Title: | Scalable Gaussian-Process Approximations |
---|---|
Description: | Fast scalable Gaussian process approximations, particularly well suited to spatial (aerial, remote-sensed) and environmental data, described in more detail in Katzfuss and Guinness (2017) <arXiv:1708.06302>. Package also contains a fast implementation of the incomplete Cholesky decomposition (IC0), based on Schaefer et al. (2019) <arXiv:1706.02205> and MaxMin ordering proposed in Guinness (2018) <arXiv:1609.05372>. |
Authors: | Matthias Katzfuss [aut], Marcin Jurek [aut, cre], Daniel Zilber [aut], Wenlong Gong [aut], Joe Guinness [ctb], Jingjie Zhang [ctb], Florian Schaefer [ctb] |
Maintainer: | Marcin Jurek <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.1.7 |
Built: | 2024-12-08 07:07:18 UTC |
Source: | CRAN |
Vecchia Laplace extension of GPVecchia for non-Gaussian data
calculate_posterior_VL( z, vecchia.approx, likelihood_model = c("gaussian", "logistic", "poisson", "gamma", "beta", "gamma_alt"), covparms, covmodel = "matern", likparms = list(alpha = 2, sigma = sqrt(0.1)), max.iter = 50, convg = 1e-06, return_all = FALSE, y_init = NA, prior_mean = rep(0, length(z)), verbose = FALSE )
calculate_posterior_VL( z, vecchia.approx, likelihood_model = c("gaussian", "logistic", "poisson", "gamma", "beta", "gamma_alt"), covparms, covmodel = "matern", likparms = list(alpha = 2, sigma = sqrt(0.1)), max.iter = 50, convg = 1e-06, return_all = FALSE, y_init = NA, prior_mean = rep(0, length(z)), verbose = FALSE )
z |
an array of real numbers representing observations |
vecchia.approx |
a vecchia object as generated by vecchia_specify() |
likelihood_model |
text describing likelihood model to be used for observations. Can be "gaussian","logistic", "poisson", "gamma", or "beta" |
covparms |
covariance parameters as a vector |
covmodel |
type of the model covariance or selected elements of the covariance matrix |
likparms |
likelihood parameters for the likelihood_model, as a list. Default values are sqrt(.1) for Gaussian noise and 2 for the alpha parameter for Gamma data. |
max.iter |
maximum iterations to perform |
convg |
convergence criteria. End iterations if the Newton step is this small |
return_all |
Return additional posterior covariance terms, TRUE or FALSE |
y_init |
Specify initial guess for posterior mode |
prior_mean |
specify the prior latent mean |
verbose |
if TRUE messages about the posterior estimation will be displayed |
multivariate normal posterior parameters calculated by the Vecchia-Laplace approximation
z=rnorm(10); locs=matrix(1:10,ncol=1); vecchia.approx=vecchia_specify(locs,m=5) calculate_posterior_VL(z,vecchia.approx,"gaussian",covparms=c(1,2,.5))
z=rnorm(10); locs=matrix(1:10,ncol=1); vecchia.approx=vecchia_specify(locs,m=5) calculate_posterior_VL(z,vecchia.approx,"gaussian",covparms=c(1,2,.5))
create the sparse triangular L matrix for specific parameters
createL(vecchia.approx, covmodel, covparms = NULL)
createL(vecchia.approx, covmodel, covparms = NULL)
vecchia.approx |
object returned by |
covmodel |
covariance model. currently implemented: matern: with covparms (var,range,smoothness) esqe: exponential + squared exp with covparms (var1,range1,var2,range2) If covmodel is a function it has to be able to take a distance matrix and return a vector with distances which is of length k. |
covparms |
vector of covariance parameters |
list containing the sparse lower triangular L,
z=rnorm(9); locs=matrix(1:9,ncol=1); vecchia.approx=vecchia_specify(locs,m=5) L = createL(vecchia.approx, covparms=c(1,2,.5), 'matern')
z=rnorm(9); locs=matrix(1:9,ncol=1); vecchia.approx=vecchia_specify(locs,m=5) L = createL(vecchia.approx, covparms=c(1,2,.5), 'matern')
