
Derivative-Free Gradient Projection Factor Rotation

The GPArotateDF Package

Author: Coen A. Bernaards

Principle of derivative-Free Factor Rotation

The gradient projection algorithm package GPArotation consists of wrapper functions and functions
that compute the gradients, Gq, needed for minimization. For all functions included in the GPAro-
tation package, the gradients are included in the vgQ routines. For example, the vgQ.quartimax

function provides the gradients Gq for quartimax rotation. Examples of gradient derivations, com-
putations are provided in Jennrich (2001) and Jennrich (2002), as well as Bernaards & Jennrich
(2005). However, the derivation of the gradient can be quite involved for complex rotation criteria.
In such cases, a derivative free version of gradient projection algorithm can be used for minimization
of the criterion function, without the need for a gradient. Details of the methods are described in
Jennrich (2004). The method is implemented in the package GPArotateDF that may be downloaded
and installed.

To perform derivative-free rotation, the main algorithms GPForth.df and GPFoblq.df are avail-
able for orthogonal and oblique rotation, respectively. Both are minimization algorithms. The
algorithms di�er from the regular algorithms by the inclusion of the numerical derivates Gf for
the rotation criteria in GPForth.df and GPFoblq.df. The algorithms require: an initial loadings
matrix A and a rotation method. Optional are initial rotation matrix Tmat (default is the identity
matrix). Other arguments needed for individual rotations are applied in the same way as in the
GPArotation package.

The rotation method is provided between quotation marks, and refers to the name of the �-
function. For example, the method = "varimax" through GPForth.df calls the ff.varimax func-
tion. The �-functions are the derivative-free analogues of the GPArotation vgQ functions. The
output of ff.varimax is the rotation criteria value, f, and the Method name, e.g. DF-Varimax.

New rotation functions need to be programmed as ff.newmethod. The only required input is
an initial loadings matrix A, and any potential additional arguments. The output consist of the
value f of the criterion, and the Method name (the GPForth.df and GPFoblq.df algorithms expect
this included in the result).

Derivative-free quartimax rotation

As an example, consider quartimax rotation. Gradient projection quartimax orthogonal rotation
seeks to minimize the sum of all loadings raised to power 4. Thus, using the notation of Bernaards
& Jennrich (2005) (page 682), the criterion f for minimization is calculated as

f = Q(Λ) = −1

4

∑
i

∑
r

λ4
ir.

Derivative-free quartimax rotation using ff.quartimax is then very simple

> library(GPArotateDF)

> ff.quartimax<- function(L){

1

f = -sum(L^4) / 4

list(f = f, Method = "DF-Quartimax")

}

> data(Harman, package="GPArotation")

> GPForth.df(Harman8, method="quartimax")

Of course, for quartimax, the gradient is easy to derive and regular rotation is a better choice.

Rotation when the derivative is complicated: cubimax

Sometimes the gradient is hard to derive. For example, a criterion that seeks to minimize loadings
to the power 3, the absolute value is needed for a meaningful result.

f = Q(Λ) = −
∑
i

∑
r

|λ3
ir|.

While the gradient may be complicated, the derivative-free function for minimization is straight-
forward.

> ff.cubimax<- function(L){

f = -sum(abs(L^3))

list(f = f, Method = "DF-Cubimax")

}

> GPForth.df(Harman8, method="cubimax")

Results di�er from quartimax and varimax rotation

Rotation when an algorithm is involved: Forced Simple Structure

in certain cases the derivate is so poorly de�ned that deriving the vgQ function is a non-starter.
For example, an algorithm that updates a weight matrix that, when multiplied with the loadings
matrix provides a rotation criterion to be minimized.

The algorithm Forced Simple Structure chooses a weight matrix focused on the lowest loadings.
The rotation criterion value f is minimized representing a rotated factor pattern which many low
loadings, restricted to each factor having at least some salient loadings. In each iteration, the weight
matrix Imat gets weight 1 at the lowest factor loadings, and 0 elsewhere.

