Title: | Gaussian Processes Modeling |
---|---|
Description: | A computationally stable approach of fitting a Gaussian Process (GP) model to a deterministic simulator. |
Authors: | Blake MacDoanld [aut], Hugh Chipman [aut, cre], Chris Campbell [ctb], Pritam Ranjan [aut] |
Maintainer: | Hugh Chipman <[email protected]> |
License: | GPL-2 |
Version: | 1.0-8 |
Built: | 2024-12-12 06:46:28 UTC |
Source: | CRAN |
A computationally stable approach of fitting a Gaussian process (GP) model to simulator outputs. It is assumed that the input variables are continuous and the outputs are obtained from scalar valued deterministic computer simulator.
This package implements a slightly modified version of the regularized GP
model proposed in Ranjan et al. (2011). For details see MacDonald et al.
(2015). A new parameterization of the Gaussian correlation is used for the
ease of optimization. This package uses a multi-start gradient based search
algorithm for optimizing the deviance (negative 2*log-likelihood).
For a complete list of functions, use library(help="GPfit")
.
The
main function for fitting the GP model is GP_fit
.
Blake MacDoanld, Hugh Chipman, Pritam Ranjan
Maintainer: Hugh
Chipman <[email protected]>
MacDonald, K.B., Ranjan, P. and Chipman, H. (2015). GPfit: An R
Package for Fitting a Gaussian Process Model to Deterministic Simulator
Outputs. Journal of Statistical Software, 64(12), 1-23.
http://www.jstatsoft.org/v64/i12/
Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable
Approach to Gaussian Process Interpolation of Deterministic Computer
Simulation Data, Technometrics, 53(4), 366 - 378.
Santner, T.J., Williams, B., and Notz, W. (2003), The design and analysis of
computer experiments, Springer Verlag, New York.
Computes the power exponential or Matern correlation matrix for a set of n design points in d-dimensional input region and a vector of d correlation hyper-parameters (beta).
corr_matrix(X, beta, corr = list(type = "exponential", power = 1.95))
corr_matrix(X, beta, corr = list(type = "exponential", power = 1.95))
X |
the ( |
beta |
a ( |
corr |
a list that specifies the |
The power exponential correlation function is given by
.
The Matern correlation function given by Santner, Williams, and Notz (2003) is
,
where is the modified Bessel function of
order
.
The (n x n
) correlation matrix, R, for the design matrix
(X
) and the hyper-parameters (beta
).
Both Matern and power exponential correlation functions use the new
parametrization of hyper-parameters given by
for easier likelihood optimization. That is,
beta
is a
log scale parameter (see MacDonald et al. (2015)).
Blake MacDonald, Hugh Chipman, Pritam Ranjan
MacDonald, K.B., Ranjan, P. and Chipman, H. (2015).
GPfit: An R Package for Fitting a Gaussian Process Model to
Deterministic Simulator Outputs.
Journal of Statistical Software, 64(12), 1-23.
http://www.jstatsoft.org/v64/i12/
Ranjan, P., Haynes, R., and Karsten, R. (2011).
A Computationally Stable
Approach to Gaussian Process Interpolation of
Deterministic Computer Simulation Data,
Technometrics, 53(4), 366 - 378.
Santner, T.J., Williams, B., and Notz, W. (2003), The design and analysis of computer experiments, Springer Verlag, New York.