create the sparse triangular U matrix for specific parameters
createU(vecchia.approx, covparms, nuggets, covmodel = "matern")
createU(vecchia.approx, covparms, nuggets, covmodel = "matern")
vecchia.approx |
object returned by |
covparms |
vector of covariance parameters |
nuggets |
nugget variances – if a scalar is provided, variance is assumed constant |
covmodel |
covariance model. currently implemented: |
list containing the sparse upper triangular U, plus additional objects required for other functions
z=rnorm(9); locs=matrix(1:9,ncol=1); vecchia.approx=vecchia_specify(locs,m=5) U.obj=createU(vecchia.approx,covparms=c(1,2,.5),nuggets=.2)
z=rnorm(9); locs=matrix(1:9,ncol=1); vecchia.approx=vecchia_specify(locs,m=5) U.obj=createU(vecchia.approx,covparms=c(1,2,.5),nuggets=.2)
This function takes the entire covariance matrix and creates a matrix of covariances based on the vecchia approximatino object
getMatCov(V, covariances, factor = FALSE)
getMatCov(V, covariances, factor = FALSE)
V |
the object returned by vecchia_specify |
covariances |
The full covariance matrix or a covariance function |
factor |
True if we are passing a factor of a matrix |
matrix of size n x (m+1) with only those elements that are used by the incomplete Cholesky decomposition
Calculate the covariance values required by HV for matrix factors passed as sparse matrices
getMatCovFromFactorCpp(F, revNNarray)
getMatCovFromFactorCpp(F, revNNarray)
F |
factor of a matrix in a sparse format |
revNNarray |
array with the neighbourhood structure |
matrix with covariance values
The package can be used for parameter inference and prediction for Gaussian and non-Gaussian spatial data using many popular GP approximation methods.
Incomplete Cholesky decomposition of a sparse matrix passed in the compressed sparse row format
ic0(ptrs, inds, vals)
ic0(ptrs, inds, vals)
ptrs |
pointers to the beginning of the row |
inds |
indices of nonzero elements in a row |
vals |
nonzero values |
vector of the values of the incomplete Cholesky factor
Wrapper for incomplete Cholesky decomposition
ichol(M, S = NULL)
ichol(M, S = NULL)
M |
the matrix to be decomposed |
S |
sparsity pattern matrix given |
the incomplete Cholesky factor in the sparse format
A = matrix(runif(25), ncol = 5) A = t(A) * A + 2 * Matrix::Diagonal(5) S = Matrix::Matrix(c(rep(1, 5), c(0, 1, 1, 0, 0), c(0, 0, 1, 0, 1), c(0, 0, 0, 1, 0), c(0, 0, 0, 0, 1)), ncol = 5, byrow = TRUE) I1 = ichol(A, S) I2 = ichol(A * S)
A = matrix(runif(25), ncol = 5) A = t(A) * A + 2 * Matrix::Diagonal(5) S = Matrix::Matrix(c(rep(1, 5), c(0, 1, 1, 0, 0), c(0, 0, 1, 0, 1), c(0, 0, 0, 1, 0), c(0, 0, 0, 0, 1)), ncol = 5, byrow = TRUE) I1 = ichol(A, S) I2 = ichol(A * S)
Calculate Matern covariance function
MaternFun(distmat, covparms)
MaternFun(distmat, covparms)
distmat |
A matrix with distances between points |
covparms |
A vector with parameters (marg. variance, range, smoothness) |
A matrix with covariance values corresponding to the distance matrix
Return the ordering of locations sorted along one of the coordinates or the sum of multiple coordinates
order_coordinate(locs, coordinate)
order_coordinate(locs, coordinate)
locs |
A matrix of locations. Each row of |
coordinate |
integer or vector of integers in {1,...,d}. If a single integer,
coordinates are ordered along that coordinate. If multiple integers,
coordinates are ordered according to the sum of specified coordinate values. For example,
when |
A vector of indices giving the ordering, i.e. the first element of this vector is the index of the first location.
