Title: | Generalized Graded Unfolding Model |
---|---|
Description: | An implementation of the generalized graded unfolding model (GGUM) in R, see Roberts, Donoghue, and Laughlin (2000) <doi:10.1177/01466216000241001>). It allows to simulate data sets based on the GGUM. It fits the GGUM and the GUM, and it retrieves item and person parameter estimates. Several plotting functions are available (item and test information functions; item and test characteristic curves; item category response curves). Additionally, there are some functions that facilitate the communication between R and 'GGUM2004'. Finally, a model-fit checking utility, MODFIT(), is also available. |
Authors: | Jorge N. Tendeiro [aut, cre], Sebastian Castro-Alvarez [aut] |
Maintainer: | Jorge N. Tendeiro <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.5 |
Built: | 2024-12-25 06:30:58 UTC |
Source: | CRAN |
The GGUM
package fits the generalized graded response
model (GGUM; Roberts et al., 1996, 2000). It is based on marginal maximum
likelihood (Roberts et al., 2000) to estimate the item parameters and an
estimated a posteriori (EAP) method to estimate the person parameters.
The GGUM is defined by
where:
The subscripts and
identify the item
and person, respectively.
denotes the
observed answer response.
is the number of subjective
response options minus 1.
is the latent trait score
for person
.
is the item slope
(discrimination).
is the item location.
(
) are the
threshold parameters.
Parameter is arbitrarily constrained to zero and the
threshold parameters are constrained to symmetry around zero, that is,
and
for
.
This package produces comparable results to the ones based on the GGUM2004 program (Roberts et al., 2000; Roberts et al., 2006), for the GUM (Model 3 in GGUM2004) and the GGUM (Model 8 in GGUM2004). For those accustomed to using GGUM2004, this packages provides a useful set of functions that allow exporting data and code to GGUM2004, running GGUM2004, and retrieving the parameter estimates. Thus, if desired, one can run GGUM2004 and retrieve the results completely from within the R environment.
Versions:
Version 0.3.1 (January 2018)
Version 0.3.2 (July 2018)
Fixed a bug related to data preprocessing (removing response patterns with
all-disagree answers). Many thanks to JB Duck-Mayr for offering a fix in
GitHub, and also to Michael Hermann who independently spotted the same issue
(for dichotomous data).
Version 0.4 (January 2020)
Fixed two bugs (in Theta.EAP() and write.GGUM2004())
Version 0.4-1 (May 2020)
Implemented two changes in GUM.R to adapt to R 4.1 (currently R-devel) and
survive CRAN's build checks.
Version 0.4-2 (February 2021)
Updated affiliation.
Version 0.4-3 (October 2021)
Implemented further changes to adapt to R 4.1, similar to
what was done in Version 0.4-1.
Version 0.5 (September 2023)
Updated some functions to fix a bug related to identifying
the class of objects.
Package: | GGUM |
Type: | Package |
Version: | 0.5 |
Date: | 2023-09-08 |
License: | GPL Version 2 or later |
The GGUM package contains useful functions, summarized below:
Fitting the GUM/GGUM:
Function | Description |
GenData.GGUM |
Generate data from the GUM/GGUM |
probs.GGUM |
Compute model probabilities for the GGUM |
GUM |
Fit the GUM |
GGUM |
Fit the GGUM |
MODFIT
|
MODFIT for the GGUM |
Theta.EAP |
Estimate thetas and their SEs (GUM, GGUM) |
Plots:
Function | Description |
plotCRC |
Plot item category response curves (CRCs) |
plotICC |
Plot item characteristic curves (ICCs) |
plotIIF
|
Plot item information functions (IIFs) |
plotTCC
|
Plot test characteristic curve (TCC) |
plotTIF
|
Plot test information function (TIF) |
GGUM2004 interface:
Function | Description |
export.GGUM2004 |
Exports data in GGUM2004 friendly format |
write.GGUM2004 |
Writes a command file for GGUM2004 |
run.GGUM2004 |
Call GGUM2004 and import the estimated parameters into R |
read.item.GGUM2004 |
Read GGUM2004 item estimates into R |
read.person.GGUM2004 |
Read GGUM2004 person estimates into R |
Available methods for objects of class "GGUM":
plot() |
print() |
summary() |
Maintainer: Jorge N. Tendeiro [email protected]
Authors:
Sebastian Castro-Alvarez [email protected]
Roberts JS, Laughlin JE (1996). “A unidimensional item response theory model for unfolding responses from a graded disagree-agree response scale.” Applied Psychological Measurement, 20, 231-255.
Roberts JS, Donoghue JR, Laughlin JE (2000). “A general item response theory model for unfolding unidimensional polytomous responses.” Applied Psychological Measurement, 24, 3-32.
Roberts JS, Fang H, Cui W, Wang Y (2006). “GGUM2004: A Windows-Based Program to Estimate Parameters in the Generalized Graded Unfolding Model.” Applied Psychological Measurement, 30, 64-65.