## 1D Example - 1 n = 5 d = 1 set.seed(3) library(lhs) x = maximinLHS(n,d) beta = rnorm(1) corr_matrix(x,beta) ## 1D Example - 2 beta = rnorm(1) corr_matrix(x,beta,corr = list(type = "matern")) ## 2D example - 1 n = 10 d = 2 set.seed(2) library(lhs) x = maximinLHS(n,d) beta = rnorm(2) corr_matrix(x, beta, corr = list(type = "exponential", power = 2)) ## 2D example - 2 beta = rnorm(2) R = corr_matrix(x,beta,corr = list(type = "matern", nu = 5/2)) print(R)
## 1D Example - 1 n = 5 d = 1 set.seed(3) library(lhs) x = maximinLHS(n,d) beta = rnorm(1) corr_matrix(x,beta) ## 1D Example - 2 beta = rnorm(1) corr_matrix(x,beta,corr = list(type = "matern")) ## 2D example - 1 n = 10 d = 2 set.seed(2) library(lhs) x = maximinLHS(n,d) beta = rnorm(2) corr_matrix(x, beta, corr = list(type = "exponential", power = 2)) ## 2D example - 2 beta = rnorm(2) R = corr_matrix(x,beta,corr = list(type = "matern", nu = 5/2)) print(R)
Evaluates the deviance (negative 2*log-likelihood), as
defined in Ranjan et al. (2011), however the correlation
is reparametrized and can be either power exponential or
Matern as discussed in corr_matrix
.
GP_deviance(beta, X, Y, nug_thres = 20, corr = list(type = "exponential", power = 1.95))
GP_deviance(beta, X, Y, nug_thres = 20, corr = list(type = "exponential", power = 1.95))
beta |
a (d x 1) vector of correlation hyper-parameters, as
described in |
X |
the (n x d) design matrix |
Y |
the (n x 1) vector of simulator outputs |
nug_thres |
a parameter used in computing the nugget. See
|
corr |
a list of parameters for the specifing the correlation to be
used. See |
the deviance (negative 2 * log-likelihood)
Blake MacDonald, Hugh Chipman, Pritam Ranjan
Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.
corr_matrix
for computing the correlation matrix; GP_fit
for estimating the parameters of the GP model.
## 1D Example 1 n = 5 d = 1 computer_simulator <- function(x) { x = 2 * x + 0.5 y = sin(10 * pi * x)/(2 * x) + (x - 1)^4 return(y) } set.seed(3) library(lhs) x = maximinLHS(n,d) y = computer_simulator(x) beta = rnorm(1) GP_deviance(beta,x,y) ## 1D Example 2 n = 7 d = 1 computer_simulator <- function(x) { y <- log(x + 0.1) + sin(5 * pi * x) return(y) } set.seed(1) library(lhs) x = maximinLHS(n, d) y = computer_simulator(x) beta = rnorm(1) GP_deviance(beta, x, y, corr = list(type = "matern", nu = 5/2)) ## 2D Example: GoldPrice Function computer_simulator <- function(x) { x1 = 4 * x[, 1] - 2 x2 = 4 * x[, 2] - 2 t1 = 1 + (x1 + x2 + 1)^2 * (19 - 14 * x1 + 3 * x1^2 - 14 * x2 + 6 * x1 * x2 + 3 * x2^2) t2 = 30 + (2 * x1 - 3 * x2)^2 * (18 - 32 * x1 + 12 * x1^2 + 48 * x2 - 36 * x1 * x2 + 27 * x2^2) y = t1 * t2 return(y) } n = 10 d = 2 set.seed(1) library(lhs) x = maximinLHS(n, d) y = computer_simulator(x) beta = rnorm(2) GP_deviance(beta, x, y)
## 1D Example 1 n = 5 d = 1 computer_simulator <- function(x) { x = 2 * x + 0.5 y = sin(10 * pi * x)/(2 * x) + (x - 1)^4 return(y) } set.seed(3) library(lhs) x = maximinLHS(n,d) y = computer_simulator(x) beta = rnorm(1) GP_deviance(beta,x,y) ## 1D Example 2 n = 7 d = 1 computer_simulator <- function(x) { y <- log(x + 0.1) + sin(5 * pi * x) return(y) } set.seed(1) library(lhs) x = maximinLHS(n, d) y = computer_simulator(x) beta = rnorm(1) GP_deviance(beta, x, y, corr = list(type = "matern", nu = 5/2)) ## 2D Example: GoldPrice Function computer_simulator <- function(x) { x1 = 4 * x[, 1] - 2 x2 = 4 * x[, 2] - 2 t1 = 1 + (x1 + x2 + 1)^2 * (19 - 14 * x1 + 3 * x1^2 - 14 * x2 + 6 * x1 * x2 + 3 * x2^2) t2 = 30 + (2 * x1 - 3 * x2)^2 * (18 - 32 * x1 + 12 * x1^2 + 48 * x2 - 36 * x1 * x2 + 27 * x2^2) y = t1 * t2 return(y) } n = 10 d = 2 set.seed(1) library(lhs) x = maximinLHS(n, d) y = computer_simulator(x) beta = rnorm(2) GP_deviance(beta, x, y)
For an (n x d) design matrix, X
,
and the corresponding (n x 1) simulator output Y
,
this function fits the GP model and returns the parameter estimates.