n <- 100 # Number of locations d <- 2 # dimension of domain locs <- matrix( runif(n*d), n, d ) ord1 <- order_coordinate(locs, 1 ) ord12 <- order_coordinate(locs, c(1,2) )
n <- 100 # Number of locations d <- 2 # dimension of domain locs <- matrix( runif(n*d), n, d ) ord1 <- order_coordinate(locs, 1 ) ord12 <- order_coordinate(locs, c(1,2) )
Return the ordering of locations increasing in their distance to some specified location
order_dist_to_point(locs, loc0, lonlat = FALSE)
order_dist_to_point(locs, loc0, lonlat = FALSE)
locs |
A matrix of locations. Each row of |
loc0 |
A vector containing a single location in R^d. |
lonlat |
TRUE/FALSE whether locations are longitudes and latitudes. |
A vector of indices giving the ordering, i.e.
the first element of this vector is the index of the location nearest to loc0
.
n <- 100 # Number of locations d <- 2 # dimension of domain locs <- matrix( runif(n*d), n, d ) loc0 <- c(1/2,1/2) ord <- order_dist_to_point(locs,loc0)
n <- 100 # Number of locations d <- 2 # dimension of domain locs <- matrix( runif(n*d), n, d ) loc0 <- c(1/2,1/2) ord <- order_dist_to_point(locs,loc0)
Return the indices of an exact maximum-minimum distance ordering. The first point is chosen as the "center" point, minimizing L2 distance. Dimensions d=2 and d=3 handled separately, dimensions d=1 and d>3 handled similarly. Algorithm is exact and scales quasilinearly.
order_maxmin_exact(locs)
order_maxmin_exact(locs)
locs |
Observation locations |
A vector of indices giving the ordering, i.e. the first element of this vector is the index of the first location.
n=100; locs <- cbind(runif(n),runif(n)) ord <- order_maxmin_exact(locs)
n=100; locs <- cbind(runif(n),runif(n)) ord <- order_maxmin_exact(locs)
Return the indices of an exact maximum-minimum distance ordering. The first point is chosen as the "center" point, minimizing L2 distance. Dimensions d=2 and d=3 handled separately, dimensions d=1 and d>3 handled similarly. Algorithm is exact and scales quasilinearly.
order_maxmin_exact_obs_pred(locs, locs_pred)
order_maxmin_exact_obs_pred(locs, locs_pred)
locs |
Observation locations |
locs_pred |
Prediction locations |
A vector of indices giving the ordering, i.e. the first element of this vector is the index of the first location.
n=100; locs <- cbind(runif(n),runif(n)) locs_pred = cbind(runif(n), runif(n)) ord <- order_maxmin_exact_obs_pred(locs, locs_pred)
n=100; locs <- cbind(runif(n),runif(n)) locs_pred = cbind(runif(n), runif(n)) ord <- order_maxmin_exact_obs_pred(locs, locs_pred)
Return the ordering of locations increasing in their distance to the average location
order_middleout(locs, lonlat = FALSE)
order_middleout(locs, lonlat = FALSE)
locs |
A matrix of locations. Each row of |
lonlat |
TRUE/FALSE whether locations are longitudes and latitudes. |
A vector of indices giving the ordering, i.e. the first element of this vector is the index of the location nearest the center.
n <- 100 # Number of locations d <- 2 # dimension of domain locs <- matrix( runif(n*d), n, d ) ord <- order_middleout(locs)
n <- 100 # Number of locations d <- 2 # dimension of domain locs <- matrix( runif(n*d), n, d ) ord <- order_middleout(locs)
Return the ordering of locations decreasing in their distance to the average location. Reverses middleout.
order_outsidein(locs, lonlat = FALSE)
order_outsidein(locs, lonlat = FALSE)
locs |
A matrix of locations. Each row of |
lonlat |
TRUE/FALSE whether locations are longitudes and latitudes. |
A vector of indices giving the ordering, i.e. the first element of this vector is the index of the location farthest from the center.
