Package: FuzzySTs (via r-universe)

September 6, 2024

Title Fuzzy Statistical Tools

Description The main goal of this package is to present various fuzzy statistical tools. It intends to provide an implementation of the theoretical and empirical approaches presented in the book entitled ``The signed distance measure in fuzzy statistical analysis. Some theoretical, empirical and programming advances" <doi:10.1007/978-3-030-76916-1>. For the theoretical approaches, see Berkachy R. and Donze L. (2019) <doi:10.1007/978-3-030-03368-2 1>. For the empirical approaches, see Berkachy R. and Donze L. (2016) < ISBN: 978-989-758-201-1>). Important (non-exhaustive) implementation highlights of this package are as follows: (1) a numerical procedure to estimate the fuzzy difference and the fuzzy square. (2) two numerical methods of fuzzification. (3) a function performing different possibilities of distances, including the signed distance and the generalized signed distance for instance with all its properties. (4) numerical estimations of fuzzy statistical measures such as the variance, the moment, etc. (5) two methods of estimation of the bootstrap distribution of the likelihood ratio in the fuzzy context. (6) an estimation of a fuzzy confidence interval by the likelihood ratio method. (7) testing fuzzy hypotheses and/or fuzzy data by fuzzy confidence intervals in the Kwakernaak - Kruse and Meyer sense. (8) a general method to estimate the fuzzy p-value with fuzzy hypotheses and/or fuzzy data. (9) a method of estimation of global and individual evaluations of linguistic questionnaires. (10) numerical estimations of multi-ways analysis of variance models in the fuzzy context. The unbalance in the considered designs are also foreseen.

Version 0.3

Author Redina Berkachy <redina.berkachy@unifr.ch>, Laurent Donze

<laurent.donze@unifr.ch>

Maintainer Redina Berkachy <redina.berkachy@hefr.ch>

Depends R (>= 3.0.0), FuzzyNumbers, polynom

Contents

License MIT + file LICENSE RoxygenNote 7.3.1 Encoding UTF-8 Suggests knitr, rmarkdown VignetteBuilder knitr NeedsCompilation no Repository CRAN Date/Publication 2024-07-07 10:40:17 UTC

Contents

adjusted.weight.SI
Bertoluzza
boot.mean.algo1
boot.mean.algo2
boot.mean.ml
cube
D2
Defuzz.FANOVA
Delta.pq
Delta_jki 13
distance
DSGD
DSGD.G
FANOVA 16
FANOVA.approximation
FANOVA.distance
FANOVA.exact
FANOVA.summary
fci.ml
fci.ml.boot
FMANOVA
FMANOVA.approximation
FMANOVA.distance
FMANOVA.exact
FMANOVA.interaction.summary
FMANOVA.summary
Ftests
FTukeyHSD
FUZZ
Fuzzy.CI.ML.test
Fuzzy.CI.test
Fuzzy.decisions
Fuzzy.decisions.ML

2

Contents

Fuzzy.Difference	
Fuzzy.exact.variance	. 41
Fuzzy.exact.variance.poly.left	. 42
Fuzzy.exact.variance.poly.right	. 42
Fuzzy.p.value	. 43
Fuzzy.p.value.mean	. 44
fuzzy.predicted.values	. 46
fuzzy.residuals	. 47
Fuzzy.sample.mean	. 47
Fuzzy.sample.variance.approximation	. 48
Fuzzy.sample.variance.approximation1	. 48
Fuzzy.sample.variance.approximation2	. 49
Fuzzy.sample.variance.approximation3	
Fuzzy.sample.variance.approximation4	
Fuzzy.sample.variance.approximation5	
Fuzzy.Square	
Fuzzy.Square.poly.left	
Fuzzy.Square.poly.right	
Fuzzy.variance	
GaussianBellFuzzyNumber	
GaussianFuzzyNumber	
GFUZZ	
GLOB.EVAL	
GLOB.EVAL.mean	
GSGD	
IND.EVAL	
int.0	
int.ct	
int.simpson	
int.t	
integrate.num	. 66
is.alphacuts	. 67
is.balanced	
is.fuzzification	. 68
is.trfuzzification	
Kurtosis	
Mid.Spr	
Moment	. 71
nbreakpoints	. 72
n_jk	. 73
	. 73
p.value.fisher	. 74
p.value.log	. 76
p.value.mean.log	. 77
p.value.mean.normal	. 78
p.value.mean.poisson	
p.value.mean.Student	
p.value.normal	

