This vignette illustrates the design of a Data Fusion system using the GeoFIS R package.
See Data fusion documentation for more details about concepts of data fusion.
The example is an agronomic case study detailed in “A fuzzy logic based soil chemical quality index for cacao” (Mora-Herrera et al. 2020).
The data fusion process accepts input dataset of class data.frame
or Spatial*DataFrame
of the sp R
package.
Only the numeric attributes of the dataset can be
used.
In this example we use the tolima
dataset available in
the GeoFIS R package (Mora-Herrera et al.
2020):
The aggregation system is built as a tree, based on the data.tree R package.
Each aggregation node can also be used as an input for another aggregation step, yielding a hierarchical structure.
The goal of this step is to turn raw data of individual information
sources into satisfaction degrees.
The NewFusionInput
function that builds an input leaf for the aggregation system takes 3
parameters:
NewMfTrapezoidalInf
: low values are preferred.NewMfTrapezoidalSup
: high values are preferred.NewMfTrapezoidal
: around an interval.NewMfTriangular
: about a value.The goal of this step is to summarize the inputs satisfaction degrees into a single one through an aggregation operator.
The NewFusionAggreg
function that builds the aggregation
node takes several parameters:
In the GeoFIS R package, 4 aggregation operators are implemented:
NewAggregWam
build a WAM operator with the specified
weights.NewAggregOwa
build an OWA operator with the specified
weights.NewAggregFis
build a linguistic rule-based operator
based on a Fuzzy Inference System (Fis), a Fis
object of FisPro R
package.
The Fis can be built with the FisPro software or with the
NewFisFusion
function.
The NewFisFusion
function helps to generate a Fis and
take 5 parameters:
FisOutCrisp
output will be added to the Fis.FisOutFuzzy
output will be added to the Fis.NewAggregFunction
build an operator based on a
function.
The function must accepts a numeric vector as parameter,
e.g. mean
function or user-defined function.
In this application example (Mora-Herrera et al. 2020), we build a hierarchical system with 8 inputs, 2 rule-based aggregation nodes and 1 WAM node.
The inputs:
potassium <- NewFusionInput("K", NewMfTrapezoidalSup(0.2, 0.6))
phosphorus <- NewFusionInput("P", NewMfTrapezoidalSup(5, 15))
balance_gap <- NewFusionInput("Bal_Gap", NewMfTrapezoidalInf(0, 0.5), "BalanceGap")
n_gap <- NewFusionInput("N_Gap", NewMfTriangular(0.5, 1, 1.5), "Ngap_N_OpN")
base_sat <- NewFusionInput("Base_Sat", NewMfTrapezoidalSup(0.4, 0.6), "Base_S")
org_matter <- NewFusionInput("OM", NewMfTrapezoidalSup(3, 5))
ph <- NewFusionInput("pH", NewMfTrapezoidal(5, 5.5, 6.5, 7.5))
cadmium <- NewFusionInput("Cd", NewMfTrapezoidalInf(0, 0.43), "Cadmium")
The Macronutrients rulebase:
macronutrients_fis <- NewFisFusion(
"MacN", # Fis name
c("Bal_Gap", "K", "P", "N_Gap", "Base_Sat"), # Fis inputs names
