
GeoCorrFct
for examples.
Plot empirical spatial, spatio-temporal and spatial bivariate semi-Variogram using
on object GeoVariogram
.
## S3 method for class 'GeoVariogram' plot(x, ...)
## S3 method for class 'GeoVariogram' plot(x, ...)
x |
an object of the class |
... |
other arguments to be passed to the function
|
This function plots empirical semi variogram in the spatial, spatio-temporal and spatial bivariate case
Produces a plot. No values are returned.
GeoVariogram
for variogram computation and examples.
Subroutine called by GeoSimapprox. The procedure return a simulation on a regular grid from a standard spatial Gaussian random field with a specified correlation model
SimCE(M,N,x,y,corrmodel,param,mean.val, max.ext)
SimCE(M,N,x,y,corrmodel,param,mean.val, max.ext)
M |
Numeric; the dimension of x |
N |
Numeric; the dimension of y |
x |
A numeric |
y |
A numeric |
corrmodel |
String; the name of a correlation model. |
param |
A list of parameter values required in the simulation procedure. |
mean.val |
The mean of the random field. |
max.ext |
The maximum extension of the simulation window. |
Return a list from an optim
call.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
Extracting information from an sp or spacetime object
sp2Geo(spobj,spdata = NULL)
sp2Geo(spobj,spdata = NULL)
spobj |
An object of class sp or spacetime |
spdata |
Character: The name of data in the sp or spacetime object |
The function accepts as input a sp or spacetime object and the name of the data of interest in the object and it returns a list with some useful informations for Geomodels functions.
A list with spatio-temporal informations
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
# Define the spatial-coordinates of the points: set.seed(3) N <- 30 # number of location sites x <- runif(N, 0, 1) set.seed(6) y <- runif(N, 0, 1) coords <- cbind(x,y) # Define spatial matrix covariates and regression parameters X <- cbind(rep(1,N),runif(N)) # Define spatial matrix dependent variable Y <- rnorm(nrow(X)) obj1 <- sp::SpatialPoints(coords) obj2 <- sp::SpatialPointsDataFrame(coords,data = data.frame(X,Y)) # sp2Geo info extraction b <- sp2Geo(obj2,spdata = "Y") class(b) b
# Define the spatial-coordinates of the points: set.seed(3) N <- 30 # number of location sites x <- runif(N, 0, 1) set.seed(6) y <- runif(N, 0, 1) coords <- cbind(x,y) # Define spatial matrix covariates and regression parameters X <- cbind(rep(1,N),runif(N)) # Define spatial matrix dependent variable Y <- rnorm(nrow(X)) obj1 <- sp::SpatialPoints(coords) obj2 <- sp::SpatialPointsDataFrame(coords,data = data.frame(X,Y)) # sp2Geo info extraction b <- sp2Geo(obj2,spdata = "Y") class(b) b
A ()-matrix containing lon/lat
and august monthly average wind speed (2 m above the ground, meter/second) registered at 6000 location sites in the Iberian peninsula.
Data obtained from WorldClim version 2.1
data(spanish_wind)
data(spanish_wind)
A numerical matrix of dimension .
Fick, S.E., Hijmans, R.J. (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315.
Subroutine called by the fitting procedures. The procedure initializes the parameters for the fitting procedure.
StartParam(coordx, coordy, coordt,coordx_dyn, corrmodel, data, distance, fcall, fixed, grid,likelihood, maxdist, neighb, maxtime, model, n, param, parscale, paramrange, radius, start, taper, tapsep, type,typereal,varest, vartype, weighted, winconst, winstp, winconst_t, winstp_t,copula,X,memdist,nosym)
StartParam(coordx, coordy, coordt,coordx_dyn, corrmodel, data, distance, fcall, fixed, grid,likelihood, maxdist, neighb, maxtime, model, n, param, parscale, paramrange, radius, start, taper, tapsep, type,typereal,varest, vartype, weighted, winconst, winstp, winconst_t, winstp_t,copula,X,memdist,nosym)
coordx |
A numeric ( |
coordy |
A numeric vector assigning 1-dimension of
coordinates; |
coordt |
A numeric vector assigning 1-dimension of temporal coordinates. |
coordx_dyn |
A list of |
corrmodel |
String; the name of a correlation model. |
data |
A numeric vector or a ( |
distance |
String; the name of the spatial distance. The default is |
fcall |
String; "fitting" to call the fitting procedure and "simulation" to call the simulation procedure. |
fixed |
A named list giving the values of the parameters that will be considered as known values. |
grid |
Logical; if |
likelihood |
String; the configuration of the composite likelihood. |
maxdist |
Numeric; an optional positive value indicating the maximum spatial distance considered in the composite-likelihood computation. |
neighb |
Numeric; an optional positive integer indicating the order of neighborhood in the composite likelihood computation. See the Section Details for more information. |
maxtime |
Numeric; an optional positive value indicating the maximum temporal lag considered in the composite-likelihood computation. |
radius |
Numeric; the radius of the sphere in the case of lon-lat coordinates. The default is 6371, the radius of the earth. |
model |
String; the density associated to the likelihood
objects. |
n |
Numeric; number of trials for binomial random fields. |
param |
A numeric vector of parameter values required in the simulation procedure of random fields. |
parscale |
A numeric vector of scaling factor to improve the
maximizing procedure, see |
paramrange |
A numeric vector of parameters ranges, see
|
start |
A named list with the initial values of the parameters that are used by the numerical routines in maximization procedure. |
taper |
String; the name of the type of covariance matrix.