The optimization routine assumes that
the inputs are scaled to the unit hypercube .
GP_fit(X, Y, control = c(200 * d, 80 * d, 2 * d), nug_thres = 20, trace = FALSE, maxit = 100, corr = list(type = "exponential", power = 1.95), optim_start = NULL)
GP_fit(X, Y, control = c(200 * d, 80 * d, 2 * d), nug_thres = 20, trace = FALSE, maxit = 100, corr = list(type = "exponential", power = 1.95), optim_start = NULL)
X |
the ( |
Y |
the ( |
control |
a vector of parameters used in the search for optimal beta (search grid size, percent, number of clusters). See ‘Details’. |
nug_thres |
a parameter used in computing the nugget. See ‘Details’. |
trace |
logical, if |
maxit |
the maximum number of iterations within |
corr |
a list of parameters for the specifing the correlation to be
used. See |
optim_start |
a matrix of potentially likely starting values for
correlation hyperparameters for the |
This function fits the following GP model,
,
, where
is
a GP with mean 0,
, and
. Entries in covariance matrix R are determined by
corr
and parameterized by beta
, a d
-vector of
parameters. For computational stability is replaced with
, where
and
is the nugget parameter described in Ranjan et al.
(2011).
The parameter estimate beta
is obtained by minimizing
the deviance using a multi-start gradient based search (L-BFGS-B)
algorithm. The starting points are selected using the k-means
clustering algorithm on a large maximin LHD for values of
beta
, after discarding beta
vectors
with high deviance. The control
parameter determines the
quality of the starting points of the L-BFGS-B algoritm.
control
is a vector of three tunable parameters used
in the deviance optimization algorithm. The default values
correspond to choosing 2*d clusters (using k-means clustering
algorithm) based on 80*d best points (smallest deviance,
refer to GP_deviance
) from a 200*d - point
random maximin LHD in beta
. One can change these values
to balance the trade-off between computational cost and robustness
of likelihood optimization (or prediction accuracy).
For details see MacDonald et al. (2015).
The nug_thres
parameter is outlined in Ranjan et al. (2011) and is
used in finding the lower bound on the nugget
().
an object of class GP
containing parameter estimates
beta
and sig2
, nugget parameter delta
, the data
(X
and Y
), and a specification of the correlation structure
used.
Blake MacDonald, Hugh Chipman, Pritam Ranjan
MacDonald, K.B., Ranjan, P. and Chipman, H. (2015). GPfit: An R
Package for Fitting a Gaussian Process Model to Deterministic Simulator
Outputs. Journal of Statistical Software, 64(12), 1-23.
http://www.jstatsoft.org/v64/i12/
Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.
plot
for plotting in 1 and 2 dimensions; predict
for predicting the response and error surfaces; optim
for information on the L-BFGS-B procedure; GP_deviance
for computing the deviance.