Useful links:
## Not run: # Example 1 - Same value C across items: # Generate data: gen1 <- GenData.GGUM(2000, 10, 2, seed = 125) # Fit the GGUM: fit1 <- GGUM(gen1$data, 2) th1 <- Theta.EAP(fit1) # Plot the test information function: plotTIF(fit1, th1) # Check model fit: MOD.res <- MODFIT(fit1) # Example 2 - Different C across items: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) I <- 10 gen2 <- GenData.GGUM(2000, I, C, seed = 125) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) th2 <- Theta.EAP(fit2) # Plot item information functions for items 1 and 3: plotIIF(fit2, th2, items = c(1, 3)) # Example 3 - Fit GGUM using GGUM2004: # Assuming the installation directory is C:/GGUM2004, then do this: # Export data to GGUM2004: export.GGUM2004(gen2$data) # Write command file: write.GGUM2004(I, C) # Run GGUM2004: res.GGUM2004 <- run.GGUM2004() ## End(Not run)
## Not run: # Example 1 - Same value C across items: # Generate data: gen1 <- GenData.GGUM(2000, 10, 2, seed = 125) # Fit the GGUM: fit1 <- GGUM(gen1$data, 2) th1 <- Theta.EAP(fit1) # Plot the test information function: plotTIF(fit1, th1) # Check model fit: MOD.res <- MODFIT(fit1) # Example 2 - Different C across items: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) I <- 10 gen2 <- GenData.GGUM(2000, I, C, seed = 125) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) th2 <- Theta.EAP(fit2) # Plot item information functions for items 1 and 3: plotIIF(fit2, th2, items = c(1, 3)) # Example 3 - Fit GGUM using GGUM2004: # Assuming the installation directory is C:/GGUM2004, then do this: # Export data to GGUM2004: export.GGUM2004(gen2$data) # Write command file: write.GGUM2004(I, C) # Run GGUM2004: res.GGUM2004 <- run.GGUM2004() ## End(Not run)
export.GGUM2004
exports the data from R to a text file
according to the format required by 'GGUM2004'
export.GGUM2004(data, data.file = "data", data.dir = tempdir())
export.GGUM2004(data, data.file = "data", data.dir = tempdir())
data |
The R data matrix to be exported. |
data.file |
A character string defining the name of the data file. No file extension is required. |
data.dir |
A character string defining the path to the directory where
the data file (possibly exported by function
|
This function exports the R matrix data
in 'GGUM2004'
(Roberts, Donoghue, & Laughlin, 2000; Roberts et al., 2006) friendly
format. This data file is to be used together with a 'GGUM2004' command
script (or using the GUI itself, of course). 'GGUM2004' may be executed
directly or may be called from R, see run.GGUM2004
.
By experience, we noticed that long directory paths (especially if spaces
are included) make 'GGUM2004' fail to execute with error
file not found
. Therefore, a good advice is to choose
data.dir
wisely (short paths, no spaces).
Observe that this function is optimized for the Windows operating system because 'GGUM2004' is a Windows program.
Jorge N. Tendeiro, [email protected]
Roberts JS, Donoghue JR, Laughlin JE (2000). “A general item response theory model for unfolding unidimensional polytomous responses.” Applied Psychological Measurement, 24, 3-32.
Roberts JS, Fang H, Cui W, Wang Y (2006). “GGUM2004: A Windows-Based Program to Estimate Parameters in the Generalized Graded Unfolding Model.” Applied Psychological Measurement, 30, 64-65.
# Generate data: C <- c(3, 3, 3, 5, 5, 5) I <- 6 gen <- GenData.GGUM(750, I, C, seed = 125) # Export data to 'GGUM2004': export.GGUM2004(gen$data)
# Generate data: C <- c(3, 3, 3, 5, 5, 5) I <- 6 gen <- GenData.GGUM(750, I, C, seed = 125) # Export data to 'GGUM2004': export.GGUM2004(gen$data)
GenData.GGUM
generates all model parameters (items and
persons) and item scores.
GenData.GGUM(N, I, C, model = "GGUM", seed = 123)
GenData.GGUM(N, I, C, model = "GGUM", seed = 123)
N |
Number of persons (rows). |
I |
Number of items (columns). |
C |
|
model |
A string identifying the model. Possible values are "GUM" or "GGUM" (default). |
seed |
An integer, allowing the user to control the generation process (for replication purposes). |
The function returns a list with five elements:
alpha.gen |
The discrimination parameters. |
delta.gen |
The difficulty parameters. |
taus.gen |
The threshold parameters. |
theta.gen |
The person parameters. |
data |
The (NxI) data matrix. The item scores are coded 0, 1, ..., C for an item with (C+1) observable response categories. |
The generalized graded unfolding model (GGUM; Roberts & Laughlin, 1996; Roberts et al., 2000) is given by
where:
The subscripts and
identify the item
and person, respectively.
denotes
the observed answer response.
is the number of
subjective response options minus 1.
is the
latent trait score for person
.
is the
item slope (discrimination).
is the item
location.
(
) are the threshold parameters.
Parameter is arbitrarily constrained to zero and
the threshold parameters are constrained to symmetry around zero, that is,
and
for
.
Parameters are randomly uniformly drawn from the
(.5, 2) interval. Parameters
are randomly drawn
from the standard normal distribution bounded between
and 2. The
threshold parameters are generated following the same procedure of Roberts,
Donoghue, and Laughlin (2002). Finally, the person parameters are randomly
drawn from the standard normal distribution.
If model = "GUM"
the data based on the GUM (Roberts and Laughlin,
1996) model are generated. The GUM is a constrained version of the GGUM,
where all discrimination parameters are equal to 1 and the item thresholds
are shared by all items.
Jorge N. Tendeiro, [email protected]
gen1 <- GenData.GGUM(500, 10, 5, seed = 456) gen1$data # Retrieve the data. gen1$alpha.gen # The discrimination parameters. # Generate data based on items varying in the number of observable response categories: gen2 <- GenData.GGUM(500, 5, c(5, 5, 5, 4, 4), seed = 789)
gen1 <- GenData.GGUM(500, 10, 5, seed = 456) gen1$data # Retrieve the data. gen1$alpha.gen # The discrimination parameters. # Generate data based on items varying in the number of observable response categories: gen2 <- GenData.GGUM(500, 5, c(5, 5, 5, 4, 4), seed = 789)
GGUM
estimates all item parameters for the GGUM.
