Package 'GSAfisherCombined'

Title: Gene Set Analysis with Fisher Combined Method
Description: Provides the p-value for a joint test of association between a phenotype and a set of genetic variants (SNPs) by combining marginal p-values using the Fisher method. See Fisher, R.A. (1925,ISBN:0-05-002170-2) Statistical Methods for Research Workers.
Authors: Carlos Garcia Prieto
Maintainer: Carlos Garcia Prieto <[email protected]>
License: GPL (>= 2)
Version: 1.0
Built: 2024-11-05 06:41:23 UTC
Source: CRAN

Help Index


Gene Set Analysis with Fisher Combined Method

Description

Provides the p-value for a joint test of association between a phenotype and a set of genetic variants (SNPs) by combining marginal p-values using the Fisher method. See Fisher, R.A. (1925,ISBN:0-05-002170-2) Statistical Methods for Research Workers.

Details

Package: GSAfisherCombined Type: Package Version: 1.0 Date: 2018-02-10 License: GPL (>= 2)

Author(s)

Carlos Garcia Prieto

Maintainer: Carlos Garcia Prieto <[email protected]>

References

Fisher, R.A. (1925). Statistical Methods for Research Workers. ISBN 0-05-002170-2.


GSAfisher

Description

It is a generic function that dispatches different methods. It provides the p-value for a joint test of association between a phenotype and a set of genetic variants (SNPs) by combining marginal p-values using the Fisher method.

Usage

GSAfisher(x,...)

Arguments

x

Set of marginal p-values.

...

Further arguments passed to other methods.

Details

Use methods("GSAfisher") to get all the methods for the GSAfisher generic.

Value

UseMethod("GSAfisher")

Author(s)

Carlos Garcia Prieto

References

Fisher, R.A. (1925). Statistical Methods for Research Workers. ISBN 0-05-002170-2.


GSAfisher.default

Description

Default method of GSAfisher function that computes the p-value for a joint test of association between a phenotype and a set of genetic variants (SNPs) by combining marginal p-values using the Fisher method.

Usage

## Default S3 method:
GSAfisher(x,...)

Arguments

x

Numeric set of marginal p-values (one vector or a sinlge p-value).

...

Further arguments passed to or from other methods.

Value

p

Fisher method combined p-value.

Author(s)

Carlos Garcia Prieto

References

Fisher, R.A. (1925). Statistical Methods for Research Workers. ISBN 0-05-002170-2.

Examples

#Generate 1000 random values from an Uniform distribution U (0, 0.25). 
x<-runif(1000, 0, 0.25)
#Apply the GSAfisher.default function to this data vector.
GSAfisher(x)

GSAfisher.multiple

Description

Multiple method of GSAfisher function that computes the p-value for a joint test of association between a phenotype and multiple gene-sets of genetic variants (SNPs) by combining multiple marginal p-values data vectors using the Fisher method.

Usage

## S3 method for class 'multiple'
GSAfisher(...)

Arguments

...

Set of multiple marginal p-values data vectors or matrix.

Value

p.multiple

Set of multiple Fisher method combined p-values for each data vector.

Author(s)

Carlos Garcia Prieto

Examples

#Generate 3 vectors with 1000 random values from an Uniform distribution U (0, 0.25). 
data.vector1<-runif(1000, 0, 0.25)
data.vector2<-runif(1000, 0, 0.25)
data.vector3<-runif(1000, 0, 0.25)
#Set data class to "multiple".
class(data.vector1)<-"multiple"
#Apply the GSAfisher.multiple function to these data vectors.
GSAfisher(data.vector1, data.vector2, data.vector3)

#You can also try:
#Generate 5000 vectors with 1000 random values from an Uniform distribution U(0,0.25).
data.vectors<-sapply(1:5000, function (x) runif(1000, 0, 0.25))
#Set data class to "multiple".
class(data.vectors)<-"multiple"
#Apply the GSAfisher.multiple function to these data vectors.
GSAfisher(data.vectors)

GSAfisher.plot

Description

Plot method of GSAfisher function that plots the p-values for a joint test of association between a phenotype and multiple gene-sets of genetic variants (SNPs) by combining multiple marginal p-values data vectors using the Fisher method.

Usage

## S3 method for class 'plot'
GSAfisher(...)

Arguments

...

Set of multiple marginal p-values data vectors or matrix.

Value

plot.p.multiple

Plot of a set of multiple Fisher method combined p-values for each data vector.

Author(s)

Carlos Garcia Prieto

Examples

#Generate 3 vectors with 1000 random values from an Uniform distribution U(0, 0.25). 
data.vector1<-runif(1000, 0, 0.25)
data.vector2<-runif(1000, 0, 0.25)
data.vector3<-runif(1000, 0, 0.25)
#Set data class to "plot".
class(data.vector1)<-"plot"
#Apply the GSAfisher.plot function to these data vectors.
GSAfisher(data.vector1, data.vector2, data.vector3)

#You can also try:
#Generate 5000 vectors with 1000 random values from an Uniform distribution U(0,0.25).
data.vectors<-sapply(1:5000, function (x) runif(1000, 0, 0.25))
#Set data class to "plot".
class(data.vectors)<-"plot"
#Apply the GSAfisher.plot function to these data vectors.
GSAfisher(data.vectors)

GSAfisher.print

Description

Print method of GSAfisher function that computes the p-value for a joint test of association between a phenotype and a set of genetic variants (SNPs) by combining marginal p-values using the Fisher method and prints the result.

Usage

## S3 method for class 'print'
GSAfisher(x,...)

Arguments

x

Numeric set of marginal p-values (one vector or a single p-value).

...

Further arguments passed to or from other methods.

Value

print.p

Displays Fisher method combined pvalue.

Author(s)

Carlos Garcia Prieto

Examples

#Generate 1000 random values from an Uniform distribution U(0, 0.25). 
x<-runif(1000, 0, 0.25)
#Set data class to "print".
class(x)<-"print"
#Apply the GSAfisher.print function to this data vector.
GSAfisher(x)

GSAfisher.summary

Description

Summary method of GSAfisher function that computes a numerical summary of the marginal p-values.

Usage

## S3 method for class 'summary'
GSAfisher(x,...)

Arguments

x

Numeric set of marginal p-values (one vector or a sinlge p-value).

...

Further arguments passed to or from other methods.

Value

summary.p

Summary statistics (min, 1st quantile, median, 3rd quantile, max) of a numerical set of marginal p-values.

Author(s)

Carlos Garcia Prieto

Examples

#Generate 1000 random values from an Uniform distribution U (0, 0.25). 
x<-runif(1000, 0, 0.25)
#Set data class to "summary"
class(x)<-"summary"
#Apply the GSAfisher.summary function to this data vector.
GSAfisher(x)