## 1D Example 1 n = 5 d = 1 computer_simulator <- function(x){ x = 2 * x + 0.5 y = sin(10 * pi * x) / (2 * x) + (x - 1)^4 return(y) } set.seed(3) library(lhs) x = maximinLHS(n, d) y = computer_simulator(x) GPmodel = GP_fit(x, y) print(GPmodel) ## 1D Example 2 n = 7 d = 1 computer_simulator <- function(x) { y <- log(x + 0.1) + sin(5 * pi * x) return(y) } set.seed(1) library(lhs) x = maximinLHS(n, d) y = computer_simulator(x) GPmodel = GP_fit(x, y) print(GPmodel, digits = 4) ## 2D Example: GoldPrice Function computer_simulator <- function(x) { x1 = 4 * x[, 1] - 2 x2 = 4 * x[, 2] - 2 t1 = 1 + (x1 + x2 + 1)^2 * (19 - 14 * x1 + 3 * x1^2 - 14 * x2 + 6 * x1 *x2 + 3 * x2^2) t2 = 30 + (2 * x1 - 3 * x2)^2 * (18 - 32 * x1 + 12 * x1^2 + 48 * x2 - 36 * x1 * x2 + 27 * x2^2) y = t1 * t2 return(y) } n = 30 d = 2 set.seed(1) library(lhs) x = maximinLHS(n, d) y = computer_simulator(x) GPmodel = GP_fit(x, y) print(GPmodel)
## 1D Example 1 n = 5 d = 1 computer_simulator <- function(x){ x = 2 * x + 0.5 y = sin(10 * pi * x) / (2 * x) + (x - 1)^4 return(y) } set.seed(3) library(lhs) x = maximinLHS(n, d) y = computer_simulator(x) GPmodel = GP_fit(x, y) print(GPmodel) ## 1D Example 2 n = 7 d = 1 computer_simulator <- function(x) { y <- log(x + 0.1) + sin(5 * pi * x) return(y) } set.seed(1) library(lhs) x = maximinLHS(n, d) y = computer_simulator(x) GPmodel = GP_fit(x, y) print(GPmodel, digits = 4) ## 2D Example: GoldPrice Function computer_simulator <- function(x) { x1 = 4 * x[, 1] - 2 x2 = 4 * x[, 2] - 2 t1 = 1 + (x1 + x2 + 1)^2 * (19 - 14 * x1 + 3 * x1^2 - 14 * x2 + 6 * x1 *x2 + 3 * x2^2) t2 = 30 + (2 * x1 - 3 * x2)^2 * (18 - 32 * x1 + 12 * x1^2 + 48 * x2 - 36 * x1 * x2 + 27 * x2^2) y = t1 * t2 return(y) } n = 30 d = 2 set.seed(1) library(lhs) x = maximinLHS(n, d) y = computer_simulator(x) GPmodel = GP_fit(x, y) print(GPmodel)
Plots the predicted response and mean squared error (MSE) surfaces for simulators with 1 and 2 dimensional inputs (i.e. d = 1,2).
## S3 method for class 'GP' plot(x, M = 1, range = c(0, 1), resolution = 50, colors = c("black", "blue", "red"), line_type = c(1, 2), pch = 20, cex = 1, legends = FALSE, surf_check = FALSE, response = TRUE, ...)
## S3 method for class 'GP' plot(x, M = 1, range = c(0, 1), resolution = 50, colors = c("black", "blue", "red"), line_type = c(1, 2), pch = 20, cex = 1, legends = FALSE, surf_check = FALSE, response = TRUE, ...)
x |
a class |
M |
the number of iterations for use in prediction. See
|
range |
the input range for plotting (default set to |
resolution |
the number of points along a coordinate in the specified
|
colors |
a vector of length 3 assigning |
line_type |
a vector of length 2 assigning |
pch |
a parameter defining the plotting character for the training
design points, see ‘pch’ for possible options in |
cex |
a parameter defining the size of the |
legends |
a parameter that controls the inclusion of a
|
surf_check |
logical, switch between 3d surface and 2d level/contour
plotting, the default of |
response |
logical, switch between predicted response and error (MSE)
plots, the default of |
... |
GP
: The plot
method
creates a graphics plot for 1-D fits and
lattice plot for 2-D fits.
Blake MacDonald, Hugh Chipman, Pritam Ranjan
Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.