3

p.value.poisson	84
p.value.Student	86
R	87
Rho1	88
Rho2	89
Rhop	89
Ri	90
Sample.variance	91
SEQ.ORDERING	92
SEQ.ORDERING.APPROXIMATION	92
SEQ.ORDERING.EXACT	93
SGD	93
Skewness	94
square	95
tr.gfuzz	95
wabl	96
Weighted.fuzzy.mean	97
	98

Index

adjusted.weight.MI	Calculates the adjusted weight for a given main-item of a linguistic
	questionnaire

Description

Calculates the adjusted weight for a given main-item of a linguistic questionnaire

Usage

```
adjusted.weight.MI(x, i, j, b_j, b_jk, SI)
```

Arguments

х	the data set to evaluate.
i	an observation index.
j	a main-item index.
b_j	an array referring to the initial weights given to each main-item of the considered main-item. This array will be afterwards re-calculated.
b_jk	a matrix of length(b_j) rows and max(SI) columns expressing the initial weights of each sub-item of a given main-item.
SI	an array representing the total numbers of sub-items per main-item.

Value

A numerical value giving the readjusted weight of the main-item j for the observation i.

adjusted.weight.SI

Examples

```
data <- matrix(c(3,4,2,3,3,2,4,3,3,4,3,4,4,2,5,3,4,4,3,3,3,4,4,3,
3,3,4,3,3,3,3,4,4,3,5,3,4,3,3,3), ncol = 4)
data <- as.data.frame(data)</pre>
MI <- 2
SI1 <- 2
SI2 <- 2
SI <- c(SI1,SI2)
b_j <- c(1/2,1/2)
b_jk <- matrix(c(0.5,0.5,0.5,0.5),nrow=2)</pre>
PA11 <- c(1,2,3,4,5)
PA12 <- c(1,2,3,4,5)
PA21 <- c(1,2,3,4,5)
PA22 <- c(1,2,3,4,5)
# ------
MF111 <- TrapezoidalFuzzyNumber(0,2,2,7)</pre>
MF112 <- TrapezoidalFuzzyNumber(2,7,7,15)</pre>
MF113 <- TrapezoidalFuzzyNumber(7,15,15,23)</pre>
MF114 <- TrapezoidalFuzzyNumber(15,23,23,28)</pre>
MF115 <- TrapezoidalFuzzyNumber(23,28,28,30)</pre>
MF11 <- GFUZZ(data, 1, 1, PA11, spec="Identical", breakpoints = 100)</pre>
# ------
MF121 <- TrapezoidalFuzzyNumber(0,2,2,7)</pre>
MF122 <- TrapezoidalFuzzyNumber(2,7,7,15)</pre>
MF123 <- TrapezoidalFuzzyNumber(7,15,15,23)</pre>
MF124 <- TrapezoidalFuzzyNumber(15,23,23,28)</pre>
MF125 <- TrapezoidalFuzzyNumber(23,28,28,30)</pre>
MF12 <- GFUZZ(data, 1, 2, PA12, spec="Identical", breakpoints = 100)</pre>
# ------
MF211 <- TrapezoidalFuzzyNumber(0,2,2,7)</pre>
MF212 <- TrapezoidalFuzzyNumber(2,7,7,15)</pre>
MF213 <- TrapezoidalFuzzyNumber(7,15,15,23)</pre>
MF214 <- TrapezoidalFuzzyNumber(15,23,23,28)</pre>
MF215 <- TrapezoidalFuzzyNumber(23,28,28,30)</pre>
MF21 <- GFUZZ(data, 2, 1, PA21, spec="Identical", breakpoints = 100)</pre>
# ------
MF221 <- TrapezoidalFuzzyNumber(0,2,2,7)</pre>
MF222 <- TrapezoidalFuzzyNumber(2,7,7,15)</pre>
MF223 <- TrapezoidalFuzzyNumber(7,15,15,23)</pre>
MF224 <- TrapezoidalFuzzyNumber(15,23,23,28)</pre>
MF225 <- TrapezoidalFuzzyNumber(23,28,28,30)</pre>
MF22 <- GFUZZ(data, 2, 2, PA22, spec="Identical", breakpoints = 100)
# ------
range <- matrix(c(0,0,0,0,28,28,28,28), ncol=2)</pre>
adjusted.weight.MI(data, 9, 1, b_j, b_jk, SI)
```

