This is a quick tutorial for using the general GMCM for unsupervised clustering.
The GMCM1 package is loaded.
If GMCM is not installed, please uncomment the above line and rerun the script to install from CRAN. The development version can be installed from GitHub following the instructions there.
First, we simulate some toy data. We wish to simulate, say, 1000
observations of 2-dimensions each of which stems from one of 3
components. In order to do so, we construct a parameter object
theta
and simulate from the GMCM.
## List of 4
## $ u : num [1:1000, 1:2] 0.0452 0.5879 0.8876 0.0706 0.4786 ...
## $ z : num [1:1000, 1:2] -2.71 5.19 7.37 -1.77 4.46 ...
## $ K : int [1:1000] 3 3 1 3 1 1 3 1 1 1 ...
## $ theta:List of 5
## ..$ m : num 3
## ..$ d : num 2
## ..$ pie : Named num [1:3] 0.5084 0.0989 0.3928
## .. ..- attr(*, "names")= chr [1:3] "pie1" "pie2" "pie3"
## ..$ mu :List of 3
## .. ..$ comp1: num [1:2] 5.99 -8.08
## .. ..$ comp2: num [1:2] 3.97 -3.4
## .. ..$ comp3: num [1:2] 1.31 4.03
## ..$ sigma:List of 3
## .. ..$ comp1: num [1:2, 1:2] 2.55 -0.44 -0.44 3.77
## .. ..$ comp2: num [1:2, 1:2] 1.06 -1.6 -1.6 3.19
## .. ..$ comp3: num [1:2, 1:2] 11.2561 -0.0595 -0.0595 10.2816
## ..- attr(*, "class")= chr "theta"
As can be seen, the SimulateGMCMData
function returns a
list
containing the copula observations u
, the
unobserved process z
, the latent groups K
, and
the theta
used for simulation.
Plotting the true copula realizations and coloring by the true classes shows what we intend to estimate and recover:
A ranking of u
(or z
) corresponds to what
would be the data in a real application.
To fit a general GMCM, we must choose some initial parameters. The
choose.theta
is a (sometimes) helpful default we here
invoke explicitly:
## theta object with d = 2 dimensions and m = 3 components:
##
## $pie
## pie1 pie2 pie3
## 0.300 0.345 0.355
##
## $mu
## $mu$comp1
## [1] 0 0
##
## $mu$comp2
## [1] -2.097679 1.557202
##
## $mu$comp3
## [1] 1.039218 -1.846066
##
##
## $sigma
## $sigma$comp1
## [,1] [,2]
## [1,] 1 0
## [2,] 0 1
##
## $sigma$comp2
## [,1] [,2]
## [1,] 0.4001925 0.000000
## [2,] 0.0000000 0.489384
##
## $sigma$comp3
## [,1] [,2]
## [1,] 0.8003757 0.0000000
## [2,] 0.0000000 0.5226159
The function needs to know how many components we want to estimate though this number may very well be unknown in practice.
With the data loaded and defined initial parameters, the model is now fitted.
est_theta <- fit.full.GMCM(u = uhat, # Ranking function is applied automatically
theta = init_theta,
method = "NM",
max.ite = 5000,
verbose = FALSE)
print(est_theta)
## theta object with d = 2 dimensions and m = 3 components:
##
## $pie
## pie1 pie2 pie3
## 0.2085000 0.2745018 0.5169982
##
## $mu
## $mu$comp1
## [1] 0 0
##
## $mu$comp2
## [1] -3.1515792 0.8279297
##
## $mu$comp3
## [1] 0.8631953 -1.5608324
##
##
## $sigma
## $sigma$comp1
## [,1] [,2]
## [1,] 1.0000000 0.3978458
## [2,] 0.3978458 1.0000000
##
## $sigma$comp2
## [,1] [,2]
## [1,] 1.49969539 -0.01741992
## [2,] -0.01741992 0.43467752
##
## $sigma$comp3
## [,1] [,2]
## [1,] 0.2798609 -0.0292142
## [2,] -0.0292142 0.1083622
The fitting method is set to "NM"
with a maximum number
of iterations of 100
.
The estimated parameters are used to calculated posterior component probabilities on which the classification is based:
## int [1:1000] 2 1 3 2 3 3 2 3 3 1 ...
If it is of interest, the posterior probability can be computed directly using
The number of observations in each class can be e.g. counted by
## membership
## 1 2 3
## 200 272 528
The results are also displayed by plotting
par(mfrow = c(1,2))
plot(uhat, col = membership, asp = 1) # Plot of estimated copula values
z <- GMCM:::qgmm.marginal(uhat, theta = est_theta) # Estimate latent process
plot(z, col = membership, asp = 1) # Plot of estimated latent process
The fitted theta
object can also be plotted
directly:
This report was generated using rmarkdown2 and knitr3 under the session given below.
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] GMCM_1.4 rmarkdown_2.29
##
## loaded via a namespace (and not attached):
## [1] digest_0.6.37 R6_2.5.1 fastmap_1.2.0 xfun_0.49
## [5] maketools_1.3.1 cachem_1.1.0 knitr_1.49 htmltools_0.5.8.1
## [9] buildtools_1.0.0 lifecycle_1.0.4 cli_3.6.3 sass_0.4.9
## [13] jquerylib_0.1.4 compiler_4.4.2 sys_3.4.3 tools_4.4.2
## [17] evaluate_1.0.1 bslib_0.8.0 ellipse_0.5.0 Rcpp_1.0.13-1
## [21] yaml_2.3.10 jsonlite_1.8.9 rlang_1.1.4
Please cite the GMCM paper1 if you use the package or shiny app.