GP_fit
for estimating the parameters of the GP model;
predict.GP
for predicting the response and error surfaces;
par
for additional plotting characters and line types for
1 dimensional plots; wireframe
and levelplot
for additional plotting settings in 2 dimensions.
## 1D Example 1 n <- 5 d <- 1 computer_simulator <- function(x){ x <- 2 * x + 0.5 y <- sin(10 * pi * x) / (2 * x) + (x - 1)^4 return(y) } set.seed(3) library(lhs) x <- maximinLHS(n,d) y <- computer_simulator(x) GPmodel <- GP_fit(x,y) plot(GPmodel) ## 1D Example 2 n <- 7 d <- 1 computer_simulator <- function(x) { y <- log(x + 0.1) + sin(5 * pi * x) return(y) } set.seed(1) library(lhs) x <- maximinLHS(n,d) y <- computer_simulator(x) GPmodel <- GP_fit(x, y) ## Plotting with changes from the default line type and characters plot(GPmodel, resolution = 100, line_type = c(6,2), pch = 5) ## 2D Example: GoldPrice Function computer_simulator <- function(x) { x1 <- 4 * x[, 1] - 2 x2 <- 4 * x[, 2] - 2 t1 <- 1 + (x1 + x2 + 1)^2 * (19 - 14 * x1 + 3 * x1^2 - 14 * x2 + 6 * x1 * x2 + 3 * x2^2) t2 <- 30 + (2 * x1 - 3 * x2)^2 * (18 - 32 * x1 + 12 * x1^2 + 48 * x2 - 36 * x1 * x2 + 27 * x2^2) y <- t1 * t2 return(y) } n <- 30 d <- 2 set.seed(1) x <- lhs::maximinLHS(n, d) y <- computer_simulator(x) GPmodel <- GP_fit(x, y) ## Basic level plot plot(GPmodel) ## Adding Contours and increasing the number of levels plot(GPmodel, contour = TRUE, cuts = 50, pretty = TRUE) ## Plotting the Response Surface plot(GPmodel, surf_check = TRUE) ## Plotting the Error Surface with color plot(GPmodel, surf_check = TRUE, response = FALSE, shade = TRUE)
## 1D Example 1 n <- 5 d <- 1 computer_simulator <- function(x){ x <- 2 * x + 0.5 y <- sin(10 * pi * x) / (2 * x) + (x - 1)^4 return(y) } set.seed(3) library(lhs) x <- maximinLHS(n,d) y <- computer_simulator(x) GPmodel <- GP_fit(x,y) plot(GPmodel) ## 1D Example 2 n <- 7 d <- 1 computer_simulator <- function(x) { y <- log(x + 0.1) + sin(5 * pi * x) return(y) } set.seed(1) library(lhs) x <- maximinLHS(n,d) y <- computer_simulator(x) GPmodel <- GP_fit(x, y) ## Plotting with changes from the default line type and characters plot(GPmodel, resolution = 100, line_type = c(6,2), pch = 5) ## 2D Example: GoldPrice Function computer_simulator <- function(x) { x1 <- 4 * x[, 1] - 2 x2 <- 4 * x[, 2] - 2 t1 <- 1 + (x1 + x2 + 1)^2 * (19 - 14 * x1 + 3 * x1^2 - 14 * x2 + 6 * x1 * x2 + 3 * x2^2) t2 <- 30 + (2 * x1 - 3 * x2)^2 * (18 - 32 * x1 + 12 * x1^2 + 48 * x2 - 36 * x1 * x2 + 27 * x2^2) y <- t1 * t2 return(y) } n <- 30 d <- 2 set.seed(1) x <- lhs::maximinLHS(n, d) y <- computer_simulator(x) GPmodel <- GP_fit(x, y) ## Basic level plot plot(GPmodel) ## Adding Contours and increasing the number of levels plot(GPmodel, contour = TRUE, cuts = 50, pretty = TRUE) ## Plotting the Response Surface plot(GPmodel, surf_check = TRUE) ## Plotting the Error Surface with color plot(GPmodel, surf_check = TRUE, response = FALSE, shade = TRUE)
Computes the regularized predicted response
and the mean squared error
for a new set of
inputs using the fitted GP model.