n <- 100 # Number of locations d <- 2 # dimension of domain locs <- matrix( runif(n*d), n, d ) ord <- order_outsidein(locs)
n <- 100 # Number of locations d <- 2 # dimension of domain locs <- matrix( runif(n*d), n, d ) ord <- order_outsidein(locs)
selected inverse of a sparse matrix
SelInv(cholmat)
SelInv(cholmat)
cholmat |
cholesky factor L of a positive definite sparseMatrix A |
sparse inverse of A, with same sparsity pattern as L
A=Matrix::sparseMatrix(1:9,1:9,x=4); L=Matrix::chol(A) SelInv(L)
A=Matrix::sparseMatrix(1:9,1:9,x=4); L=Matrix::chol(A) SelInv(L)
compute covariance matrix from V.ord Do not run this function for large n or n.p!!!
V2covmat(preds)
V2covmat(preds)
preds |
Object returned by vecchia_prediction() |
Covariance matrix at all locations in original order
z=rnorm(5) locs=matrix(1:5,ncol=1) vecchia_specify=function(z,locs,m=5,locs.pred=(1:5)+.5) V2covmat(vecchia_prediction(vecchia.approx,covparms=c(1,2,.5),nuggets=.2))
z=rnorm(5) locs=matrix(1:5,ncol=1) vecchia_specify=function(z,locs,m=5,locs.pred=(1:5)+.5) V2covmat(vecchia_prediction(vecchia.approx,covparms=c(1,2,.5),nuggets=.2))
estimate mean and covariance parameters of a Matern covariance function using Vecchia
vecchia_estimate( data, locs, X, m = 20, covmodel = "matern", theta.ini, output.level = 1, reltol = sqrt(.Machine$double.eps), ... )
vecchia_estimate( data, locs, X, m = 20, covmodel = "matern", theta.ini, output.level = 1, reltol = sqrt(.Machine$double.eps), ... )
data |
data vector of length n |
locs |
n x d matrix of spatial locations |
X |
n x p matrix of trend covariates. default is vector of ones (constant trend). set to NULL if data are already detrended |
m |
number of neighbors for vecchia approximation. default is 20 |
covmodel |
covariance model. default is Matern.
see |
theta.ini |
initial values of covariance parameters. nugget variance must be last. |
output.level |
passed on to trace in the |
reltol |
tolerance for the optimization function; by default set to the sqrt of machine precision |
... |
additional input parameters for |
object containing detrended data z, trend coefficients beta.hat, covariance parameters theta.hat, and other quantities necessary for prediction
n=10^2; locs=cbind(runif(n),runif(n)) covparms=c(1,.1,.5); nuggets=rep(.1,n) Sigma=exp(-fields::rdist(locs)/covparms[2])+diag(nuggets) z=as.numeric(t(chol(Sigma))%*%rnorm(n)); data=z+1 vecchia.est=vecchia_estimate(data,locs,theta.ini=c(covparms,nuggets[1]))
n=10^2; locs=cbind(runif(n),runif(n)) covparms=c(1,.1,.5); nuggets=rep(.1,n) Sigma=exp(-fields::rdist(locs)/covparms[2])+diag(nuggets) z=as.numeric(t(chol(Sigma))%*%rnorm(n)); data=z+1 vecchia.est=vecchia_estimate(data,locs,theta.ini=c(covparms,nuggets[1]))
Wrapper for VL version of vecchia_likelihood
vecchia_laplace_likelihood( z, vecchia.approx, likelihood_model, covparms, likparms = list(alpha = 2, sigma = sqrt(0.1)), covmodel = "matern", max.iter = 50, convg = 1e-05, return_all = FALSE, y_init = NA, prior_mean = rep(0, length(z)), vecchia.approx.IW = NA )
vecchia_laplace_likelihood( z, vecchia.approx, likelihood_model, covparms, likparms = list(alpha = 2, sigma = sqrt(0.1)), covmodel = "matern", max.iter = 50, convg = 1e-05, return_all = FALSE, y_init = NA, prior_mean = rep(0, length(z)), vecchia.approx.IW = NA )
z |
an array of real numbers representing observations |
