Package 'GPfit'

Title: Gaussian Processes Modeling
Description: A computationally stable approach of fitting a Gaussian Process (GP) model to a deterministic simulator.
Authors: Blake MacDoanld [aut], Hugh Chipman [aut, cre], Chris Campbell [ctb], Pritam Ranjan [aut]
Maintainer: Hugh Chipman <[email protected]>
License: GPL-2
Version: 1.0-8
Built: 2024-11-12 06:29:36 UTC
Source: CRAN

Help Index


Gaussian Process Modeling

Description

A computationally stable approach of fitting a Gaussian process (GP) model to simulator outputs. It is assumed that the input variables are continuous and the outputs are obtained from scalar valued deterministic computer simulator.

Details

This package implements a slightly modified version of the regularized GP model proposed in Ranjan et al. (2011). For details see MacDonald et al. (2015). A new parameterization of the Gaussian correlation is used for the ease of optimization. This package uses a multi-start gradient based search algorithm for optimizing the deviance (negative 2*log-likelihood).

For a complete list of functions, use library(help="GPfit").
The main function for fitting the GP model is GP_fit.

Author(s)

Blake MacDoanld, Hugh Chipman, Pritam Ranjan
Maintainer: Hugh Chipman <[email protected]>

References

MacDonald, K.B., Ranjan, P. and Chipman, H. (2015). GPfit: An R Package for Fitting a Gaussian Process Model to Deterministic Simulator Outputs. Journal of Statistical Software, 64(12), 1-23. http://www.jstatsoft.org/v64/i12/

Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.

Santner, T.J., Williams, B., and Notz, W. (2003), The design and analysis of computer experiments, Springer Verlag, New York.


Power Exponential or Matern Correlation Matrix

Description

Computes the power exponential or Matern correlation matrix for a set of n design points in d-dimensional input region and a vector of d correlation hyper-parameters (beta).

Usage

corr_matrix(X, beta, corr = list(type = "exponential", power = 1.95))

Arguments

X

the (n x d) design matrix

beta

a (d x 1) vector of correlation hyper-parameters in (,)(-\infty, \infty)

corr

a list that specifies the type of correlation function along with the smoothness parameter. The default corresponds to power exponential correlation with smoothness parameter "power=1.95". One can specify a different power (between 1.0 and 2.0) for the power exponential, or use the Matern correlation function, specified as corr=list(type = "matern", nu=(2*k+1)/2), where k{0,1,2,...}k \in \{0,1,2,...\}

Details

The power exponential correlation function is given by

Rij=k=1dexp(10βkxikxjkpower)R_{ij} = \prod_{k=1}^{d} \exp({-10^{\beta_k}|x_{ik}-x_{jk}|^{power}}).

The Matern correlation function given by Santner, Williams, and Notz (2003) is

Rij=k=1d1Γ(ν)2ν1(2νxikR_{ij} = \prod_{k=1}^{d} \frac{1}{\Gamma(\nu)2^{\nu-1}}(2\sqrt{\nu}|x_{ik} -xjk10βk)νκν(2νxikx_{jk}|10^{\beta_k})^\nu \kappa_{\nu}(2\sqrt{\nu}|x_{ik} -xjk10βk)x_{jk}|10^{\beta_k}),

where κν\kappa_{\nu} is the modified Bessel function of order ν\nu.

Value

The (n x n) correlation matrix, R, for the design matrix (X) and the hyper-parameters (beta).

Note

Both Matern and power exponential correlation functions use the new β\beta parametrization of hyper-parameters given by θk=10βk\theta_k = 10^{\beta_k} for easier likelihood optimization. That is, beta is a log scale parameter (see MacDonald et al. (2015)).

Author(s)

Blake MacDonald, Hugh Chipman, Pritam Ranjan

References

MacDonald, K.B., Ranjan, P. and Chipman, H. (2015). GPfit: An R Package for Fitting a Gaussian Process Model to Deterministic Simulator Outputs. Journal of Statistical Software, 64(12), 1-23. http://www.jstatsoft.org/v64/i12/

Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.

Santner, T.J., Williams, B., and Notz, W. (2003), The design and analysis of computer experiments, Springer Verlag, New York.