c(2, 2, 2, 2, 2), # Fis inputs granularities
"MacN", # Fis output name
c(
0, 0.1, 0.15, 0.2, 0.25, 0.35, 0.4, 0.45,
0.3, 0.4, 0.45, 0.5, 0.55, 0.65, 0.7, 0.75,
0.4, 0.3, 0.4, 0.45, 0.5, 0.55, 0.65, 0.7,
0.55, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 1
) # Fis conclusions
)
Print the Macronutrients rulebase:
print(macronutrients_fis)
#> name = "MacN"
#> nb inputs = 5
#> nb outputs = 1
#> nb rules = 32
#> conjunction = "min"
#>
#> [input 1]
#> name = "Bal_Gap"
#> range = [0, 1]
#> mf1 = mf_trapezoidal_inf("low", 0, 1)
#> mf2 = mf_trapezoidal_sup("high", 0, 1)
#>
#> [input 2]
#> name = "K"
#> range = [0, 1]
#> mf1 = mf_trapezoidal_inf("low", 0, 1)
#> mf2 = mf_trapezoidal_sup("high", 0, 1)
#>
#> [input 3]
#> name = "P"
#> range = [0, 1]
#> mf1 = mf_trapezoidal_inf("low", 0, 1)
#> mf2 = mf_trapezoidal_sup("high", 0, 1)
#>
#> [input 4]
#> name = "N_Gap"
#> range = [0, 1]
#> mf1 = mf_trapezoidal_inf("low", 0, 1)
#> mf2 = mf_trapezoidal_sup("high", 0, 1)
#>
#> [input 5]
#> name = "Base_Sat"
#> range = [0, 1]
#> mf1 = mf_trapezoidal_inf("low", 0, 1)
#> mf2 = mf_trapezoidal_sup("high", 0, 1)
#>
#> [output 1]
#> name = "MacN"
#> nature = "crisp"
#> range = [0, 1]
#> defuzzification = sugeno
#> disjunction = max
#>
#> [Rules]
#> 1, 1, 1, 1, 1, 0
#> 1, 1, 1, 1, 2, 0.1
#> 1, 1, 1, 2, 1, 0.15
#> 1, 1, 1, 2, 2, 0.2
#> 1, 1, 2, 1, 1, 0.25
#> 1, 1, 2, 1, 2, 0.35
#> 1, 1, 2, 2, 1, 0.4
#> 1, 1, 2, 2, 2, 0.45
#> 1, 2, 1, 1, 1, 0.3
#> 1, 2, 1, 1, 2, 0.4
#> 1, 2, 1, 2, 1, 0.45
#> 1, 2, 1, 2, 2, 0.5
#> 1, 2, 2, 1, 1, 0.55
#> 1, 2, 2, 1, 2, 0.65
#> 1, 2, 2, 2, 1, 0.7
#> 1, 2, 2, 2, 2, 0.75
#> 2, 1, 1, 1, 1, 0.4
#> 2, 1, 1, 1, 2, 0.3
#> 2, 1, 1, 2, 1, 0.4
#> 2, 1, 1, 2, 2, 0.45
#> 2, 1, 2, 1, 1, 0.5
#> 2, 1, 2, 1, 2, 0.55
#> 2, 1, 2, 2, 1, 0.65
#> 2, 1, 2, 2, 2, 0.7
#> 2, 2, 1, 1, 1, 0.55
#> 2, 2, 1, 1, 2, 0.6
#> 2, 2, 1, 2, 1, 0.7
#> 2, 2, 1, 2, 2, 0.75
#> 2, 2, 2, 1, 1, 0.8
#> 2, 2, 2, 1, 2, 0.85
#> 2, 2, 2, 2, 1, 0.9
#> 2, 2, 2, 2, 2, 1
The Macronutrients aggregation node:
macronutrients_aggreg <- NewFusionAggreg(
"MacN",
NewAggregFis(macronutrients_fis),
balance_gap, potassium, phosphorus, n_gap, base_sat
)
The Soil Nutritional Balance rulebase:
nutri_balance_fis <- NewFisFusion(
"Nutri_Bal", # Fis name
c("pH", "OM", "MacN"), # Fis inputs names
c(2, 2, 2), # Fis inputs granularities
"Nutri_Bal", # Fis output name
c(0, 0.2, 0.3, 0.5, 0.4, 0.6, 0.7, 1.0) # Fis conclusions
)
Print the Macronutrients rulebase:
print(nutri_balance_fis)
#> name = "Nutri_Bal"
#> nb inputs = 3
#> nb outputs = 1
#> nb rules = 8
#> conjunction = "min"
#>
#> [input 1]
#> name = "pH"
#> range = [0, 1]
#> mf1 = mf_trapezoidal_inf("low", 0, 1)
#> mf2 = mf_trapezoidal_sup("high", 0, 1)
#>
#> [input 2]
#> name = "OM"
#> range = [0, 1]
#> mf1 = mf_trapezoidal_inf("low", 0, 1)
#> mf2 = mf_trapezoidal_sup("high", 0, 1)
#>
#> [input 3]
#> name = "MacN"
#> range = [0, 1]
#> mf1 = mf_trapezoidal_inf("low", 0, 1)
#> mf2 = mf_trapezoidal_sup("high", 0, 1)
#>
#> [output 1]
