Package 'Gammareg'

Title: Classic Gamma Regression: Joint Modeling of Mean and Shape Parameters
Description: Performs Gamma regression, where both mean and shape parameters follows lineal regression structures.
Authors: Martha Corrales and Edilberto Cepeda-Cuervo, with the colaboration of Margarita Marin, Maria Fernanda Zarate, Ricardo Duplat and Campo Elias Pardo.
Maintainer: Martha Corrales <[email protected]>
License: GPL (>= 2)
Version: 3.0.1
Built: 2024-12-09 06:31:13 UTC
Source: CRAN

Help Index


classic gamma regression: joint modeling of mean and shape parameters

Description

Classic gamma regression package

Details

Package: Gammareg
Type: Package
Version: 1.1
Date: 2014-01-23
License: GPL-2
LazyLoad: yes

Author(s)

Martha Corrales and Edilberto Cepeda-Cuervo with the colaboration of Maria Fernanda Zarate, Ricardo Duplat and Campo Elias Pardo.


Classic gamma regression. Log link for the mean

Description

Performs the Classic Gamma Regression for joint modeling of mean and shape parameters.

Usage

gammahetero1(formula1, formula2)

Arguments

formula1

object of class formula. It describes yi and xi for the mean equation of the gamma regression.

formula2

object of class formula. It describes zi for the shape equation of the gamma regression.

Details

The classic gamma regression allow the joint modeling of mean and shape parameters of a gamma distributed variable, as is proposed in Cepeda (2001), using the Fisher Scoring algorithm, with log link for the mean and log link for the shape.

Value

object of class Gammareg with the following:

X

object of class matrix, with the variables for modelling the mean.

Z

object of class matrix, with the variables for modelling the shape.

beta

object of class matrix with the estimated coefficients of beta.

gamma

object of class matrix with the estimated coefficients of gamma.

ICB

object of class matrix with the estimated confidence intervals of beta.

ICG

object of class matrix with the estimated confidence intervals of gamma.

CovarianceMatrixbeta

object of class matrix with the estimated covariances of beta.

CovarianceMatrixgamma

object of class matrix with the estimated covariances of gamma.

AIC

the AIC criteria.

iteration

numbers of iterations to convergence.

convergence

value of convergence obtained.

Author(s)

Martha Corrales [email protected] Edilberto Cepeda-Cuervo [email protected]

References

1. Cepeda-Cuervo, E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matemáticas. Universidade Federal do Río do Janeiro. //http://www.docentes.unal.edu.co/ecepedac/docs/MODELAGEM20DA20VARIABILIDADE.pdf. http://www.bdigital.unal.edu.co/9394/. 2. McCullagh, P. and Nelder, N.A. (1989). Generalized Linear Models. Second Edition. Chapman and Hall.

Examples

# Simulation Example

X1 <- rep(1,500)
X2 <- log(runif(500,0,30))
X3 <- log(runif(500,0,15))
X4 <- log(runif(500,10,20))
mui <- exp(-5 + 0.2*X2 - 0.03*X3)
alphai <- exp(0.2 + 0.1*X2 + 0.3*X4)
Y <- rgamma(500,shape=alphai,scale=mui/alphai)
X <- cbind(X1,X2,X3)
Z <- cbind(X1,X2,X4)
formula.mean= Y~X2+X3
formula.shape= ~X2+X4
a=gammahetero1(formula.mean,formula.shape)
a

Classic gamma regression. Identity link for the mean

Description

Performs the Classic Gamma Regression for joint modeling of mean and shape parameters.

Usage

gammahetero2(formula1, formula2)

Arguments

formula1

object of class formula. It describes yi and xi for the mean equation of the gamma regression.

formula2

object of class formula. It describes zi for the shape equation of the gamma regression.

Details

The classic gamma regression allow the joint modeling of mean and shape parameters of a gamma distributed variable, as is proposed in Cepeda (2001), using the Fisher Scoring algorithm, with log link for the mean and log link for the shape.

Value

object of class Gammareg with the following:

X

object of class matrix, with the variables for modelling the mean.

Z

object of class matrix, with the variables for modelling the shape.

beta

object of class matrix with the estimated coefficients of beta.

gamma

object of class matrix with the estimated coefficients of gamma.

ICB

object of class matrix with the estimated confidence intervals of beta.

ICG

object of class matrix with the estimated confidence intervals of gamma.

CovarianceMatrixbeta

object of class matrix with the estimated covariances of beta.

CovarianceMatrixgamma

object of class matrix with the estimated covariances of gamma.

AIC

the AIC criteria

iteration

numbers of iterations to convergence

convergence

value of convergence obtained

Author(s)

Martha Corrales [email protected] Edilberto Cepeda-Cuervo [email protected],

References

1. Cepeda-Cuervo, E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matemáticas. Universidade Federal do Río do Janeiro. //http://www.docentes.unal.edu.co/ecepedac/docs/MODELAGEM20DA20VARIABILIDADE.pdf. http://www.bdigital.unal.edu.co/9394/. 2. McCullagh, P. and Nelder, N.A. (1989). Generalized Linear Models. Second Edition. Chapman and Hall.

Examples

# Simulation Example

X1 <- rep(1,500)
X2 <- runif(500,0,30)
X3 <- runif(500,0,15)
X4 <- runif(500,10,20)
mui <- 15 + 2*X2 + 3*X3
alphai <- exp(0.2 + 0.1*X2 + 0.3*X4)
Y <- rgamma(500,shape=alphai,scale=mui/alphai)
X <- cbind(X1,X2,X3)
Z <- cbind(X1,X2,X4)
formula.mean= Y~X2+X3
formula.shape= ~X2+X4
a=gammahetero2(formula.mean,formula.shape)
a

Gammareg

Description

Function to do Classic Gamma Regression: joint mean and shape modeling

Usage

Gammareg(formula1,formula2,meanlink)

Arguments

formula1

object of class matrix, with the dependent variable.

formula2

object of class matrix, with the variables for modelling the mean.

meanlink

links for the mean. The default links is the link log. The link identity is also allowed as admisible value.