Examples

## 1D Example - 1
n = 5
d = 1
set.seed(3)
library(lhs)
x = maximinLHS(n,d)
beta =  rnorm(1)
corr_matrix(x,beta)

## 1D Example - 2
beta = rnorm(1)
corr_matrix(x,beta,corr = list(type = "matern"))

## 2D example - 1
n = 10
d = 2
set.seed(2)
library(lhs)
x = maximinLHS(n,d) 
beta = rnorm(2)
corr_matrix(x, beta,
    corr = list(type = "exponential", power = 2))

## 2D example - 2
beta = rnorm(2)
R = corr_matrix(x,beta,corr = list(type = "matern", nu = 5/2))
print(R)

Computes the Deviance of a GP model

Description

Evaluates the deviance (negative 2*log-likelihood), as defined in Ranjan et al. (2011), however the correlation is reparametrized and can be either power exponential or Matern as discussed in corr_matrix.

Usage

GP_deviance(beta, X, Y, nug_thres = 20, corr = list(type =
  "exponential", power = 1.95))

Arguments

beta

a (d x 1) vector of correlation hyper-parameters, as described in corr_matrix

X

the (n x d) design matrix

Y

the (n x 1) vector of simulator outputs

nug_thres

a parameter used in computing the nugget. See GP_fit.

corr

a list of parameters for the specifing the correlation to be used. See corr_matrix.

Value

the deviance (negative 2 * log-likelihood)

Author(s)

Blake MacDonald, Hugh Chipman, Pritam Ranjan

References

Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.

See Also

corr_matrix for computing the correlation matrix;
GP_fit for estimating the parameters of the GP model.

Examples

## 1D Example 1
n = 5
d = 1
computer_simulator <- function(x) {
    x = 2 * x + 0.5
    y = sin(10 * pi * x)/(2 * x) + (x - 1)^4
    return(y)
}
set.seed(3)
library(lhs)
x = maximinLHS(n,d)
y = computer_simulator(x)
beta =  rnorm(1)
GP_deviance(beta,x,y)


## 1D Example 2
n = 7
d = 1
computer_simulator <- function(x) {
    y <- log(x + 0.1) + sin(5 * pi * x)
    return(y)
}
set.seed(1)
library(lhs)
x = maximinLHS(n, d)
y = computer_simulator(x)
beta = rnorm(1)
GP_deviance(beta, x, y,
    corr = list(type = "matern", nu = 5/2))

## 2D Example: GoldPrice Function
computer_simulator <- function(x) {
    x1 = 4 * x[, 1] - 2
    x2 = 4 * x[, 2] - 2
    t1 = 1 + (x1 + x2 + 1)^2 * 
        (19 - 14 * x1 + 3 * x1^2 - 
        14 * x2 + 6 * x1 * x2 + 3 * x2^2)
    t2 = 30 + (2 * x1 - 3 * x2)^2 * 
        (18 - 32 * x1 + 12 * x1^2 + 
        48 * x2 - 36 * x1 * x2 + 27 * x2^2)
    y = t1 * t2
    return(y)
}
n = 10
d = 2
set.seed(1)
library(lhs)
x = maximinLHS(n, d) 
y = computer_simulator(x)
beta = rnorm(2)
GP_deviance(beta, x, y)

Gaussian Process Model fitting

Description

For an (n x d) design matrix, X, and the corresponding (n x 1) simulator output Y, this function fits the GP model and returns the parameter estimates. The optimization routine assumes that the inputs are scaled to the unit hypercube [0,1]d[0,1]^d.