It can be |
tapsep |
Numeric; an optional value indicating the separabe parameter in the space time adaptive taper (see Details). |
type |
String; the type of likelihood objects. Temporary value set to be "WLeastSquare" (weigthed least-square) in order to compute the starting values. |
typereal |
String; the real type of likelihood objects. See |
varest |
Logical; if |
vartype |
String; the type of estimation method for computing the estimate variances, see the Section Details. |
weighted |
Logical; if |
winconst |
Numeric; a positive value for computing the spatial sub-window in the sub-sampling procedure. |
winstp |
Numeric; a value in |
winconst_t |
Numeric; a positive value for computing the temporal sub-window in the sub-sampling procedure. |
winstp_t |
Numeric; a value in |
copula |
The type of copula. |
X |
Numeric; Matrix of space-time covariates. |
memdist |
Logical; if |
nosym |
Logical; if TRUE two simmetric weights are not considered |
Internal function called by WlsStart
.
A list with a set of useful informations in the estimation procedure.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano
A matrix containing daily wind speeds, in kilometers per hour, from 1961 to 1978 at 12 sites in Ireland
data(winds)
data(winds)
A ()-matrix containing wind speed observations.
Haslett, J. and Raftery, A. E. (1989), Space-time modelling with long-memory dependence: assessing Ireland's wind-power resource (with discussion), Applied Statistics, 38, 1–50.
A data frame containing information about the weather stations where the data are recorded in Ireland.
data(winds.coords)
data(winds.coords)
A data frame containing site - the name of the city (character), abbr - the abbrevation (character), elev - the elevation (numeric), lat - latitude (numeric) and lon - longitude.
Haslett, J. and Raftery, A. E. (1989), Space-time modelling with long-memory dependence: assessing Ireland's wind-power resource (with discussion), Applied Statistics, 38, 1–50.
Subroutine called by GeoFit. The function returns opportune starting values for the composite-likelihood fitting procedure based on weigthed least squares.
WlsStart(coordx, coordy, coordt, coordx_dyn, corrmodel, data, distance, fcall, fixed, grid,likelihood, maxdist, neighb,maxtime, model, n, param, parscale, paramrange, radius,start, taper, tapsep, type, varest, vartype, weighted, winconst,winconst_t, winstp_t, winstp,copula,X,memdist,nosym)
WlsStart(coordx, coordy, coordt, coordx_dyn, corrmodel, data, distance, fcall, fixed, grid,likelihood, maxdist, neighb,maxtime, model, n, param, parscale, paramrange, radius,start, taper, tapsep, type, varest, vartype, weighted, winconst,winconst_t, winstp_t, winstp,copula,X,memdist,nosym)
coordx |
A numeric ( |
coordy |
A numeric vector assigning 1-dimension of
coordinates; |
coordt |
A numeric vector assigning 1-dimension of temporal coordinates. |
coordx_dyn |
A list of |
corrmodel |
String; the name of a correlation model, for the description. |
data |
A numeric vector or a ( |
distance |
String; the name of the spatial distance. The default is |
fcall |
String; "fitting" to call the fitting procedure and "simulation" to call the simulation procedure. |
fixed |
A named list giving the values of the parameters that will be considered as known values. |
grid |
Logical; if |
likelihood |
String; the configuration of the composite likelihood. |
maxdist |
Numeric; an optional positive value indicating the maximum spatial distance considered in the composite-likelihood computation. |
neighb |
Numeric; an optional positive integer indicating the order of neighborhood in the composite likelihood computation. See the Section Details for more information. |
maxtime |
Numeric; an optional positive value indicating the maximum temporal separation considered in the composite-likelihood computation. |
model |
String; the name of the model. Here the default is
|
n |
Numeric; number of trials in a binomial random field. |
param |
A numeric vector of parameter values required in the simulation procedure of random fields. |
parscale |
A numeric vector with scaling values for improving the maximisation routine. |
paramrange |
A numeric vector with the range of the parameter space. |
radius |
Numeric; a value indicating the radius of the sphere when using the great circle distance. Default value is the radius of the earth in Km (i.e. 6371) |
start |
A numeric vector with starting values. |
taper |
String; the name of the type of covariance matrix.
It can be |
tapsep |
Numeric; an optional value indicating the separabe parameter in the space time quasi taper (see Details). |
type |
String; the type of estimation method. |
varest |
Logical; if |
vartype |
String; the type of estimation method for computing the estimate variances, see the Section Details. |
weighted |
Logical; if |
winconst |
Numeric; a positive value for computing the spatial sub-window in the sub-sampling procedure. |
winstp |
Numeric; a value in |
winconst_t |
Numeric; a positive value for computing the temporal sub-window in the sub-sampling procedure. |
winstp_t |
Numeric; a value in |
copula |
The type of copula. |
X |
Numeric; Matrix of spatio(temporal)covariates in the linear mean specification. |
memdist |
Logical; if |
nosym |
Logical; if TRUE two simmetric weights are not considered |
Internal function called by GeoFit
.
A list with a set of useful informations in the estimation procedure.
Moreno Bevilacqua, [email protected],https://sites.google.com/view/moreno-bevilacqua/home, Víctor Morales Oñate, [email protected], https://sites.google.com/site/moralesonatevictor/, Christian", Caamaño-Carrillo, [email protected],https://www.researchgate.net/profile/Christian-Caamano