vecchia.approx |
a vecchia object as generated by vecchia_specify() |
likelihood_model |
text describing likelihood model to be used for observations |
covparms |
covariance parameters as a vector |
likparms |
likelihood parameters for the likelihood_model, as a list |
covmodel |
describes the covariance model, "matern" by default |
max.iter |
maximum iterations to perform |
convg |
convergence criteria. End iterations if the Newton step is this small |
return_all |
Return additional posterior covariance terms |
y_init |
Specify initial guess for posterior mode |
prior_mean |
specify the prior latent mean |
vecchia.approx.IW |
an optional vecchia approximation object, can reduce computation if method is called repeatedly |
(multivariate normal) loglikelihood implied by the Vecchia approximation
z=rnorm(10); locs=matrix(1:10,ncol=1); vecchia.approx=vecchia_specify(locs,m=5) vecchia_laplace_likelihood(z,vecchia.approx,"gaussian",covparms=c(1,2,.5))
z=rnorm(10); locs=matrix(1:10,ncol=1); vecchia.approx=vecchia_specify(locs,m=5) vecchia_laplace_likelihood(z,vecchia.approx,"gaussian",covparms=c(1,2,.5))
Wrapper for VL version of vecchia_likelihood
vecchia_laplace_likelihood_from_posterior( z, posterior, vecchia.approx, likelihood_model, covparms, likparms = list(alpha = 2, sigma = sqrt(0.1)), covmodel = "matern", max.iter = 50, convg = 1e-05, return_all = FALSE, y_init = NA, prior_mean = rep(0, length(z)), vecchia.approx.IW = NA )
vecchia_laplace_likelihood_from_posterior( z, posterior, vecchia.approx, likelihood_model, covparms, likparms = list(alpha = 2, sigma = sqrt(0.1)), covmodel = "matern", max.iter = 50, convg = 1e-05, return_all = FALSE, y_init = NA, prior_mean = rep(0, length(z)), vecchia.approx.IW = NA )
z |
an array of real numbers representing observations |
posterior |
posterior distribution obtained from calculate_posterior_VL() |
vecchia.approx |
a vecchia object as generated by vecchia_specify() |
likelihood_model |
text describing likelihood model to be used for observations |
covparms |
covariance parameters as a vector |
likparms |
likelihood parameters for the likelihood_model, as a list |
covmodel |
describes the covariance model, "matern" by default |
max.iter |
maximum iterations to perform |
convg |
convergence criteria. End iterations if the Newton step is this small |
return_all |
Return additional posterior covariance terms |
y_init |
Specify initial guess for posterior mode |
prior_mean |
specify the prior latent mean |
vecchia.approx.IW |
an optional vecchia approximation object, can reduce computation if method is called repeatedly |
(multivariate normal) loglikelihood implied by the Vecchia approximation
Wrapper for VL version of vecchia_prediction
vecchia_laplace_prediction( vl_posterior, vecchia.approx, covparms, pred.mean = 0, var.exact = FALSE, covmodel = "matern", return.values = "all" )
vecchia_laplace_prediction( vl_posterior, vecchia.approx, covparms, pred.mean = 0, var.exact = FALSE, covmodel = "matern", return.values = "all" )
vl_posterior |
a posterior estimate object produced by calculate_posterior_VL |
vecchia.approx |
a vecchia object as generated by vecchia_specify() |
covparms |
covariance parameters as a vector |
pred.mean |
provides the prior latent mean for the prediction locations |
var.exact |