#> name = "Nutri_Bal"
#> nature = "crisp"
#> range = [0, 1]
#> defuzzification = sugeno
#> disjunction = max
#>
#> [Rules]
#> 1, 1, 1, 0
#> 1, 1, 2, 0.2
#> 1, 2, 1, 0.3
#> 1, 2, 2, 0.5
#> 2, 1, 1, 0.4
#> 2, 1, 2, 0.6
#> 2, 2, 1, 0.7
#> 2, 2, 2, 1
The Soil Nutritional aggregation node:
nutri_balance_aggreg <- NewFusionAggreg(
"Nutri_Bal",
NewAggregFis(nutri_balance_fis),
ph, org_matter, macronutrients_aggreg
)
The Chemical aggregation node:
chemical_aggreg <- NewFusionAggreg(
"Chemical",
NewAggregWam(weights = c(0.3, 0.7)),
cadmium, nutri_balance_aggreg
)
Print the Chemical aggregation tree with aggregation operators and input leafs:
print(chemical_aggreg, "aggreg", "mf")
#> levelName aggreg mf
#> 1 Chemical wam(0.3, 0.7)
#> 2 ¦--Cd mf_trapezoidal_inf("", 0, 0.43)
#> 3 °--Nutri_Bal fis("Nutri_Bal", 1)
#> 4 ¦--pH mf_trapezoidal("", 5, 5.5, 6.5, 7.5)
#> 5 ¦--OM mf_trapezoidal_sup("", 3, 5)
#> 6 °--MacN fis("MacN", 1)
#> 7 ¦--Bal_Gap mf_trapezoidal_inf("", 0, 0.5)
#> 8 ¦--K mf_trapezoidal_sup("", 0.2, 0.6)
#> 9 ¦--P mf_trapezoidal_sup("", 5, 15)
#> 10 ¦--N_Gap mf_triangular("", 0.5, 1, 1.5)
#> 11 °--Base_Sat mf_trapezoidal_sup("", 0.4, 0.6)
Use the chemical_aggreg as the root node of the Data Fusion system:
Perform the Data Fusion process and read output:
The output data frame contains all satisfaction degrees of inputs leafs, the aggregation value of all nodes, defined into the aggregation system.
print(output, digits = 2)
#> Chemical Cd Nutri_Bal pH OM MacN Bal_Gap K P N_Gap Base_Sat
#> 1 0.46 0.00 0.655 0.50 1.00 0.70 0.44 0.728 1.000 0.68 1.0
#> 2 0.41 0.00 0.586 0.76 0.87 0.41 0.63 0.382 0.000 0.56 1.0
#> 3 0.47 0.47 0.467 1.00 0.00 0.34 0.62 0.127 0.000 0.43 1.0
#> 4 0.37 0.00 0.534 1.00 0.00 0.67 0.61 1.000 0.258 0.68 1.0
#> 5 0.77 1.00 0.675 1.00 0.52 0.47 0.75 0.728 0.000 0.62 1.0
#> 6 0.70 0.54 0.770 1.00 0.86 0.48 0.77 0.728 0.000 0.75 1.0
#> 7 0.65 0.65 0.652 1.00 0.35 0.56 0.70 1.000 0.000 0.15 1.0
#> 8 0.55 0.53 0.555 1.00 0.00 0.77 0.61 1.000 1.000 0.00 1.0
#> 9 0.42 0.68 0.309 0.60 0.00 0.38 0.77 0.190 0.000 0.33 1.0
#> 10 0.67 1.00 0.523 1.00 0.00 0.61 0.90 1.000 0.000 0.31 1.0
#> 11 0.44 0.89 0.239 0.38 0.00 0.27 0.74 0.012 0.000 0.10 1.0
#> 12 0.33 0.82 0.120 0.00 0.00 0.60 0.82 0.280 0.321 1.00 1.0
#> 13 0.29 0.58 0.164 0.10 0.00 0.48 0.71 0.448 0.111 0.64 1.0
#> 14 0.47 0.41 0.491 1.00 0.00 0.46 0.43 0.215 0.760 0.00 1.0
#> 15 0.60 0.88 0.487 1.00 0.00 0.43 0.67 0.407 0.075 0.12 1.0
#> 16 0.82 0.71 0.864 1.00 1.00 0.55 0.78 0.100 1.000 0.00 1.0
#> 17 0.53 0.90 0.371 0.30 0.16 0.68 0.68 0.292 1.000 0.81 1.0
#> 18 0.28 0.79 0.061 0.00 0.00 0.31 0.85 0.000 0.125 0.00 1.0
#> 19 0.30 0.81 0.084 0.00 0.00 0.42 0.90 0.140 0.000 0.86 0.4
#> 20 0.05 0.00 0.072 0.00 0.00 0.36 0.66 0.000 0.293 0.32 1.0
#> 21 0.48 0.74 0.368 0.00 1.00 0.34 0.94 0.165 0.000 0.00 1.0
#> 22 0.60 0.60 0.598 0.34 1.00 0.64 0.52 1.000 0.560 0.00 1.0
#> 23 0.43 0.41 0.442 0.00 1.00 0.71 0.97 1.000 0.485 0.00 1.0