Usage

GP_fit(X, Y, control = c(200 * d, 80 * d, 2 * d), nug_thres = 20,
  trace = FALSE, maxit = 100, corr = list(type = "exponential", power
  = 1.95), optim_start = NULL)

Arguments

X

the (n x d) design matrix

Y

the (n x 1) vector of simulator outputs.

control

a vector of parameters used in the search for optimal beta (search grid size, percent, number of clusters). See ‘Details’.

nug_thres

a parameter used in computing the nugget. See ‘Details’.

trace

logical, if TRUE, will provide information on the optim runs

maxit

the maximum number of iterations within optim, defaults to 100

corr

a list of parameters for the specifing the correlation to be used. See corr_matrix.

optim_start

a matrix of potentially likely starting values for correlation hyperparameters for the optim runs, i.e., initial guess of the d-vector beta

Details

This function fits the following GP model, y(x)=μ+Z(x)y(x) = \mu + Z(x), x[0,1]dx \in [0,1]^{d}, where Z(x)Z(x) is a GP with mean 0, Var(Z(xi))=σ2Var(Z(x_i)) = \sigma^2, and Cov(Z(xi),Z(xj))=σ2RijCov(Z(x_i),Z(x_j)) = \sigma^2R_{ij}. Entries in covariance matrix R are determined by corr and parameterized by beta, a d-vector of parameters. For computational stability R1R^{-1} is replaced with Rδlb1R_{\delta_{lb}}^{-1}, where Rδlb=R+δlbIR_{\delta{lb}} = R + \delta_{lb}I and δlb\delta_{lb} is the nugget parameter described in Ranjan et al. (2011).

The parameter estimate beta is obtained by minimizing the deviance using a multi-start gradient based search (L-BFGS-B) algorithm. The starting points are selected using the k-means clustering algorithm on a large maximin LHD for values of beta, after discarding beta vectors with high deviance. The control parameter determines the quality of the starting points of the L-BFGS-B algoritm.

control is a vector of three tunable parameters used in the deviance optimization algorithm. The default values correspond to choosing 2*d clusters (using k-means clustering algorithm) based on 80*d best points (smallest deviance, refer to GP_deviance) from a 200*d - point random maximin LHD in beta. One can change these values to balance the trade-off between computational cost and robustness of likelihood optimization (or prediction accuracy). For details see MacDonald et al. (2015).

The nug_thres parameter is outlined in Ranjan et al. (2011) and is used in finding the lower bound on the nugget (δlb\delta_{lb}).

Value

an object of class GP containing parameter estimates beta and sig2, nugget parameter delta, the data (X and Y), and a specification of the correlation structure used.

Author(s)

Blake MacDonald, Hugh Chipman, Pritam Ranjan

References

MacDonald, K.B., Ranjan, P. and Chipman, H. (2015). GPfit: An R Package for Fitting a Gaussian Process Model to Deterministic Simulator Outputs. Journal of Statistical Software, 64(12), 1-23. http://www.jstatsoft.org/v64/i12/

Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.

See Also

plot for plotting in 1 and 2 dimensions;
predict for predicting the response and error surfaces;
optim for information on the L-BFGS-B procedure;
GP_deviance for computing the deviance.

Examples

## 1D Example 1
n = 5
d = 1 
computer_simulator <- function(x){
    x = 2 * x + 0.5
    y = sin(10 * pi * x) / (2 * x) + (x - 1)^4
    return(y)
}
set.seed(3)
library(lhs)
x = maximinLHS(n, d)
y = computer_simulator(x)
GPmodel = GP_fit(x, y)
print(GPmodel)


## 1D Example 2
n = 7
d = 1
computer_simulator <- function(x) {
    y <- log(x + 0.1) + sin(5 * pi * x)
    return(y)
}
set.seed(1)
library(lhs)
x = maximinLHS(n, d)
y = computer_simulator(x)
GPmodel = GP_fit(x, y)
print(GPmodel, digits = 4)


## 2D Example: GoldPrice Function
computer_simulator <- function(x) {
    x1 = 4 * x[, 1] - 2
    x2 = 4 * x[, 2] - 2
    t1 = 1 + (x1 + x2 + 1)^2 * (19 - 14 * x1 + 3 * x1^2 - 14 * x2 + 
        6 * x1 *x2 + 3 * x2^2)
    t2 = 30 + (2 * x1 - 3 * x2)^2 * (18 - 32 * x1 + 12 * x1^2 + 48 * x2 - 
        36 * x1 * x2 + 27 * x2^2)
    y = t1 * t2
    return(y)
}
n = 30
d = 2
set.seed(1)
library(lhs)
x = maximinLHS(n, d) 
y = computer_simulator(x)
GPmodel = GP_fit(x, y)
print(GPmodel)

Plotting GP model fits

Description

Plots the predicted response and mean squared error (MSE) surfaces for simulators with 1 and 2 dimensional inputs (i.e. d = 1,2).