GGUM( data, C, SE = TRUE, precision = 4, N.nodes = 30, max.outer = 60, max.inner = 60, tol = 0.001 )
GGUM( data, C, SE = TRUE, precision = 4, N.nodes = 30, max.outer = 60, max.inner = 60, tol = 0.001 )
data |
The |
C |
|
SE |
Logical value: Estimate the standard errors of the item parameter
estimates? Default is |
precision |
Number of decimal places of the results (default = 4). |
N.nodes |
Number of nodes for numerical integration (default = 30). |
max.outer |
Maximum number of outer iterations (default = 60). |
max.inner |
Maximum number of inner iterations (default = 60). |
tol |
Convergence tolerance (default = .001). |
The function returns a list (an object of class GGUM
) with 12
elements:
data |
Data matrix. |
C |
Vector |
alpha |
The estimated discrimination parameters for the GGUM. |
delta |
The estimated difficulty parameters. |
taus |
The estimated threshold parameters. |
SE |
The standard errors of the item parameters estimates. |
rows.rm |
Indices of rows removed from the data before fitting the model, due to complete disagreement. |
N.nodes |
Number of nodes for numerical integration. |
tol.conv |
Loss function value at convergence (it is smaller than
|
iter.inner |
Number of inner iterations (it is equal to 1 upon convergence). |
model |
Model fitted. |
InformationCrit |
Loglikelihood, number of model parameters, AIC, BIC, CAIC. |
The generalized graded unfolding model (GGUM; Roberts & Laughlin, 1996; Roberts et al., 2000) is given by
where:
The subscripts and
identify the item
and person, respectively.
denotes
the observed answer response.
is the number of
subjective response options minus 1.
is the
latent trait score for person
.
is the
item slope (discrimination).
is the item
location.
(
) are the threshold parameters.
Parameter is arbitrarily constrained to zero and
the threshold parameters are constrained to symmetry around zero, that is,
and
for
.
The marginal maximum likelihood algorithm of Roberts et al. (2000) was implemented.
Jorge N. Tendeiro, [email protected]
Roberts JS, Laughlin JE (1996). “A unidimensional item response theory model for unfolding responses from a graded disagree-agree response scale.” Applied Psychological Measurement, 20, 231-255.
Roberts JS, Donoghue JR, Laughlin JE (2000). “A general item response theory model for unfolding unidimensional polytomous responses.” Applied Psychological Measurement, 24, 3-32.
## Not run: # Example 1 - Same value C across items: # Generate data: gen1 <- GenData.GGUM(2000, 10, 2, seed = 125) # Fit the GGUM: fit1 <- GGUM(gen1$data, 2) # Compare true and estimated item parameters: cbind(gen1$alpha, fit1$alpha) cbind(gen1$delta, fit1$delta) cbind(c(gen1$taus[, 4:5]), c(fit1$taus[, 4:5])) # Example 2 - Different C across items: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) gen2 <- GenData.GGUM(2000, 10, C, seed = 125) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) # Compare true and estimated item parameters: cbind(gen2$alpha, fit2$alpha) cbind(gen2$delta, fit2$delta) cbind(c(gen2$taus[, 7:11]), c(fit2$taus[, 7:11])) ## End(Not run)
## Not run: # Example 1 - Same value C across items: # Generate data: gen1 <- GenData.GGUM(2000, 10, 2, seed = 125) # Fit the GGUM: fit1 <- GGUM(gen1$data, 2) # Compare true and estimated item parameters: cbind(gen1$alpha, fit1$alpha) cbind(gen1$delta, fit1$delta) cbind(c(gen1$taus[, 4:5]), c(fit1$taus[, 4:5])) # Example 2 - Different C across items: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) gen2 <- GenData.GGUM(2000, 10, C, seed = 125) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) # Compare true and estimated item parameters: cbind(gen2$alpha, fit2$alpha) cbind(gen2$delta, fit2$delta) cbind(c(gen2$taus[, 7:11]), c(fit2$taus[, 7:11])) ## End(Not run)
GUM
estimates all item parameters for the GUM.
GUM( data, C, SE = TRUE, precision = 4, N.nodes = 30, max.outer = 60, max.inner = 60, tol = 0.001 )
GUM( data, C, SE = TRUE, precision = 4, N.nodes = 30, max.outer = 60, max.inner = 60, tol = 0.001 )
data |
The |
C |
|
SE |
Logical value: Estimate the standard errors of the item parameter
estimates? Default is |
precision |
Number of decimal places of the results (default = 4). |
N.nodes |
Number of nodes for numerical integration (default = 30). |
max.outer |
Maximum number of outer iterations (default = 60). |
max.inner |
Maximum number of inner iterations (default = 60). |
tol |
Convergence tolerance (default = .001). |
The function returns a list (an object of class GGUM
) with 12
elements:
data |
Data matrix. |
C |
Vector |
alpha |
In case of the GUM this is simply a vector of 1s. |
delta |
The estimated difficulty parameters. |
taus |
The estimated threshold parameters. |
SE |
The standard errors of the item parameters estimates. |
rows.rm |
Indices of rows removed from the data before fitting the model, due to complete disagreement. |
N.nodes |
Number of nodes for numerical integration. |
tol.conv |
Loss function value at convergence (it is smaller than
|
iter.inner |
Number of inner iterations (it is equal to 1 upon convergence). |
model |
Model fitted. |
InformationCrit |
Loglikelihood, number of model parameters, AIC, BIC, CAIC. |
The graded unfolding model (GUM; Roberts & Laughlin, 1996)
is a constrained version of the GGUM (Roberts et al., 2000; see
GGUM
). GUM is constrained in two ways: All
discrimination parameters are fixed to unity and the threshold parameters
are shared across items. In particular, the last constraint implies that
only data with the same response categories across items should be used
(i.e., is constant for all items).