Assume we have p items, and m factors (for a p x m loadings matrix). In each iteration, �rst
the lowest loadings get weight 1. Next, for each pair (i,j) of factors, lowest loadings get weight 1
until there are at least (m + kij) items with weight 1 on a single factor i or j (but not the other
factor), or not enough loadings are left to get weight 1. Possible values for kij = (0, ..., [p

- m]) and defaults to 2. Forced Simple Structure is most e�ective when kij has a lower value.
For each increase of 1, an additional (m) loadings get weight 1. The criterion f minimizes the
squared loadings for low loadings (�non-salient�). Salient loadings are therefor increased as the sum
of squared non-salient loadings is minimized.

> ff.fss <- function(L, kij=2){

m <- ncol(L)

p <- nrow(L)

2

zm <- m + kij

Imat <- matrix(0, p, m)

for (j in 1:m){

Imat[abs(L[,j]) <= sort(abs(L[,j]))[zm],j] <- 1 }

for (i in 1:(m-1)){

for (j in (i+1):m){

nz <- sum((Imat[,i] + Imat[,j]) ==1)

while (nz < zm && sum(Imat[,c(i,j)]) < m * 2){

tbc <- c(abs(L[,i]), abs(L[,j]))

tbcs <- sort(tbc [c(Imat[,i], Imat[,j])==0])[1]

Imat[abs(L) == tbcs] <- 1

nz <- sum((Imat[,i] + Imat[,j]) ==1)

}

}

}

Method <- paste("DF-Forced Simple Structure (kij = ",kij,")", sep="")

f <- sum(Imat*L^2)

list(f = f, Imat = Imat,

Method = Method)

}

> data(WansbeekMeijer, package = "GPArotation")

> z <- factanal(covmat = NetherlandsTV, factors = 3, rotation = "none")

> fssT.df(loadings(z), kij = 3)

> # which loadings get weight 1 in the first iteration?

> ff.fss(loadings(z), kij = 3)$Imat

The added sum(Imat) < m * 2 requirement was added to avoid in�nite looping. It is useful to
consider random starts as the rotation tends to have many local minima. The method works both
orthogonal and oblique.

Examples of other �-functions

Writing �-functions is straightforward because only the criterion value is needed. Here are a few
additional examples of �-functions. For all vgQ-functions exist and are preferable to be used.

The oblique rotation criterion for oblimax

> ff.oblimax <- function(L){

f <- -(log(sum(L^4))-2*log(sum(L^2)))

list(f = f,

Method = "DF-Oblimax")

}

Entropy criterion for orthogonal rotation

> ff.entropy <- function(L){

f <- -sum(L^2 * log(L^2 + (L^2==0)))/2

list(f = f,

Method = "DF-Entropy")

}

3

Simplimax that works well in oblique rotation

> ff.simplimax <- function(L,k=nrow(L)){

k: Number of close to zero loadings

Imat <- sign(L^2 <= sort(L^2)[k])

f <- sum(Imat*L^2)

list(f = f,

Method = "DF-Simplimax")

}

Target rotation. Requires both a weight matrix and a target matrix. Target rotation can be both
orthogonal and oblique.

> ff.pst <- function(L,W,Target){

Needs weight matrix W with 1's at specified values, 0 otherwise

e.g. W = matrix(c(rep(1,4),rep(0,8),rep(1,4)),8).

When W has only 1's this is procrustes rotation

Needs a Target matrix Target with hypothesized factor loadings.

e.g. Target = matrix(0,8,2)

Btilde <- W * Target

f <- sum((W*L-Btilde)^2)

list(f = f,

Method = "DF-PST")

}

References

Bernaards, C. A., & Jennrich, R. I. (2005). Gradient Projection Algorithms and Software for
Arbitrary Rotation Criteria in Factor Analysis. Educational and Psychological Measurement,
65(5), 676�696. doi: 10.1177/0013164404272507

Jennrich, R. I. (2002). A simple general procedure for orthogonal rotation. Psychometrika, 66(3),
289�306. doi: 10.1007/BF02294840

Jennrich, R. I. (2002). A simple general method for oblique rotation. Psychometrika, 67(3), 7�19.
doi: 10.1007/BF02294706

Jennrich, R. I. (2004). Derivative free gradient projection algorithms for rotation. Psychometrika,
69(3), 475�480. doi: 10.1007/BF02295647

4

