Package 'GAIPE'

Title: Graphical Extension with Accuracy in Parameter Estimation (GAIPE)
Description: Implements graphical extension with accuracy in parameter estimation (AIPE) on RMSEA for sample size planning in structural equation modeling based on Lin, T.-Z. & Weng, L.-J. (2014) <doi: 10.1080/10705511.2014.915380>. And, it can also implement AIPE on RMSEA and power analysis on RMSEA.
Authors: Tzu-Yao Lin
Maintainer: Yao Lin <[email protected]>
License: GPL (>= 2)
Version: 1.1
Built: 2024-12-15 07:20:53 UTC
Source: CRAN

Help Index


Graphical Extension with Accuracy in Parameter Estimation (GAIPE)

Description

Implements graphical extension with accuracy in parameter estimation (AIPE) on RMSEA for sample size planning in structural equation modeling based on Lin, T.-Z. & Weng, L.-J. (2014) <doi: 10.1080/10705511.2014.915380>.

Details

Package: GAIPE
Type: Package
Version: 1.1
Date: 2022-05-24
License: GPL (>= 2)

Author(s)

Tzu-Yao Lin Maintainer: Yao Lin <[email protected]>

References

Lin, T.-Z. & Weng, L.-J. (2014) Graphical Extension of Sample Size Planning With AIPE on RMSEA Using R. Structural Equation Modeling, 21, 482-490. doi: 10.1080/10705511.2014.915380


Sample size planning by AIPE approach on RMSEA

Description

Performs sample size planning by AIPE approach for RMSEA.

Usage

AIPE.RMSEA(rmsea, df, width, clevel = 0.95)

Arguments

rmsea

expected RMSEA.

df

model degrees of freedom.

width

desired confidence width.

clevel

confidence level (e.g., .90, .95, etc.).

Value

Return the necessary sample size that satisfies the desired width of a confidence interval.

Author(s)

Tzu-Yao Lin

References

Kelley, K., & Lai, K. (2011). Accuracy in parameter estimation for the root mean square error of approximation: Sample size planning for narrow confidence intervals. Multivariate Behavioral Research, 46, 1-32. doi: 10.1080/00273171.2011.543027

Examples

AIPE.RMSEA(rmsea=.05,df=30,width=.02,clevel=.95)

Computing the confidence interval for RMSEA

Description

Computes the confidence interval for RMSEA.

Usage

CI.RMSEA(rmsea,df,N,clevel=.95)

Arguments

rmsea

expected or observed RMSEA.

df

model degrees of freedom.

N

sample size.

clevel

confidence level (e.g., .90, .95, etc.).

Value

Return the upper and lower bound as well as the expected or observed value of the RMSEA.

Author(s)

Tzu-Yao Lin

References

Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods and Research, 21(2), 230-258. doi: 10.1177/0049124192021002005

Examples

CI.RMSEA(rmsea=.05,df=30,N=200,clevel=.95)

Sample size planning by GAIPE framework on RMSEA

Description

Draws the graph for sample size planning by GAIPE framework on RMSEA.

Usage

GAIPE.RMSEA(rmsea, df, width = NULL, clevel = 0.95, N = c(100, 1800, 15), 
PA_method = c("exact.fit", "close.fit", "not.close.fit"), 
H0rmsea = NULL, alpha = 0.05, power = c(0.8, 0.9, 0.95))

Arguments

rmsea

vector of the expected RMSEA values.

df

model degrees of freedom.

width

vector of desired confidence interval widths to be highlighted in the graph.

clevel

confidence level (e.g., .90, .95, etc.).

N

vector of specifying the range and the increment of sample size for drawing confidence intervals. Note that N[1:2] represents the range whereas N[3] represents the increment.

PA_method

a character string specifying the desired hypothesis test for power analysis, can be one of "exact.fit", "close.fit", or "not.close.fit".

H0rmsea

RMSEA for null hypothesis.

alpha

type I error rate for power analysis.

power

vector of specifying the power values for which horizontal lines are to be added in the graph.

Details

If user wants to implement the power analysis based on RMSEA in GAIPE, the PA_method and H0rmsea have to be specified. In such a case, the first value of rmsea is the RMSEA for the alternative hypothesis.

Author(s)

Tzu-Yao Lin

References

Lin, T.-Z. & Weng, L.-J. (2014) Graphical Extension of Sample Size Planning With AIPE on RMSEA Using R. Structural Equation Modeling, 21, 482-490. doi:10.1080/10705511.2014.915380

Examples

# Drawing the graphs in  Lin & Weng (2014) #

# FIGURE 2 #
GAIPE.RMSEA(rmsea=.05,df=30,width=c(.03,.04))

# FIGURE 3 #
GAIPE.RMSEA(rmsea=c(.05,.08),df=30,width=c(.03,.04))

# FIGURE 4 #
GAIPE.RMSEA(rmsea=.025,df=30,width=c(.03,.04),PA_method="not.close.fit",H0rmsea=0.05)

# FIGURE 5 #
GAIPE.RMSEA(rmsea=.05,df=30,width=c(.03,.04),PA_method="exact.fit",H0rmsea=0)

Sample size planning by power analysis on RMSEA

Description

Performs sample size planning by power analysis on RMSEA.

Usage

PA.RMSEA(df, method = c("exact.fit", "close.fit", "not.close.fit"),
H0rmsea, HArmsea, power = 0.8, alpha = 0.05)

Arguments

df

model degrees of freedom.

method

a character string specifying the hypothesis test for power analysis, must be one of "exact.fit", "close.fit", or "not.close.fit"(default).

H0rmsea

RMSEA for the null hypothesis.

HArmsea

RMSEA for the alternative hypothesis.

power

desired power value.

alpha

Type I error rate.

Value

Return the necessary sample size that achieves the desired power.

Author(s)

Tzu-Yao Lin

References

Hancock, G. R., & Freeman, M. J. (2001). Power and sample size for the root mean square error of approximation test of not close fit in structural equation modeling. Educational and Psychological Measurement, 61(5), 741-758. doi: 10.1177/00131640121971491

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130-149. doi: 10.1037/1082-989X.1.2.130

Examples

PA.RMSEA(df=30,method="not.close.fit",H0rmsea=.05,HArmsea=.02,power=.8,alpha=.05)

# Reproducing Table 8 in Hancock and Freeman (2001) #

# DF=c(seq(5,100,5),seq(110,200,10),225,250)
# POWER=c(seq(.5,.99,.05),.99)
# out=matrix(NA,length(DF),length(POWER))
# for(i in 1:length(DF)){
#   for(j in 1:length(POWER)){
#     out[i,j]=PA.RMSEA(df=DF[i],method="not.close.fit",
#     H0rmsea=.05,HArmsea=.02,power=POWER[j],alpha=.05)
#   }
# }
# colnames(out)=paste("Pi=",POWER,"",sep="")
# rownames(out)=paste("df=",DF,"",sep="")
# out