Usage

## S3 method for class 'GP'
plot(x, M = 1, range = c(0, 1), resolution = 50,
  colors = c("black", "blue", "red"), line_type = c(1, 2), pch = 20,
  cex = 1, legends = FALSE, surf_check = FALSE, response = TRUE,
  ...)

Arguments

x

a class GP object estimated by GP_fit

M

the number of iterations for use in prediction. See predict.GP

range

the input range for plotting (default set to [0, 1])

resolution

the number of points along a coordinate in the specified range

colors

a vector of length 3 assigning colors[1] to training design points, colors[2] to model predictions, and colors[3] to the error bounds

line_type

a vector of length 2 assigning line_type[1] to model predictions, and line_type[2] to the error bounds

pch

a parameter defining the plotting character for the training design points, see ‘pch’ for possible options in par

cex

a parameter defining the size of the pch used for plotting the training design points, see ‘cex’ for possible options in par

legends

a parameter that controls the inclusion of a legend; by default it is ‘FALSE’

surf_check

logical, switch between 3d surface and 2d level/contour plotting, the default of FALSE implies level/contour plotting

response

logical, switch between predicted response and error (MSE) plots, the default of TRUE displays the response surface

...

additional arguments from wireframe or levelplot

Methods (by class)

  • GP: The plot method creates a graphics plot for 1-D fits and lattice plot for 2-D fits.

Author(s)

Blake MacDonald, Hugh Chipman, Pritam Ranjan

References

Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.

See Also

GP_fit for estimating the parameters of the GP model;
predict.GP for predicting the response and error surfaces;
par for additional plotting characters and line types for 1 dimensional plots;
wireframe and levelplot for additional plotting settings in 2 dimensions.

Examples

## 1D Example 1
n <- 5
d <- 1 
computer_simulator <- function(x){
    x <- 2 * x + 0.5
    y <- sin(10 * pi * x) / (2 * x) + (x - 1)^4
    return(y)
}
set.seed(3)
library(lhs)
x <- maximinLHS(n,d)
y <- computer_simulator(x)
GPmodel <- GP_fit(x,y)
plot(GPmodel)

## 1D Example 2
n <- 7
d <- 1
computer_simulator <- function(x) {
    y <- log(x + 0.1) + sin(5 * pi * x)
    return(y)
}
set.seed(1)
library(lhs)
x <- maximinLHS(n,d)
y <- computer_simulator(x)
GPmodel <- GP_fit(x, y)
## Plotting with changes from the default line type and characters
plot(GPmodel, resolution = 100, line_type = c(6,2), pch = 5)


## 2D Example: GoldPrice Function
computer_simulator <- function(x) {
    x1 <- 4 * x[, 1] - 2
    x2 <- 4 * x[, 2] - 2
    t1 <- 1 + (x1 + x2 + 1)^2 * (19 - 14 * x1 + 3 * x1^2 - 14 * x2 + 
        6 * x1 * x2 + 3 * x2^2)
    t2 <- 30 + (2 * x1 - 3 * x2)^2 * (18 - 32 * x1 + 12 * x1^2 + 48 * x2 - 
        36 * x1 * x2 + 27 * x2^2)
    y <- t1 * t2
    return(y)
}
n <- 30 
d <- 2
set.seed(1)
x <- lhs::maximinLHS(n, d) 
y <- computer_simulator(x)
GPmodel <- GP_fit(x, y)
## Basic level plot
plot(GPmodel)
## Adding Contours and increasing the number of levels
plot(GPmodel, contour = TRUE, cuts = 50, pretty = TRUE)
## Plotting the Response Surface
plot(GPmodel, surf_check = TRUE)
## Plotting the Error Surface with color
plot(GPmodel, surf_check = TRUE, response = FALSE, shade = TRUE)

Model Predictions from GPfit

Description

Computes the regularized predicted response y^δlb,M(x)\hat{y}_{\delta_{lb},M}(x) and the mean squared error sδlb,M2(x)s^2_{\delta_{lb},M}(x) for a new set of inputs using the fitted GP model.

The value of M determines the number of iterations (or terms) in approximating R1Rδlb,M1R^{-1} \approx R^{-1}_{\delta_{lb},M}. The iterative use of the nugget δlb\delta_{lb}, as outlined in Ranjan et al. (2011), is used in calculating y^δlb,M(x)\hat{y}_{\delta_{lb},M}(x) and sδlb,M2(x)s^2_{\delta_{lb},M}(x), where Rδ,M1=t=1Mδt1(R+δI)tR_{\delta,M}^{-1} = \sum_{t = 1}^{M} \delta^{t - 1}(R+\delta I)^{-t}.

Usage

## S3 method for class 'GP'
predict(object, xnew = object$X, M = 1, ...)

## S3 method for class 'GP'
fitted(object, ...)

Arguments

object

a class GP object estimated by GP_fit

xnew

the (n_new x d) design matrix of test points where model predictions and MSEs are desired

M

the number of iterations. See 'Details'

...

for compatibility with generic method predict

Value

Returns a list containing the predicted values (Y_hat), the mean squared errors of the predictions (MSE), and a matrix (complete_data) containing xnew, Y_hat, and MSE

Methods (by class)

  • GP: The predict method returns a list of elements Y_hat (fitted values), Y (dependent variable), MSE (residuals), and completed_data (the matrix of independent variables, Y_hat, and MSE).

  • GP: The fitted method extracts the complete data.

Author(s)

Blake MacDonald, Hugh Chipman, Pritam Ranjan

References

Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.

See Also

GP_fit for estimating the parameters of the GP model;
plot for plotting the predicted and error surfaces.

Examples

## 1D Example
n <- 5
d <- 1
computer_simulator <- function(x){
    x <- 2*x+0.5
    sin(10*pi*x)/(2*x) + (x-1)^4
}
set.seed(3)
library(lhs)
x <- maximinLHS(n,d)
y <- computer_simulator(x)
xvec <- seq(from = 0, to = 1, length.out = 10)
GPmodel <- GP_fit(x, y)
head(fitted(GPmodel))
lapply(predict(GPmodel, xvec), head)


## 1D Example 2
n <- 7
d <- 1
computer_simulator <- function(x) {
    log(x+0.1)+sin(5*pi*x)
}
set.seed(1)
library(lhs)
x <- maximinLHS(n,d)
y <- computer_simulator(x)
xvec <- seq(from = 0,to = 1, length.out = 10)
GPmodel <- GP_fit(x, y)
head(fitted(GPmodel))
predict(GPmodel, xvec)

## 2D Example: GoldPrice Function
computer_simulator <- function(x) {
    x1 <- 4*x[,1] - 2
    x2 <- 4*x[,2] - 2
    t1 <- 1 + (x1 + x2 + 1)^2*(19 - 14*x1 + 3*x1^2 - 14*x2 + 
        6*x1*x2 + 3*x2^2)
    t2 <- 30 + (2*x1 -3*x2)^2*(18 - 32*x1 + 12*x1^2 + 48*x2 - 
        36*x1*x2 + 27*x2^2)
    y <- t1*t2
    return(y)
}
n <- 10
d <- 2
set.seed(1)
library(lhs)
x <- maximinLHS(n,d) 
y <- computer_simulator(x)
GPmodel <- GP_fit(x,y)
# fitted values
head(fitted(GPmodel))
# new data
xvector <- seq(from = 0,to = 1, length.out = 10)
xdf <- expand.grid(x = xvector, y = xvector)
predict(GPmodel, xdf)

GP model fit Summary

Description

Prints the summary of a class GP object estimated by GP_fit

Usage

## S3 method for class 'GP'
print(x, ...)

Arguments

x

a class GP object estimated by GP_fit

...

for compatibility with generic method print

Details

Prints the summary of the class GP object. It returns the number of observations, input dimension, parameter estimates of the GP model, lower bound on the nugget, and the nugget threshold parameter (described in GP_fit).

Author(s)

Blake MacDonald, Hugh Chipman, Pritam Ranjan

See Also

GP_fit for more information on estimating the model;
print for more description on the print function.