adjusted.weight.SI Ca

Calculates the adjusted weight for a given sub-item of a linguistic questionnaire

Description

Calculates the adjusted weight for a given sub-item of a linguistic questionnaire

Usage

```
adjusted.weight.SI(x, i, k, b_jk)
```

Arguments

х	the data set to evaluate.
i	an observation index.
k	a sub-item index.
b_jk	an array referring to the initial weights given to each sub-item of the considered main-item. This array will be afterwards re-calculated.

Value

A numerical value giving the readjusted weight of the sub-item k of the considered main-item for the observation i.

Examples

```
data <- matrix(c(3,4,2,3,3,2,4,3,3,4,3,4,4,2,5,3,4,4,3,3,3,4,4,3,
3,3,4,3,3,3,3,4,4,3,5,3,4,3,3,3), ncol = 4)
adjusted.weight.SI(data, 7, 1, c(0.5,0.5))
```

Description

Calculates a distance by the d_Bertoluzza between fuzzy numbers

Usage

Bertoluzza(X, Y, i = 1, j = 1, theta = 1/3, breakpoints = 100)

Х	a fuzzy number.
Υ	a fuzzy number.
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.

7

theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

A numerical value.

<pre>boot.mean.algo1</pre>	Estimates the bootstrap distribution of the likelihood ratio LR by the
	Algorithm 1 using the mean

Description

Estimates the bootstrap distribution of the likelihood ratio LR by the Algorithm 1 using the mean

Usage

```
boot.mean.algo1(
   data.fuzzified,
   distribution,
   sig,
   nsim = 100,
   mu = NA,
   sigma = NA,
   step = 0.1,
   margin = c(5, 5),
   breakpoints = 100,
   plot = TRUE
)
```

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
distribution	a distribution chosen between "normal", "poisson", "Student" or "Logistic".
sig	a numerical value representing the significance level of the test.
nsim	an integer giving the number of replications needed in the bootstrap procedure. It is set to 100 by default.
mu	if the mean of the normal distribution is known, mu should be a numerical value. Otherwise, the argument mu is fixed to NA.
sigma	if the standard deviation of the normal distribution is known, sigma should be a numerical value. Otherwise, the argument sigma is fixed to NA.

step	a numerical value fixed to 0.1, defining the step of iterations on the interval [t-5; t+5].
margin	an optional numerical couple of values fixed to [5; 5], representing the range of calculations around the parameter t.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
plot	fixed by default to "FALSE". plot="FALSE" if a plot of the fuzzy number is not required.