should prediction variances be computed exactly, or is a (faster) approximation acceptable |
covmodel |
covariance model, 'matern' by default. |
return.values |
either 'mean' only, 'meanvar', 'meanmat', or 'all' |
(multivariate normal) loglikelihood implied by the Vecchia approximation
z=rnorm(10); locs=matrix(1:10,ncol=1); vecchia.approx=vecchia_specify(locs,m=5) vl_posterior = calculate_posterior_VL(z,vecchia.approx,"gaussian",covparms=c(1,2,.5)) locs.pred=matrix(1:10+.5,ncol=1) vecchia.approx.pred = vecchia_specify(locs, m=5, locs.pred=locs.pred ) vecchia_laplace_prediction(vl_posterior,vecchia.approx.pred,covparms=c(1,2,.5))
z=rnorm(10); locs=matrix(1:10,ncol=1); vecchia.approx=vecchia_specify(locs,m=5) vl_posterior = calculate_posterior_VL(z,vecchia.approx,"gaussian",covparms=c(1,2,.5)) locs.pred=matrix(1:10+.5,ncol=1) vecchia.approx.pred = vecchia_specify(locs, m=5, locs.pred=locs.pred ) vecchia_laplace_prediction(vl_posterior,vecchia.approx.pred,covparms=c(1,2,.5))
evaluation of the likelihood
vecchia_likelihood(z, vecchia.approx, covparms, nuggets, covmodel = "matern")
vecchia_likelihood(z, vecchia.approx, covparms, nuggets, covmodel = "matern")
z |
the observed data |
vecchia.approx |
a vecchia object as generated by vecchia_specify() |
covparms |
covariance parameters as a vector |
nuggets |
either a single (constant) nugget or a vector of nugget terms for the observations |
covmodel |
covariance model, 'matern' by default |
(multivariate normal) loglikelihood implied by the Vecchia approximation
z=rnorm(5); locs=matrix(1:5,ncol=1); vecchia.approx=vecchia_specify(locs,m=3) vecchia_likelihood(z,vecchia.approx,covparms=c(1,2,.5),nuggets=.2)
z=rnorm(5); locs=matrix(1:5,ncol=1); vecchia.approx=vecchia_specify(locs,m=3) vecchia_likelihood(z,vecchia.approx,covparms=c(1,2,.5),nuggets=.2)
linear combination of predictions compute the distribution of a linear combination Hy
vecchia_lincomb(H, U.obj, V.ord, cov.mat = FALSE)
vecchia_lincomb(H, U.obj, V.ord, cov.mat = FALSE)
H |
sparse matrix with n.all columns specifying the linear combination |
U.obj |
U matrix is the full joint approximated cholesky matrix |
V.ord |
ordered V matrix from vecchia_prediction() or U2V() |
cov.mat |
logical TRUE or FALSE – should the entire covariance matrix be returned (only do if H has a small number of rows) |
Variance of linear combination of predictions.
n=5; z=rnorm(n); locs=matrix(1:n,ncol=1); n.p=5 vecchia.approx = vecchia_specify(locs,m=3,locs.pred=locs+.5) preds=vecchia_prediction(z,vecchia.approx,covparms=c(1,2,.5),nuggets=.2) H=Matrix::sparseMatrix(i=rep(1,n.p),j=n+(1:n.p),x=1/n.p) vecchia_lincomb(H,vecchia.approx,preds$V.ord,cov.mat=TRUE)
n=5; z=rnorm(n); locs=matrix(1:n,ncol=1); n.p=5 vecchia.approx = vecchia_specify(locs,m=3,locs.pred=locs+.5) preds=vecchia_prediction(z,vecchia.approx,covparms=c(1,2,.5),nuggets=.2) H=Matrix::sparseMatrix(i=rep(1,n.p),j=n+(1:n.p),x=1/n.p) vecchia_lincomb(H,vecchia.approx,preds$V.ord,cov.mat=TRUE)
make spatial predictions using Vecchia based on estimated parameters
vecchia_pred(vecchia.est, locs.pred, X.pred, m = 30, ...)
vecchia_pred(vecchia.est, locs.pred, X.pred, m = 30, ...)
vecchia.est |
object returned by |
locs.pred |
n.p x d matrix of prediction locations |
X.pred |
n.p x p matrix of trend covariates at prediction locations.