Estimated GUM parameters are used as the second step of fitting the more general GGUM. Since under the GGUM data may include items with different number of response categories, the code to fitting the GUM was internally extended to accommodate for this.
The marginal maximum likelihood algorithm of Roberts et al. (2000) was implemented.
Jorge N. Tendeiro, [email protected]
Roberts JS, Laughlin JE (1996). “A unidimensional item response theory model for unfolding responses from a graded disagree-agree response scale.” Applied Psychological Measurement, 20, 231-255.
Roberts JS, Donoghue JR, Laughlin JE (2000). “A general item response theory model for unfolding unidimensional polytomous responses.” Applied Psychological Measurement, 24, 3-32.
# Generate data: gen <- GenData.GGUM(400, 5, 3, "GUM", seed = 139) # Fit the GUM: fit <- GUM(gen$data, 3) # Compare true and estimated item parameters: cbind(gen$delta, fit$delta) cbind(c(gen$taus[, 5:7]), c(fit$taus[, 5:7]))
# Generate data: gen <- GenData.GGUM(400, 5, 3, "GUM", seed = 139) # Fit the GUM: fit <- GUM(gen$data, 3) # Compare true and estimated item parameters: cbind(gen$delta, fit$delta) cbind(c(gen$taus[, 5:7]), c(fit$taus[, 5:7]))
MODFIT
computes the adjusted
degrees of freedom ratios (
) introduced by Drasgow
et al. (1995) for the GGUM.
MODFIT(IP, precision = 4)
MODFIT(IP, precision = 4)
IP |
Object of class |
precision |
Number of decimal places of the results (default = 4). |
A list (an object of class MODFIT
) with four elements: The
results for singlets, doublets, triples, and a summary result.
This function computes the adjusted
degrees of freedom ratios
(
) introduced by Drasgow et al. (1995). These
statistics are based on expected frequencies that
depend on the estimated item parameters and the distribution of
. The unadjusted statistic for item
is
given by
chisq_i = sum( (O_iz - E_iz)^2 / E_iz; z = 0, ..., C ),
with
is the observed frequency of choosing answer
for
item
and
is the standard normal
density. The equation above applies to single items ('singlets'). The
formula is easily extendible to pairs and triples of items. For a large
number of items, the function selects suitable subsets of doublets and
triples to perform the computations since its total number increases
quickly with test length (Drasgow et al., 1995).
The formula is adjusted to a sample size of 3,000, as follows (see also LaHuis et al., 2011):
where is a number of degrees of freedom that depends on the number
of singlets, doublets, and triplets.
As an heuristic, values of larger than 3 are
indicative of model misfit.
This function produces the same numerical results as the MODFIT program (Stark, 2001) for the GGUM.
Jorge N. Tendeiro, [email protected]
Drasgow F, Levine MV, Tsien S, Williams B, Mead AD (1995). “Fitting polytomous Item Response Theory models to multiple-choice tests.” Applied Psychological Measurement, 19, 143-165.
LaHuis DM, Clark P, O'Brien E (2011). “An examination of I Response Theory item fit indices for the Graded Response Model.” Organizational Research Methods, 14, 10-23.
Stark S (2001). “MODFIT version 1.1 [Computer software].”
# For GUM: # Generate data: gen1 <- GenData.GGUM(400, 5, 3, "GUM", seed = 139) # Fit the GUM: fit1 <- GUM(gen1$data, 3) # Compute the adjusted chi square degrees of freedom ratios: modfit.res1 <- MODFIT(fit1) modfit.res1$Singlets modfit.res1$Doublets modfit.res1$Triplets modfit.res1$Summary ## Not run: # For GGUM: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) gen2 <- GenData.GGUM(2000, 10, C, "GGUM", seed = 156) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) # Compute the adjusted chi square degrees of freedom ratios: modfit.res2 <- MODFIT(fit1) modfit.res2$Singlets modfit.res2$Doublets modfit.res2$Triplets modfit.res2$Summary ## End(Not run)
# For GUM: # Generate data: gen1 <- GenData.GGUM(400, 5, 3, "GUM", seed = 139) # Fit the GUM: fit1 <- GUM(gen1$data, 3) # Compute the adjusted chi square degrees of freedom ratios: modfit.res1 <- MODFIT(fit1) modfit.res1$Singlets modfit.res1$Doublets modfit.res1$Triplets modfit.res1$Summary ## Not run: # For GGUM: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) gen2 <- GenData.GGUM(2000, 10, C, "GGUM", seed = 156) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) # Compute the adjusted chi square degrees of freedom ratios: modfit.res2 <- MODFIT(fit1) modfit.res2$Singlets modfit.res2$Doublets modfit.res2$Triplets modfit.res2$Summary ## End(Not run)
plot.CRC
plots item CRCs for the GUM and the GGUM.
plotCRC(IP, items = NULL, x.lim = 4, ThetaminDelta = TRUE, quiet = FALSE)
plotCRC(IP, items = NULL, x.lim = 4, ThetaminDelta = TRUE, quiet = FALSE)
IP |
Object of class |
items |
Vector indicating the items for which the CRCs are to be plotted. Default is all items. |
x.lim |
Controls the limits of the x-axis. Default is -4 through +4. |
ThetaminDelta |
Logical; if |
quiet |
Render all plots for |
The function returns a three-dimensional array with the probabilities associated to each item's CRC. These are the values shown in the plot.
This function plots the item category response curves (CRCs) for the requested items.
Jorge N. Tendeiro, [email protected]
# For GUM: # Generate data: gen1 <- GenData.GGUM(400, 5, 3, "GUM", seed = 139) # Fit the GUM: fit1 <- GUM(gen1$data, 3) # Plot CRCs: plotCRC(fit1, items = 1, quiet = TRUE) ## Not run: # For GGUM: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) gen2 <- GenData.GGUM(2000, 10, C, "GGUM", seed = 156) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) # Plot CRCs: plotCRC(fit2, items = 1, quiet = TRUE) ## End(Not run)
# For GUM: # Generate data: gen1 <- GenData.GGUM(400, 5, 3, "GUM", seed = 139) # Fit the GUM: fit1 <- GUM(gen1$data, 3) # Plot CRCs: plotCRC(fit1, items = 1, quiet = TRUE) ## Not run: # For GGUM: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) gen2 <- GenData.GGUM(2000, 10, C, "GGUM", seed = 156) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) # Plot CRCs: plotCRC(fit2, items = 1, quiet = TRUE) ## End(Not run)
plot.ICC
plots the ICCs for the GUM and the GGUM.
plotICC(IP, Th, items = NULL, quiet = FALSE)
plotICC(IP, Th, items = NULL, quiet = FALSE)
IP |
Object of class |
Th |
Theta estimates from function |
items |
Vector indicating the items for which the ICCs are to be plotted. Default is all items. |
quiet |
Render all plots for |
The function returns the correlation between observed and expected item scores (missing values pairwise removed).
This function plots the item characteristic curves (ICCs).
Jorge N. Tendeiro, [email protected]
## Not run: # For GUM: # Generate data # (toy example: Too few items (due to computation time constraints) for # accurate estimation of person parameters; larger number of items is # required in practice): gen1 <- GenData.GGUM(400, 5, 3, "GUM", seed = 139) # Fit the GUM: fit1 <- GUM(gen1$data, 3) th1 <- Theta.EAP(fit1) # Plot ICCs: plotICC(fit1, th1, items = 1, quiet = TRUE) ## End(Not run) ## Not run: # For GGUM: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) gen2 <- GenData.GGUM(2000, 10, C, "GGUM", seed = 156) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) th2 <- Theta.EAP(fit2) # Plot ICCs: plotICC(fit2, th2, items = 1, quiet = TRUE) ## End(Not run)
## Not run: # For GUM: # Generate data # (toy example: Too few items (due to computation time constraints) for # accurate estimation of person parameters; larger number of items is # required in practice): gen1 <- GenData.GGUM(400, 5, 3, "GUM", seed = 139) # Fit the GUM: fit1 <- GUM(gen1$data, 3) th1 <- Theta.EAP(fit1) # Plot ICCs: plotICC(fit1, th1, items = 1, quiet = TRUE) ## End(Not run) ## Not run: # For GGUM: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) gen2 <- GenData.GGUM(2000, 10, C, "GGUM", seed = 156) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) th2 <- Theta.EAP(fit2) # Plot ICCs: plotICC(fit2, th2, items = 1, quiet = TRUE) ## End(Not run)
plot.IIF
plots the IIFs for the GUM and the GGUM.
plotIIF(IP, Th, items = NULL, quiet = FALSE)
plotIIF(IP, Th, items = NULL, quiet = FALSE)
IP |
Object of class |
Th |
Theta estimates from function |
items |
Vector indicating the items for which the ICCs are to be plotted. Default is all items. |
quiet |
Render all plots for |
The function returns the (x, y) coordinates of the IIFs.
This function plots the item information functions (IIFs).
Jorge N. Tendeiro, [email protected]
## Not run: # For GUM: # Generate data # (toy example: Too few items (due to computation time constraints) for # accurate estimation of person parameters; larger number of items is # required in practice): gen1 <- GenData.GGUM(400, 5, 3, "GUM", seed = 139) # Fit the GUM: fit1 <- GUM(gen1$data, 3) th1 <- Theta.EAP(fit1) # Plot IIFs: plotIIF(fit1, th1, items = 1, quiet = TRUE) ## End(Not run) ## Not run: # For GGUM: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) gen2 <- GenData.GGUM(2000, 10, C, "GGUM", seed = 156) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) th2 <- Theta.EAP(fit2) # Plot IIFs: plotIIF(fit2, th2, items = 1, quiet = TRUE) ## End(Not run)
## Not run: # For GUM: # Generate data # (toy example: Too few items (due to computation time constraints) for # accurate estimation of person parameters; larger number of items is # required in practice): gen1 <- GenData.GGUM(400, 5, 3, "GUM", seed = 139) # Fit the GUM: fit1 <- GUM(gen1$data, 3) th1 <- Theta.EAP(fit1) # Plot IIFs: plotIIF(fit1, th1, items = 1, quiet = TRUE) ## End(Not run) ## Not run: # For GGUM: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) gen2 <- GenData.GGUM(2000, 10, C, "GGUM", seed = 156) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) th2 <- Theta.EAP(fit2) # Plot IIFs: plotIIF(fit2, th2, items = 1, quiet = TRUE) ## End(Not run)
plot.TCC
plots the TCC for the GUM and the GGUM.
plotTCC(IP, Th)
plotTCC(IP, Th)
IP |
Object of class |
Th |
Theta estimates from function |
The function returns a list with three elements:
coords |
(x, y) coordinates of the TCC. |
cor.OBS.EXP |
Correlation between observed and expected test scores (missing values pairwise removed). |
cor.OBS.EXP.means |
Correlation between observed and expected mean
test scores (missing values pairwise removed). The |
This function plots the test characteristic curve (TCC).