The value of M
determines the number of iterations (or terms) in
approximating . The iterative use
of the nugget
, as outlined in Ranjan et al. (2011), is
used in calculating
and
, where
.
## S3 method for class 'GP' predict(object, xnew = object$X, M = 1, ...) ## S3 method for class 'GP' fitted(object, ...)
## S3 method for class 'GP' predict(object, xnew = object$X, M = 1, ...) ## S3 method for class 'GP' fitted(object, ...)
object |
a class |
xnew |
the ( |
M |
the number of iterations. See 'Details' |
... |
for compatibility with generic method |
Returns a list containing the predicted values (Y_hat
), the
mean squared errors of the predictions (MSE
), and a matrix
(complete_data
) containing xnew
, Y_hat
, and MSE
GP
: The predict
method
returns a list of elements Y_hat (fitted values),
Y (dependent variable), MSE (residuals), and
completed_data (the matrix of independent variables,
Y_hat, and MSE).
GP
: The fitted
method extracts the complete data.
Blake MacDonald, Hugh Chipman, Pritam Ranjan
Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.
GP_fit
for estimating the parameters of the GP model;
plot
for plotting the predicted and error surfaces.
## 1D Example n <- 5 d <- 1 computer_simulator <- function(x){ x <- 2*x+0.5 sin(10*pi*x)/(2*x) + (x-1)^4 } set.seed(3) library(lhs) x <- maximinLHS(n,d) y <- computer_simulator(x) xvec <- seq(from = 0, to = 1, length.out = 10) GPmodel <- GP_fit(x, y) head(fitted(GPmodel)) lapply(predict(GPmodel, xvec), head) ## 1D Example 2 n <- 7 d <- 1 computer_simulator <- function(x) { log(x+0.1)+sin(5*pi*x) } set.seed(1) library(lhs) x <- maximinLHS(n,d) y <- computer_simulator(x) xvec <- seq(from = 0,to = 1, length.out = 10) GPmodel <- GP_fit(x, y) head(fitted(GPmodel)) predict(GPmodel, xvec) ## 2D Example: GoldPrice Function computer_simulator <- function(x) { x1 <- 4*x[,1] - 2 x2 <- 4*x[,2] - 2 t1 <- 1 + (x1 + x2 + 1)^2*(19 - 14*x1 + 3*x1^2 - 14*x2 + 6*x1*x2 + 3*x2^2) t2 <- 30 + (2*x1 -3*x2)^2*(18 - 32*x1 + 12*x1^2 + 48*x2 - 36*x1*x2 + 27*x2^2) y <- t1*t2 return(y) } n <- 10 d <- 2 set.seed(1) library(lhs) x <- maximinLHS(n,d) y <- computer_simulator(x) GPmodel <- GP_fit(x,y) # fitted values head(fitted(GPmodel)) # new data xvector <- seq(from = 0,to = 1, length.out = 10) xdf <- expand.grid(x = xvector, y = xvector) predict(GPmodel, xdf)
## 1D Example n <- 5 d <- 1 computer_simulator <- function(x){ x <- 2*x+0.5 sin(10*pi*x)/(2*x) + (x-1)^4 } set.seed(3) library(lhs) x <- maximinLHS(n,d) y <- computer_simulator(x) xvec <- seq(from = 0, to = 1, length.out = 10) GPmodel <- GP_fit(x, y) head(fitted(GPmodel)) lapply(predict(GPmodel, xvec), head) ## 1D Example 2 n <- 7 d <- 1 computer_simulator <- function(x) { log(x+0.1)+sin(5*pi*x) } set.seed(1) library(lhs) x <- maximinLHS(n,d) y <- computer_simulator(x) xvec <- seq(from = 0,to = 1, length.out = 10) GPmodel <- GP_fit(x, y) head(fitted(GPmodel)) predict(GPmodel, xvec) ## 2D Example: GoldPrice Function computer_simulator <- function(x) { x1 <- 4*x[,1] - 2 x2 <- 4*x[,2] - 2 t1 <- 1 + (x1 + x2 + 1)^2*(19 - 14*x1 + 3*x1^2 - 14*x2 + 6*x1*x2 + 3*x2^2) t2 <- 30 + (2*x1 -3*x2)^2*(18 - 32*x1 + 12*x1^2 + 48*x2 - 36*x1*x2 + 27*x2^2) y <- t1*t2 return(y) } n <- 10 d <- 2 set.seed(1) library(lhs) x <- maximinLHS(n,d) y <- computer_simulator(x) GPmodel <- GP_fit(x,y) # fitted values head(fitted(GPmodel)) # new data xvector <- seq(from = 0,to = 1, length.out = 10) xdf <- expand.grid(x = xvector, y = xvector) predict(GPmodel, xdf)