#> 24 0.48 0.78 0.356 0.00 1.00 0.28 0.81 0.040 0.000 0.00 1.0
#> 25 0.49 0.65 0.423 0.00 1.00 0.62 0.78 1.000 0.223 0.00 1.0
#> 26 0.68 0.84 0.613 0.52 1.00 0.38 0.94 0.330 0.000 0.00 1.0
#> 27 0.30 0.72 0.114 0.08 0.00 0.26 0.36 0.000 0.000 0.80 1.0
#> 28 0.62 0.71 0.583 0.44 1.00 0.32 0.37 0.407 0.000 0.00 1.0
#> 29 0.52 0.40 0.575 0.92 0.24 0.75 0.89 1.000 0.321 0.82 1.0
#> 30 0.60 0.88 0.480 0.46 0.83 0.22 0.59 0.000 0.000 0.03 1.0
To model the decision maker preferences, the parameters of the
aggregation operator can be learned from data. The user must in this
case provide an additional target, for each sample.
The rule conclusions of a FIS operator can be optimized using the FisPro software, the reader may refer
to the specific documentation Learning with
FisPro.
The weights of the WAM and the OWA can be learned using a least square minimization procedure under two constraints for the weights: they must be positive and their sum should be 1. The process is illustrated using a toy example, the fusion_cars dataset, but it was also applied to the previously mentioned tolima dataset (Mora-Herrera et al. 2020).
The fusion_cars data include four cars (from 1 to 4) described by four attributes:
The ideal vehicle should minimize A and C while maximizing V and S. The dataset is as follows:
data(fusion_cars)
print(fusion_cars)
#> A V S C
#> 1 8.8 380 190 9
#> 2 12.0 460 190 9
#> 3 8.8 380 170 7
#> 4 7.2 340 200 10
To turn the raw data into preference degrees, the following transformation data are used:
a <- NewFusionInput("µA", NewMfTrapezoidalInf(4, 20), "A")
v <- NewFusionInput("µV", NewMfTrapezoidalSup(100, 500), "V")
s <- NewFusionInput("µS", NewMfTrapezoidalSup(120, 220), "S")
c <- NewFusionInput("µC", NewMfTrapezoidalInf(6, 16), "C")
This yields the following degrees:
fusion <- NewFusion(fusion_cars)
fusion$aggregate <- list(a, v, s, c)
fusion$perform()
degrees <- fusion$output()
print(degrees)
#> µA µV µS µC
#> 1 0.7 0.7 0.7 0.7
#> 2 0.5 0.9 0.7 0.7
#> 3 0.7 0.7 0.5 0.9
#> 4 0.8 0.6 0.8 0.6
The first vehicle, which represents a good trade-off, is preferred to the others. This preference can modeled by any target with the highest value in the first location, for example:
or by the binary following one, that is used in this example:
The WAM learning gives the following results:
with inferred values:
wam_aggreg <- NewFusionAggreg("wam", NewAggregWam(wam_weights), a, v, s, c)
fusion$aggregate <- wam_aggreg
fusion$perform()
wam_inferred <- fusion$output()["wam"]
print(wam_inferred)
#> wam
#> 1 0.7
#> 2 0.6
#> 3 0.6
#> 4 0.8
The result is not the expected one, the car ‘4’ has the highest score, the preferred car ‘1’ is ranked second: the WAM operator is not able to model the compromise
The OWA learning gives the following results:
In this toy example, the OWA aggregator returns the minimum: the whole weight is put on the smallest degree. This ensures that the decision maker preference is accurately modeled: