---
title: "GPFR example"
output: rmarkdown::html_vignette
header-includes:
- \usepackage{bm}
vignette: >
%\VignetteIndexEntry{gpfr}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
echo = TRUE, results = 'hold', warning=F, cache=F, eval=T,
#dev = 'pdf',
message=F,
fig.width=5, fig.height=5,
tidy.opts=list(width.cutoff=75), tidy=FALSE
)
old <- options(scipen = 1, digits = 4)
```
Suppose we have a functional response variable $y_m(t), \ m=1,\dots,M$, a
functional covariate $x_m(t)$ and also a set of $p=2$ scalar covariates
$\textbf{u}_m = (u_{m0},u_{m1})^\top$.
A Gaussian process functional regression (GPFR) model used in this example is
defined by
$y_m(t) = \mu_m(t) + \tau_m(x_m(t)) + \varepsilon_m(t)$,
where $\mu_m(t) = \textbf{u}_m^\top \boldsymbol{\beta}(t)$ is the mean function
model across different curves and $\tau_m(x_m(t))$ is a Gaussian process with
zero mean and covariance function $k_m(\boldsymbol{\theta}|x_m(t))$. That is,
$\tau_m(x_m(t))$ defines the covariance structure of $y_m(t)$ for the different
data points within the same curve.
The error term can be assumed to be $\varepsilon_m(t) \sim N(0, \sigma_\varepsilon^2)$,
where the noise variance $\sigma_\varepsilon^2$ can be estimated as a hyperparameter
of the Gaussian process.
In the example below, the training data consist of $M=20$ realisations on $[-4,4]$ with
$n=50$ points for each curve. We assume regression coefficient functions
$\beta_0(t)=1$, $\beta_1(t)=\sin((0.5 t)^3)$, scalar covariates
$u_{m0} \sim N(0,1)$ and $u_{m1} \sim N(10,5^2)$ and a functional covariate
$x_m(t) = \exp(t) + v$, where $v \sim N(0, 0.1^2)$. The term $\tau_m(x_m(t))$ is
a zero mean Gaussian process with exponential covariance kernel and
$\sigma_\varepsilon^2 = 1$.
We also simulate an $(M+1)$th realisation which is used to assess predictions
obtained by the model estimated by using the training data of size $M$. The
$y_{M+1}(t)$ and $x_{M+1}(t)$ curves are observed on equally spaced $60$ time points on $[-4,4]$.
```{r setup}
library(GPFDA)
require(MASS)
```
```{r}
set.seed(100)
M <- 20
n <- 50
p <- 2 # number of scalar covariates
hp <- list('pow.ex.v'=log(10), 'pow.ex.w'=log(1),'vv'=log(1))
## Training data: M realisations -----------------
tt <- seq(-4,4,len=n)
b <- sin((0.5*tt)^3)
scalar_train <- matrix(NA, M, p)
t_train <- matrix(NA, M, n)
x_train <- matrix(NA, M, n)
response_train <- matrix(NA, M, n)
for(i in 1:M){
u0 <- rnorm(1)
u1 <- rnorm(1,10,5)
x <- exp(tt) + rnorm(n, 0, 0.1)
Sigma <- cov.pow.ex(hyper = hp, input = x, gamma = 1)
diag(Sigma) <- diag(Sigma) + exp(hp$vv)
y <- u0+u1*b + mvrnorm(n=1, mu=rep(0,n), Sigma=Sigma)
scalar_train[i,] <- c(u0,u1)
t_train[i,] <- tt
x_train[i,] <- x
response_train[i,] <- y
}
## Test data (M+1)-th realisation ------------------
n_new <- 60
t_new <- seq(-4,4,len=n_new)
b_new <- sin((0.5*t_new)^3)
u0_new <- rnorm(1)
u1_new <- rnorm(1,10,5)
scalar_new <- cbind(u0_new, u1_new)
x_new <- exp(t_new) + rnorm(n_new, 0, 0.1)
Sigma_new <- cov.pow.ex(hyper = hp, input = x_new, gamma = 1)
diag(Sigma_new) <- diag(Sigma_new) + exp(hp$vv)
response_new <- u0_new + u1_new*b_new + mvrnorm(n=1, mu=rep(0,n_new),
Sigma=Sigma_new)
```
```{r, include=F, eval=F}
dataExampleGPFR <- list(tt=tt,
response_train=response_train,
x_train=x_train,
scalar_train=scalar_train,
t_new=t_new,
response_new=response_new,
x_new=x_new,
scalar_new=scalar_new)
save(dataExampleGPFR, file = "data/dataExampleGPFR.rda")
```
The estimation of mean and covariance functions in the GPFR model is done using
the `gpfr` function:
```{r, results=F}
a1 <- gpfr(response = response_train, time = tt, uReg = scalar_train,
fxReg = NULL, gpReg = x_train,
fyList = list(nbasis = 23, lambda = 0.0001),
uCoefList = list(list(lambda = 0.0001, nbasi = 23)),
Cov = 'pow.ex', gamma = 1, fitting = T)
```
Note that the estimated covariance function hyperparameters are similar to the
true values:
```{r}
unlist(lapply(a1$hyper,exp))
```
### Plot of raw data
To visualise all the realisations of the training data:
```{r}
plot(a1, type='raw')
```
To visualise three realisations of the training data:
```{r}
plot(a1, type='raw', realisations = 1:3)
```
### FR fit for training data
The in-sample fit using mean function from FR model only can be seen:
```{r}
plot(a1, type = 'meanFunction', realisations = 1:3)
```
### GPFR fit for training data
The GPFR model fit to the training data is visualised by using:
```{r}
plot(a1, type = 'fitted', realisations = 1:3)
```
### Type I prediction: $y_{M+1}$ observed
If $y_{M+1}(t)$ is observed over all the domain of $t$, the Type I prediction can be seen:
```{r, results=F}
b1 <- gpfrPredict(a1, testInputGP = x_new, testTime = t_new,
uReg = scalar_new, fxReg = NULL,
gpReg = list('response' = response_new,
'input' = x_new,
'time' = t_new))
plot(b1, type = 'prediction', colourTrain = 'pink')
lines(t_new, response_new, type = 'b', col = 4, pch = 19, cex = 0.6, lty = 3, lwd = 2)
```
### Type I prediction: $y_{M+1}$ partially observed
If we assume that $y_{M+1}(t)$ is only partially observed, we can obtain Type I predictions via:
```{r, results=F}
b2 <- gpfrPredict(a1, testInputGP = x_new, testTime = t_new,
uReg = scalar_new, fxReg = NULL,
gpReg = list('response' = response_new[1:20],
'input' = x_new[1:20],
'time' = t_new[1:20]))
plot(b2, type = 'prediction', colourTrain = 'pink')
lines(t_new, response_new, type = 'b', col = 4, pch = 19, cex = 0.6, lty = 3, lwd = 2)
```
### Type II prediction: $y_{M+1}$ not observed
Type II prediction, which is made by not including any information about $y_{M+1}(t)$,
is visualised below.
```{r, results=F}
b3 <- gpfrPredict(a1, testInputGP = x_new, testTime = t_new,
uReg = scalar_new, fxReg = NULL, gpReg = NULL)
plot(b3, type = 'prediction', colourTrain = 'pink')
lines(t_new, response_new, type='b', col = 4, pch = 19, cex = 0.6, lty = 3, lwd = 2)
```
```{r, include = FALSE}
options(old)
```