Prints the summary of a class GP
object estimated by GP_fit
## S3 method for class 'GP' print(x, ...)
## S3 method for class 'GP' print(x, ...)
x |
a class |
... |
for compatibility with generic method |
Prints the summary of the class GP
object. It returns the number of
observations, input dimension, parameter estimates of the GP model, lower
bound on the nugget, and the nugget threshold parameter (described in
GP_fit
).
Blake MacDonald, Hugh Chipman, Pritam Ranjan
GP_fit
for more information on estimating the model;
print
for more description on the print
function.
## 1D example n <- 5 d <- 1 computer_simulator <- function(x){ x <- 2 * x + 0.5 y <- sin(10 * pi * x) / (2 * x) + (x - 1)^4 return(y) } set.seed(3) x <- lhs::maximinLHS(n, d) y <- computer_simulator(x) GPmodel <- GP_fit(x, y) print(GPmodel) ## 2D Example: GoldPrice Function computer_simulator <- function(x) { x1 <- 4*x[,1] - 2 x2 <- 4*x[,2] - 2 t1 <- 1 + (x1 + x2 + 1)^2*(19 - 14*x1 + 3*x1^2 - 14*x2 + 6*x1*x2 + 3*x2^2) t2 <- 30 + (2*x1 -3*x2)^2*(18 - 32*x1 + 12*x1^2 + 48*x2 - 36*x1*x2 + 27*x2^2) y <- t1*t2 return(y) } n <- 30 d <- 2 set.seed(1) x <- lhs::maximinLHS(n, d) y <- computer_simulator(x) GPmodel <- GP_fit(x,y) print(GPmodel, digits = 3)
## 1D example n <- 5 d <- 1 computer_simulator <- function(x){ x <- 2 * x + 0.5 y <- sin(10 * pi * x) / (2 * x) + (x - 1)^4 return(y) } set.seed(3) x <- lhs::maximinLHS(n, d) y <- computer_simulator(x) GPmodel <- GP_fit(x, y) print(GPmodel) ## 2D Example: GoldPrice Function computer_simulator <- function(x) { x1 <- 4*x[,1] - 2 x2 <- 4*x[,2] - 2 t1 <- 1 + (x1 + x2 + 1)^2*(19 - 14*x1 + 3*x1^2 - 14*x2 + 6*x1*x2 + 3*x2^2) t2 <- 30 + (2*x1 -3*x2)^2*(18 - 32*x1 + 12*x1^2 + 48*x2 - 36*x1*x2 + 27*x2^2) y <- t1*t2 return(y) } n <- 30 d <- 2 set.seed(1) x <- lhs::maximinLHS(n, d) y <- computer_simulator(x) GPmodel <- GP_fit(x,y) print(GPmodel, digits = 3)
Perform calculation: (x - min(x)) / (max(x) - min(x))
scale_norm(x, range = NULL)
scale_norm(x, range = NULL)
x |
numeric vector |
range |
numeric vector additional values for shrinking distribution of values within the 0-1 space, without affecting limits of x |
numeric vector
scale_norm(x = c(-1, 4, 10, 182)) # lower bound extended beyond -1 # upper bound still range of data scale_norm(x = c(-1, 4, 10, 182), range = c(-100, 100))
scale_norm(x = c(-1, 4, 10, 182)) # lower bound extended beyond -1 # upper bound still range of data scale_norm(x = c(-1, 4, 10, 182), range = c(-100, 100))