Jorge N. Tendeiro, [email protected]
## Not run: # For GUM: # Generate data # (toy example: Too few items (due to computation time constraints) for # accurate estimation of person parameters; larger number of items is # required in practice): gen1 <- GenData.GGUM(400, 5, 3, "GUM", seed = 139) # Fit the GUM: fit1 <- GUM(gen1$data, 3) th1 <- Theta.EAP(fit1) # Plot TCC: plotTCC(fit1, th1) ## End(Not run) ## Not run: # For GGUM: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) gen2 <- GenData.GGUM(2000, 10, C, "GGUM", seed = 156) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) th2 <- Theta.EAP(fit2) # Plot TCC: plotTCC(fit2, th2) ## End(Not run)
## Not run: # For GUM: # Generate data # (toy example: Too few items (due to computation time constraints) for # accurate estimation of person parameters; larger number of items is # required in practice): gen1 <- GenData.GGUM(400, 5, 3, "GUM", seed = 139) # Fit the GUM: fit1 <- GUM(gen1$data, 3) th1 <- Theta.EAP(fit1) # Plot TCC: plotTCC(fit1, th1) ## End(Not run) ## Not run: # For GGUM: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) gen2 <- GenData.GGUM(2000, 10, C, "GGUM", seed = 156) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) th2 <- Theta.EAP(fit2) # Plot TCC: plotTCC(fit2, th2) ## End(Not run)
plot.TIF
plots the TIF for the GUM and the GGUM.
plotTIF(IP, Th)
plotTIF(IP, Th)
IP |
Object of class |
Th |
Theta estimates from function |
The function returns the (x, y) coordinates of the TIF.
This function plots the test information function (TIF).
Jorge N. Tendeiro, [email protected]
## Not run: # For GUM: # Generate data # (toy example: Too few items (due to computation time constraints) for # accurate estimation of person parameters; larger number of items is # required in practice): gen1 <- GenData.GGUM(400, 5, 3, "GUM", seed = 139) # Fit the GUM: fit1 <- GUM(gen1$data, 3) th1 <- Theta.EAP(fit1) # Plot TIF: plotTIF(fit1, th1) ## End(Not run) ## Not run: # For GGUM: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) gen2 <- GenData.GGUM(2000, 10, C, "GGUM", seed = 156) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) th2 <- Theta.EAP(fit2) # Plot TIF: plotTIF(fit2, th2) ## End(Not run)
## Not run: # For GUM: # Generate data # (toy example: Too few items (due to computation time constraints) for # accurate estimation of person parameters; larger number of items is # required in practice): gen1 <- GenData.GGUM(400, 5, 3, "GUM", seed = 139) # Fit the GUM: fit1 <- GUM(gen1$data, 3) th1 <- Theta.EAP(fit1) # Plot TIF: plotTIF(fit1, th1) ## End(Not run) ## Not run: # For GGUM: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) gen2 <- GenData.GGUM(2000, 10, C, "GGUM", seed = 156) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) th2 <- Theta.EAP(fit2) # Plot TIF: plotTIF(fit2, th2) ## End(Not run)
probs.GGUM
computes model probabilities for the GGUM (and
the GUM) for given item and person parameters.
probs.GGUM(alpha, delta, taus, theta, C)
probs.GGUM(alpha, delta, taus, theta, C)
alpha |
A vector of length |
delta |
A vector of length |
taus |
An |
theta |
A vector of length |
C |
|
The function returns an array with the
GGUM probabilities, with
. To retrieve the
GUM-based probabilities just constrain alpha to a unit vector of length I
(i.e.,
alpha = rep(1, I)
). In this case, make sure C
is
constant across items.
This function computes the GGUM-based probabilities for all
(person, item, response category) combinations. For the GGUM formula see
the help for function GGUM
(GGUM
).
Jorge N. Tendeiro, [email protected]
C <- c(3, 3, 3, 5, 5) gen <- GenData.GGUM(10, 5, C, seed = 456) gen.alpha <- gen$alpha.gen gen.delta <- gen$delta.gen gen.taus <- gen$taus.gen gen.theta <- gen$theta.gen # Compute model probabilities for the parameters above: Ps <- probs.GGUM(gen.alpha, gen.delta, gen.taus, gen.theta, C) Ps # In particular, the sum of the probabilities across all response options # (i.e., the third dimension) should be 1 for all (person, item) combinations: apply(Ps, 1:2, sum)
C <- c(3, 3, 3, 5, 5) gen <- GenData.GGUM(10, 5, C, seed = 456) gen.alpha <- gen$alpha.gen gen.delta <- gen$delta.gen gen.taus <- gen$taus.gen gen.theta <- gen$theta.gen # Compute model probabilities for the parameters above: Ps <- probs.GGUM(gen.alpha, gen.delta, gen.taus, gen.theta, C) Ps # In particular, the sum of the probabilities across all response options # (i.e., the third dimension) should be 1 for all (person, item) combinations: apply(Ps, 1:2, sum)
read.item.GGUM2004
reads the output files from 'GGUM2004'
with the item parameters. Both the item parameter estimates and their
standard errors are imported into R.