Returns a vector of decimals representing the bootstrap distribution of LR.

boot.mean.algo2	Estimates the bootstrap distribution of the likelihood ratio LR by the
	Algorithm 2 using the mean

Description

Estimates the bootstrap distribution of the likelihood ratio LR by the Algorithm 2 using the mean

Usage

```
boot.mean.algo2(
   data.fuzzified,
   distribution,
   sig,
   nsim = 100,
   mu = NA,
   sigma = NA,
   step = 0.1,
   margin = c(5, 5),
   breakpoints = 100,
   plot = TRUE
)
```

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
distribution	a distribution chosen between "normal", "poisson", "Student" or "Logistic".
sig	a numerical value representing the significance level of the test.
nsim	an integer giving the number of replications needed in the bootstrap procedure. It is set to 100 by default.
mu	if the mean of the normal distribution is known, mu should be a numerical value. Otherwise, the argument mu is fixed to NA.

boot.mean.ml

sigma	if the standard deviation of the normal distribution is known, sigma should be a numerical value. Otherwise, the argument sigma is fixed to NA.
step	a numerical value fixed to 0.1, defining the step of iterations on the interval [t-5; t+5].
margin	an optional numerical couple of values fixed to [5; 5], representing the range of calculations around the parameter t.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
plot	fixed by default to "FALSE". plot="FALSE" if a plot of the fuzzy number is not required.

Value

Returns a vector of decimals representing the bootstrap distribution of LR.

boot.mean.ml	Estimates the bootstrap distribution of the likelihood ratio LR by the
	Algorithm 1 or 2 using the mean

Description

Estimates the bootstrap distribution of the likelihood ratio LR by the Algorithm 1 or 2 using the mean

Usage

```
boot.mean.ml(
   data.fuzzified,
   algorithm,
   distribution,
   sig,
   nsim = 100,
   mu = NA,
   sigma = NA,
   step = 0.1,
   margin = c(5, 5),
   breakpoints = 100,
   plot = TRUE
)
```

Arguments

data.fuzzified a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.algorithm an algorithm chosen between "algo1" or "algo2".

distribution	a distribution chosen between "normal", "poisson", "Student" or "Logistic".
sig	a numerical value representing the significance level of the test.
nsim	an integer giving the number of replications needed in the bootstrap procedure. It is set to 100 by default.
mu	if the mean of the normal distribution is known, mu should be a numerical value. Otherwise, the argument mu is fixed to NA.
sigma	if the standard deviation of the normal distribution is known, sigma should be a numerical value. Otherwise, the argument sigma is fixed to NA.
step	a numerical value fixed to 0.1, defining the step of iterations on the interval [t-5; t+5].
margin	an optional numerical couple of values fixed to [5; 5], representing the range of calculations around the parameter t.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
plot	fixed by default to "FALSE". plot="FALSE" if a plot of the fuzzy number is not required.

Returns a vector of decimals representing the bootstrap distribution of LR.

Examples

```
mat <- matrix(c(1,2,2,2,2,1),ncol=1)
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)
PA11 <- c(1,2)
data.fuzzified <- FUZZ(mat,mi=1,si=1,PA=PA11)
emp.dist <- boot.mean.ml(data.fuzzified, algorithm = "algo1", distribution = "normal",
    sig = 0.05, nsim = 5, sigma = 1)
eta.boot <- quantile(emp.dist, probs = 95/100)</pre>
```

```
cube
```

Cube a number

Description

Cube a number

Usage

cube(x)

Arguments

x Number to be cubed

The cube of the input

D2

Calculates a distance by the D2 between fuzzy numbers

Description

Calculates a distance by the D2 between fuzzy numbers

Usage

D2(X, Y, breakpoints = 100)

Arguments

Х	a fuzzy number.
Υ	a fuzzy number.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

A numerical value.

Defuzz.FANOVA	Defuzzify the fuzzy sums of squares calculated by a FANOVA model by
	an exact calculation or an approximation

Description

Defuzzify the fuzzy sums of squares calculated by a FANOVA model by an exact calculation or an approximation

Usage

```
Defuzz.FANOVA(
    res,
    distance.type = "DSGD",
    i = 1,
    j = 1,
    theta = 1/3,
    thetas = 1,
    p = 2,
    q = 0.5,
    breakpoints = 100
)
```

Arguments

res	a result of a call of the function FANOVA, where method = "distance".
distance.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

Returns a list of all the arguments of the function, the defuzzified total, treatment and residuals sums of squares, the decision made etc.