Details

The classic gamma regression allow the joint modelling of mean and shape parameters of a gamma distributed variable, as is proposed in Cepeda (2001), using the Fisher Socring algorithm, with two differentes link for the mean: log and identity, and log link for the shape.

Value

object of class bayesbetareg with:

coefficients

object of class matrix with the estimated coefficients of beta and gamma.

desvB

object of class matrix with the estimated covariances of beta.

desvG

object of class matrix with the estimated covariances of gamma.

interv

object of class matrix with the estimated confidence intervals of beta and gamma.

AIC

the AIC criteria.

iteration

numbers of iterations to convergence.

convergence

value of convergence obtained.

call

Call.

Author(s)

Martha Corrales [email protected] Edilberto Cepeda-Cuervo [email protected]

References

1. Cepeda-Cuervo, E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matemáticas. Universidade Federal do Río do Janeiro. //http://www.docentes.unal.edu.co/ecepedac/docs/MODELAGEM20DA20VARIABILIDADE.pdf. http://www.bdigital.unal.edu.co/9394/. 2. McCullagh, P. and Nelder, N.A. (1989). Generalized Linear Models. Second Edition. Chapman and Hall.

Examples

# 

num.killed <- c(7,59,115,149,178,229,5,43,76,4,57,83,6,57,84)
size.sam <- c(1,2,3,3,3,3,rep(1,9))*100
insecticide <- c(4,5,8,10,15,20,2,5,10,2,5,10,2,5,10)
insecticide.2 <- insecticide^2
synergist <- c(rep(0,6),rep(3.9,3),rep(19.5,3),rep(39,3))

par(mfrow=c(2,2))
plot(density(num.killed/size.sam),main="")
boxplot(num.killed/size.sam)
plot(insecticide,num.killed/size.sam)
plot(synergist,num.killed/size.sam)


mean.for  <- (num.killed/size.sam) ~ insecticide  + insecticide.2
dis.for <-  ~ synergist + insecticide

res=Gammareg(mean.for,dis.for,meanlink="ide")

summary(glm((num.killed/size.sam) ~ insecticide  + insecticide.2,family=Gamma("log")))
summary(res)

# Simulation Example

X1 <- rep(1,500)
X2 <- runif(500,0,30)
X3 <- runif(500,0,15)
X4 <- runif(500,10,20)
mui <- 15 + 2*X2 + 3*X3
alphai <- exp(0.2 + 0.1*X2 + 0.3*X4)
Y <- rgamma(500,shape=alphai,scale=mui/alphai)
X <- cbind(X1,X2,X3)
Z <- cbind(X1,X2,X4)
formula.mean= Y~X2+X3
formula.shape= ~X2+X4
a=Gammareg(formula.mean,formula.shape,meanlink="ide")
summary(a)

print the Classic gamma regression

Description

Print the Classic Gamma Regression for joint modeling of mean and shape parameters.

Usage

## S3 method for class 'Gammareg'
print(x,...)

Arguments

x

object of class Gammareg

...

not used.

Value

print the Classic gamma regression

Author(s)

Martha Corrales [email protected] Edilberto Cepeda-Cuervo [email protected]

References

1. Cepeda-Cuervo, E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matemáticas. Universidade Federal do Río do Janeiro. //http://www.docentes.unal.edu.co/ecepedac/docs/MODELAGEM20DA20VARIABILIDADE.pdf. http://www.bdigital.unal.edu.co/9394/. 2. McCullagh, P. and Nelder, N.A. (1989). Generalized Linear Models. Second Edition. Chapman and Hall.


print the summary of the Classic gamma regression

Description

Print the summary Classic Gamma Regression for joint modelling of mean and shape parameters.

Usage

## S3 method for class 'summary.Gammareg'
print(x, ...)

Arguments

x

object of class Gammareg

...

not used.

Value

Print the summary Classic Gamma Regression for joint modelling of mean and shape parameters.

Author(s)

Martha Corrales [email protected] Edilberto Cepeda-Cuervo [email protected]

References

1. Cepeda-Cuervo E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matemáticas. Universidade Federal do Río do Janeiro. //http://www.docentes.unal.edu.co/ecepedac/docs/MODELAGEM20DA20VARIABILIDADE.pdf. http://www.bdigital.unal.edu.co/9394/. 2. McCullagh, P. and Nelder, N.A. (1989). Generalized Linear Models. Second Edition. Chapman and Hall.


Print the Classic gamma regression

Description

Summarized the Classic gamma regression for joint modelling of mean and shape parameters.

Usage

## S3 method for class 'Gammareg'
summary(object, ...)

Arguments

object

an object of class Gammareg

...

not used.

Value

call

Call

coefficients

Coefficients

covB

object of class matrix with the estimated covariances of beta.

covG

object of class matrix with the estimated covariances of gamma.

AIC

AIC

iteration

number of iterations

convergence

convergence obtained

Author(s)

Martha Corrales [email protected] Edilberto Cepeda-Cuervo [email protected]

References

1. Cepeda-Cuervo, E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matemáticas. Universidade Federal do Río do Janeiro. //http://www.docentes.unal.edu.co/ecepedac/docs/MODELAGEM20DA20VARIABILIDADE.pdf. http://www.bdigital.unal.edu.co/9394/. 2. McCullagh, P. and Nelder, N.A. (1989). Generalized Linear Models. Second Edition. Chapman and Hall.