does not need to be specified if constant or no trend was used in
|
m |
number of neighbors for vecchia approximation. default is 30. |
... |
additional input parameters for |
object containing prediction means mean.pred and variances var.pred
n=10^2; locs=cbind(runif(n),runif(n)) covparms=c(1,.1,.5); nuggets=rep(.1,n) Sigma=exp(-fields::rdist(locs)/covparms[2])+diag(nuggets) z=as.numeric(t(chol(Sigma))%*%rnorm(n)); data=z+1 vecchia.est=vecchia_estimate(data,locs,theta.ini=c(covparms,nuggets[1])) n.p=30^2; grid.oneside=seq(0,1,length=round(sqrt(n.p))) locs.pred=as.matrix(expand.grid(grid.oneside,grid.oneside)) vecchia.pred=vecchia_pred(vecchia.est,locs.pred)
n=10^2; locs=cbind(runif(n),runif(n)) covparms=c(1,.1,.5); nuggets=rep(.1,n) Sigma=exp(-fields::rdist(locs)/covparms[2])+diag(nuggets) z=as.numeric(t(chol(Sigma))%*%rnorm(n)); data=z+1 vecchia.est=vecchia_estimate(data,locs,theta.ini=c(covparms,nuggets[1])) n.p=30^2; grid.oneside=seq(0,1,length=round(sqrt(n.p))) locs.pred=as.matrix(expand.grid(grid.oneside,grid.oneside)) vecchia.pred=vecchia_pred(vecchia.est,locs.pred)
Vecchia prediction
vecchia_prediction( z, vecchia.approx, covparms, nuggets, var.exact, covmodel = "matern", return.values = "all" )
vecchia_prediction( z, vecchia.approx, covparms, nuggets, var.exact, covmodel = "matern", return.values = "all" )
z |
observed data |
vecchia.approx |
a vecchia object as generated by vecchia_specify() |
covparms |
covariance parameters as a vector |
nuggets |
nugget |
var.exact |
should prediction variances be computed exactly, or is a (faster) approximation acceptable |
covmodel |
covariance model, 'matern' by default. |
return.values |
either 'mean' only, 'meanvar', 'meanmat', or 'all' |
posterior mean and variances at observed and unobserved locations; V matrix
z=rnorm(5); locs=matrix(1:5,ncol=1); vecchia.approx=vecchia_specify(locs,m=3,locs.pred=locs+.5) vecchia_prediction(z,vecchia.approx,covparms=c(1,2,.5),nuggets=.2)
z=rnorm(5); locs=matrix(1:5,ncol=1); vecchia.approx=vecchia_specify(locs,m=3,locs.pred=locs+.5) vecchia_prediction(z,vecchia.approx,covparms=c(1,2,.5),nuggets=.2)
specify the vecchia approximation for later use in likelihood evaluation or prediction. This function does not depend on parameter values, and only has to be run once before repeated likelihood evaluations.
vecchia_specify( locs, m = -1, ordering, cond.yz, locs.pred, ordering.pred, pred.cond, conditioning, mra.options = NULL, ic0 = FALSE, verbose = FALSE )
vecchia_specify( locs, m = -1, ordering, cond.yz, locs.pred, ordering.pred, pred.cond, conditioning, mra.options = NULL, ic0 = FALSE, verbose = FALSE )
locs |
nxd matrix of observed locs |
m |
Number of nearby points to condition on |
ordering |
options are 'coord' or 'maxmin' |
cond.yz |
options are 'y', 'z', 'SGV', 'SGVT', 'RVP', 'LK', and 'zy' |
locs.pred |
nxd matrix of locations at which to make predictions |
ordering.pred |
options are 'obspred' or 'general' |
pred.cond |
prediction conditioning, options are 'general' or 'independent' |
conditioning |
conditioning on 'NN' (nearest neighbor) or 'firstm' (fixed set for low rank) or 'mra' |
mra.options |
Settings for number of levels and neighbors per level |
ic0 |
Specifies if ic0 decomposition should be used as opposed to regular Cholesky |
verbose |
Provide more detail when using MRA calculations. Default is false. |
An object that specifies the vecchia approximation for later use in likelihood evaluation or prediction.
locs=matrix(1:5,ncol=1); vecchia_specify(locs,m=2)
locs=matrix(1:5,ncol=1); vecchia_specify(locs,m=2)