read.item.GGUM2004(temp.dir = "C:/GGUM2004/TEMPFILE", precision = 4)
read.item.GGUM2004(temp.dir = "C:/GGUM2004/TEMPFILE", precision = 4)
temp.dir |
The directory where 'GGUM2004' saved the output. By default, it is "C:/GGUM2004/TEMPFILE". |
precision |
Number of decimal places of the results (default = 4). |
read.item.GGUM2004
returns a list cointaning the following
components:
alpha |
The estimated discrimination parameters (for GGUM). |
delta |
The estimated difficulty parameters. |
taus |
The estimated threshold parameters. |
alphaSE |
The standard errors for the estimated discrimination parameters (for GGUM). |
deltaSE |
The standard errors for the estimated difficulty parameters. |
tausSE |
The standard errors for the estimated threshold
parameters (above zero; recall that the threshold parameters are
constrained to symmetry around zero, that is,
|
Observe that this function is optimized for the Windows operating system because 'GGUM2004' is a Windows program.
Sebastian Castro-Alvarez, [email protected]
Roberts JS, Donoghue JR, Laughlin JE (2000). “A general item response theory model for unfolding unidimensional polytomous responses.” Applied Psychological Measurement, 24, 3-32.
Roberts JS, Fang H, Cui W, Wang Y (2006). “GGUM2004: A Windows-Based Program to Estimate Parameters in the Generalized Graded Unfolding Model.” Applied Psychological Measurement, 30, 64-65.
## Not run: # If the 'GGUM2004' output files are in the default directory # (C:/GGUM2004/TEMPFILE), then simply execute read.item.GGUM2004() ## End(Not run)
## Not run: # If the 'GGUM2004' output files are in the default directory # (C:/GGUM2004/TEMPFILE), then simply execute read.item.GGUM2004() ## End(Not run)
read.person.GGUM2004
reads the output files from 'GGUM2004'
with the person parameters. Both the person parameter estimates and their
standard errors are imported into R.
read.person.GGUM2004(temp.dir = "C:/GGUM2004/TEMPFILE", precision = 4)
read.person.GGUM2004(temp.dir = "C:/GGUM2004/TEMPFILE", precision = 4)
temp.dir |
The directory where 'GGUM2004' saved the output. By default, it is "C:/GGUM2004/TEMPFILE". |
precision |
Number of decimal places of the results (default = 4). |
An matrix is returned, where
is the
number of persons. The first column is the person ID, the second column has
the person parameter estimates, and the last column has the standard
errors.
Observe that this function is optimized for the Windows operating system because 'GGUM2004' is a Windows program.
Sebastian Castro-Alvarez, [email protected]
Roberts JS, Fang H, Cui W, Wang Y (2006). “GGUM2004: A Windows-Based Program to Estimate Parameters in the Generalized Graded Unfolding Model.” Applied Psychological Measurement, 30, 64-65.
## Not run: # If the 'GGUM2004' output files are in the default directory # (C:/GGUM2004/TEMPFILE), then simply execute read.person.GGUM2004() ## End(Not run)
## Not run: # If the 'GGUM2004' output files are in the default directory # (C:/GGUM2004/TEMPFILE), then simply execute read.person.GGUM2004() ## End(Not run)
run.GGUM2004
executes a previously exported 'GGUM2004'
command file (via function write.GGUM2004
). It returns
the execution time, the item parameter estimates, and the person parameter
estimates.
run.GGUM2004( cmd.file = "cmd", data.file = "data", datacmd.dir = tempdir(), prog.dir = "C:/GGUM2004", precision = 4 )
run.GGUM2004( cmd.file = "cmd", data.file = "data", datacmd.dir = tempdir(), prog.dir = "C:/GGUM2004", precision = 4 )
cmd.file |
A character string defining the name of the command file. No file extension is required. |
data.file |
A character string defining the name of the data file. No file extension is required. |
datacmd.dir |
A character string defining the path to the directory
where both the data file (identified by the |
prog.dir |
A character string defining the directory where 'GGUM2004' is installed (default: "C:/GGUM2004"). |
precision |
Number of decimal places of the results (default = 4). |
run.GGUM2004
returns a list cointaning the following
components:
time |
The 'GGUM2004' execution time. |
alpha |
The estimated discrimination parameters (for GGUM). |
delta |
The estimated difficulty parameters. |
taus |
The estimated threshold parameters. |
SE |
The standard errors for the estimated item parameters. |
theta |
The estimated person parameters and their standard errors. |
Function run.GGUM2004
runs internally both functions
read.item.GGUM2004
(to import the 'GGUM2004' item
estimates into R) and read.person.GGUM2004
(to import
the 'GGUM2004' person estimates into R).
By experience, we noticed that long directory paths (especially if spaces
are included) make 'GGUM2004' fail to execute with error
file not found
. Therefore, a good advice is to choose
datacmd.dir
and prog.dir
wisely (short paths, no spaces).
Observe that this function is optimized for the Windows operating system because 'GGUM2004' is a Windows program.
Sebastian Castro-Alvarez, [email protected]
Roberts JS, Fang H, Cui W, Wang Y (2006). “GGUM2004: A Windows-Based Program to Estimate Parameters in the Generalized Graded Unfolding Model.” Applied Psychological Measurement, 30, 64-65.