Examples

## 1D example
n <- 5
d <- 1 
computer_simulator <- function(x){
    x <- 2 * x + 0.5
    y <- sin(10 * pi * x) / (2 * x) + (x - 1)^4
    return(y)
}
set.seed(3)
x <- lhs::maximinLHS(n, d)
y <- computer_simulator(x)
GPmodel <- GP_fit(x, y)
print(GPmodel)


## 2D Example: GoldPrice Function
computer_simulator <- function(x) {
    x1 <- 4*x[,1] - 2
    x2 <- 4*x[,2] - 2
    t1 <- 1 + (x1 + x2 + 1)^2*(19 - 14*x1 + 3*x1^2 - 14*x2 + 
        6*x1*x2 + 3*x2^2)
    t2 <- 30 + (2*x1 -3*x2)^2*(18 - 32*x1 + 12*x1^2 + 48*x2 - 
        36*x1*x2 + 27*x2^2)
    y <- t1*t2
    return(y)
}
n <- 30 
d <- 2
set.seed(1)
x <- lhs::maximinLHS(n, d) 
y <- computer_simulator(x)
GPmodel <- GP_fit(x,y)
print(GPmodel, digits = 3)

Scale variable into normal range 0, 1

Description

Perform calculation: (x - min(x)) / (max(x) - min(x))

Usage

scale_norm(x, range = NULL)

Arguments

x

numeric vector

range

numeric vector additional values for shrinking distribution of values within the 0-1 space, without affecting limits of x

Value

numeric vector

Examples

scale_norm(x = c(-1, 4, 10, 182))
# lower bound extended beyond -1
# upper bound still range of data
scale_norm(x = c(-1, 4, 10, 182), range = c(-100, 100))

Internal tools

Description

shared utilities between GP_deviance and GP_fit

Usage

sig_invb(X, Y, beta, corr = list(type = "exponential", power = 1.95),
  nug_thres = 20)

Arguments

X

the (n x d) design matrix

Y

the (n x 1) vector of simulator outputs

beta

a (d x 1) vector of correlation hyper-parameters, as described in corr_matrix

corr

a list of parameters for the specifing the correlation to be used. See corr_matrix.

nug_thres

a parameter used in computing the nugget. See GP_fit.

Value

list with elements delta, L, mu_hat, Sig_invb

Examples

set.seed(3234)
GPfit:::sig_invb(
    X = matrix((0:10) / 10), 
    Y = runif(11), 
    beta = 1.23)

Summary of GP model fit

Description

Prints the summary of a class GP object estimated by GP_fit

Usage

## S3 method for class 'GP'
summary(object, ...)

Arguments

object

a class GP object estimated by GP_fit

...

for compatibility with generic method summary

Details

prints the summary of the GP object (object), by calling print.GP

Author(s)

Blake MacDonald, Hugh Chipman, Pritam Ranjan

See Also

print.GP for more description of the output;
GP_fit for more information on estimating the model;
summary for more description on the summary function.

Examples

## 1D example
n <- 5
d <- 1 
computer_simulator <- function(x){
    x <- 2 * x + 0.5
    y <- sin(10 * pi * x) / (2 * x) + (x - 1)^4
    return(y)
}
set.seed(3)
x <- lhs::maximinLHS(n, d)
y <- computer_simulator(x)
GPmodel <- GP_fit(x, y)
summary(GPmodel)

## 2D Example: GoldPrice Function
computer_simulator <- function(x) {
    x1 = 4*x[, 1] - 2
    x2 = 4*x[, 2] - 2
    t1 = 1 + (x1 + x2 + 1)^2*(19 - 14*x1 + 3*x1^2 - 14*x2 + 
           6*x1*x2 + 3*x2^2)
    t2 = 30 + (2*x1 -3*x2)^2*(18 - 32*x1 + 12*x1^2 + 48*x2 - 
           36*x1*x2 + 27*x2^2)
    y = t1*t2
    return(y)
}
n <- 10
d <- 2
set.seed(1)
x <- lhs::maximinLHS(n, d) 
y <- computer_simulator(x)
GPmodel <- GP_fit(x, y)
summary(GPmodel)