shared utilities between GP_deviance
and GP_fit
sig_invb(X, Y, beta, corr = list(type = "exponential", power = 1.95), nug_thres = 20)
sig_invb(X, Y, beta, corr = list(type = "exponential", power = 1.95), nug_thres = 20)
X |
the (n x d) design matrix |
Y |
the (n x 1) vector of simulator outputs |
beta |
a (d x 1) vector of correlation hyper-parameters, as
described in |
corr |
a list of parameters for the specifing the correlation to be
used. See |
nug_thres |
a parameter used in computing the nugget. See
|
list with elements delta, L, mu_hat, Sig_invb
set.seed(3234) GPfit:::sig_invb( X = matrix((0:10) / 10), Y = runif(11), beta = 1.23)
set.seed(3234) GPfit:::sig_invb( X = matrix((0:10) / 10), Y = runif(11), beta = 1.23)
Prints the summary of a class GP
object estimated by GP_fit
## S3 method for class 'GP' summary(object, ...)
## S3 method for class 'GP' summary(object, ...)
object |
a class |
... |
for compatibility with generic method |
prints the summary of the GP object (object
), by calling
print.GP
Blake MacDonald, Hugh Chipman, Pritam Ranjan
print.GP
for more description of the output; GP_fit
for more information on estimating the model; summary
for more description on the summary
function.
## 1D example n <- 5 d <- 1 computer_simulator <- function(x){ x <- 2 * x + 0.5 y <- sin(10 * pi * x) / (2 * x) + (x - 1)^4 return(y) } set.seed(3) x <- lhs::maximinLHS(n, d) y <- computer_simulator(x) GPmodel <- GP_fit(x, y) summary(GPmodel) ## 2D Example: GoldPrice Function computer_simulator <- function(x) { x1 = 4*x[, 1] - 2 x2 = 4*x[, 2] - 2 t1 = 1 + (x1 + x2 + 1)^2*(19 - 14*x1 + 3*x1^2 - 14*x2 + 6*x1*x2 + 3*x2^2) t2 = 30 + (2*x1 -3*x2)^2*(18 - 32*x1 + 12*x1^2 + 48*x2 - 36*x1*x2 + 27*x2^2) y = t1*t2 return(y) } n <- 10 d <- 2 set.seed(1) x <- lhs::maximinLHS(n, d) y <- computer_simulator(x) GPmodel <- GP_fit(x, y) summary(GPmodel)
## 1D example n <- 5 d <- 1 computer_simulator <- function(x){ x <- 2 * x + 0.5 y <- sin(10 * pi * x) / (2 * x) + (x - 1)^4 return(y) } set.seed(3) x <- lhs::maximinLHS(n, d) y <- computer_simulator(x) GPmodel <- GP_fit(x, y) summary(GPmodel) ## 2D Example: GoldPrice Function computer_simulator <- function(x) { x1 = 4*x[, 1] - 2 x2 = 4*x[, 2] - 2 t1 = 1 + (x1 + x2 + 1)^2*(19 - 14*x1 + 3*x1^2 - 14*x2 + 6*x1*x2 + 3*x2^2) t2 = 30 + (2*x1 -3*x2)^2*(18 - 32*x1 + 12*x1^2 + 48*x2 - 36*x1*x2 + 27*x2^2) y = t1*t2 return(y) } n <- 10 d <- 2 set.seed(1) x <- lhs::maximinLHS(n, d) y <- computer_simulator(x) GPmodel <- GP_fit(x, y) summary(GPmodel)