## Not run: # Generate data: C <- c(3, 3, 3, 5, 5, 5) I <- 6 gen <- GenData.GGUM(750, I, C, seed = 125) # Export data to 'GGUM2004': export.GGUM2004(gen$data) # Write command file: write.GGUM2004(I, C, model = "GGUM") # Run 'GGUM2004': res.GGUM2004 <- run.GGUM2004() ## End(Not run)
## Not run: # Generate data: C <- c(3, 3, 3, 5, 5, 5) I <- 6 gen <- GenData.GGUM(750, I, C, seed = 125) # Export data to 'GGUM2004': export.GGUM2004(gen$data) # Write command file: write.GGUM2004(I, C, model = "GGUM") # Run 'GGUM2004': res.GGUM2004 <- run.GGUM2004() ## End(Not run)
Theta.EAP
estimates the person theta parameters via EAP.
Theta.EAP(IP, SE = TRUE, precision = 4, N.nodes = 30)
Theta.EAP(IP, SE = TRUE, precision = 4, N.nodes = 30)
IP |
Object of class |
SE |
Logical value: Estimate the standard errors of the theta estimates?
Default is |
precision |
Number of decimal places of the results (default = 4). |
N.nodes |
Number of nodes for numerical integration (default = 30). |
If SE = TRUE
, the function returns an
matrix with two columns (thetas, SEs), where
is the number of
rows in the data matrix (i.e., persons). If
SE = FALSE
, the function
returns the theta estimates as a vector of length .
The EAP procedure used here is based on Roberts, Donoghue,
and Laughlin (2000), namely Equation 25 for the
estimates and Equation 26 for corresponding standard errors. The EAP
estimate is the posterior mean of the
distribution for
the corresponding response pattern. The standard error is computed as an
approximation to the standard deviation of the posterior distribution. See
Roberts et al. (2000) for more details.
Jorge N. Tendeiro, [email protected]
# For GUM: # Generate data # (toy example: Too few items (due to computation time constraints) for # accurate estimation of person parameters; larger number of items is # required in practice): gen1 <- GenData.GGUM(400, 5, 3, "GUM", seed = 139) # Fit the GUM: fit1 <- GUM(gen1$data, 3) # Estimate the theta parameters: Theta.EAP(fit1) ## Not run: # For GGUM: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) gen2 <- GenData.GGUM(2000, 10, C, "GGUM", seed = 156) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) # Estimate the theta parameters: Theta.EAP(fit2) ## End(Not run)
# For GUM: # Generate data # (toy example: Too few items (due to computation time constraints) for # accurate estimation of person parameters; larger number of items is # required in practice): gen1 <- GenData.GGUM(400, 5, 3, "GUM", seed = 139) # Fit the GUM: fit1 <- GUM(gen1$data, 3) # Estimate the theta parameters: Theta.EAP(fit1) ## Not run: # For GGUM: # Generate data: set.seed(1); C <- sample(3:5, 10, replace = TRUE) gen2 <- GenData.GGUM(2000, 10, C, "GGUM", seed = 156) # Fit the GGUM: fit2 <- GGUM(gen2$data, C) # Estimate the theta parameters: Theta.EAP(fit2) ## End(Not run)
write.GGUM2004
creates a 'GGUM2004' command file according
to the test characteristics. The file is saved in the 'GGUM2004' predefined
installation folder.
write.GGUM2004( I, C, cutoff = 2, model = "GGUM", cmd.file = "cmd", data.file = "data", data.dir = tempdir() )
write.GGUM2004( I, C, cutoff = 2, model = "GGUM", cmd.file = "cmd", data.file = "data", data.dir = tempdir() )
I |
The number of items. |
C |
|
cutoff |
Either a number or a vector of |
model |
A string identifying the model. Possible values are "GUM" or "GGUM" (default). |
cmd.file |
A character string defining the name to give to the command file. No file extension is required. |
data.file |
A character string defining the name of the data file. No file extension is required. |
data.dir |
A character string defining the path to the directory where
the data file (possibly exported by function
|
A script file is saved in the directory where 'GGUM2004' is installed.
This function prepares a 'GGUM2004' friendly command script,
which may be used to run the 'GGUM2004' program (Roberts, Donoghue, &
Laughlin, 2000; Roberts et al., 2006). 'GGUM2004' may be executed directly
or may be called from R, see run.GGUM2004
.
By default and for convenience, the command script is saved in the same
directory where the data file resides (data.dir
). By experience, we
noticed that long directory paths (especially if spaces are included) make
'GGUM2004' fail to execute with error file not found
. Therefore, a
good advice is to choose data.dir
wisely (short paths, no spaces).
Observe that this function is optimized for the Windows operating system because 'GGUM2004' is a Windows program.
Sebastian Castro-Alvarez, [email protected]
Roberts JS, Donoghue JR, Laughlin JE (2000). “A general item response theory model for unfolding unidimensional polytomous responses.” Applied Psychological Measurement, 24, 3-32.
Roberts JS, Fang H, Cui W, Wang Y (2006). “GGUM2004: A Windows-Based Program to Estimate Parameters in the Generalized Graded Unfolding Model.” Applied Psychological Measurement, 30, 64-65.
I <- 6 C <- c(3, 3, 3, 5, 5, 5) write.GGUM2004(I, C, model = "GGUM")
I <- 6 C <- c(3, 3, 3, 5, 5, 5) write.GGUM2004(I, C, model = "GGUM")