Delta.pq

Calculates a distance by the d_Delta.pq between fuzzy numbers

Description

Calculates a distance by the d_Delta.pq between fuzzy numbers

Usage

Delta.pq(X, Y, p, q, breakpoints = 100)

Delta_jki

Arguments

Х	a fuzzy number.
Υ	a fuzzy number.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

A numerical value.

Delta_jki

Calculates the factor Delta_jki

Description

Calculates the factor Delta_jki

Usage

Delta_jki(x, i, K)

Arguments

х	a dataset.
i	an observation index.
К	the total number of linguistics in a sub-item.

Value

The response matrix of binary values (0 or 1) related to the answers of a particular dataset for its corresponding sub-items.

distance

Description

Calculates a distance between fuzzy numbers

Usage

```
distance(
    X,
    Y,
    type,
    i = 1,
    j = 1,
    theta = 1/3,
    thetas = 1,
    p = 2,
    q = 0.5,
    breakpoints = 100
)
```

Х	a fuzzy number.
Υ	a fuzzy number.
type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

DSGD

Value

A numerical value.

Examples

```
X <- TrapezoidalFuzzyNumber(1,2,3,4)
Y <- TrapezoidalFuzzyNumber(4,5,6,7)
distance(X, Y, type = "DSGD.G")
distance(X, Y, type = "GSGD")
```

DSGD

Calculates a distance by the SGD between fuzzy numbers

Description

Calculates a distance by the SGD between fuzzy numbers

Usage

DSGD(X, Y, i = 1, j = 1, breakpoints = 100, theta = 1/3)

Arguments

Х	a fuzzy number.
Υ	a fuzzy number.
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.

Value

A numerical value.

DSGD.G

Description

Calculates a distance by the d_DSGD.G between fuzzy numbers

Usage

DSGD.G(X, Y, i = 1, j = 1, thetas = 1, breakpoints = 100)

Arguments

Х	a fuzzy number.
Υ	a fuzzy number.
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

A numerical value.

FANOVA	Computes a FANOVA model by a convenient metric, an exact calcula-
	tion or an approximation

Description

Computes a FANOVA model by a convenient metric, an exact calculation or an approximation

FANOVA

Usage

```
FANOVA(
  formula,
  dataset,
  data.fuzzified,
  sig,
  method,
 distance.type = "DSGD",
  i = 1,
  j = 1,
  theta = 1/3,
  thetas = 1,
  p = 2,
  q = 0.5,
  breakpoints = 100,
  int.method = "int.simpson",
  plot = TRUE
)
```

formula	a description of the model to be fitted.
dataset	the data frame containing all the variables of the model.
data.fuzzified	the fuzzified data set constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix.
sig	a numerical value representing the significance level of the test.
method	the choices are the following: "distance", "exact", "approximation".
distance.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.

breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
int.method	the method of numerical integration. It is set by default to the Simpson method, i.e. int.method="int.simpson".
plot	fixed by default to "TRUE". plot="FALSE" if a plot of the fuzzy number is not required.

Returns a list of all the arguments of the function, the total, treatment and residuals sums of squares, the coefficients of the model, the test statistics with the corresponding p-values, and the decision made.

Examples

```
mat <- matrix(c(1,1,1,1,1,1,1,2,2,2,2,3,2,3,4,2,3,3,2,4), ncol = 2)
data <- data.frame(mat)
data$X1 <- factor(data$X1)
MF121 <- TrapezoidalFuzzyNumber(0,1,1,2.2)
MF122 <- TrapezoidalFuzzyNumber(1.8,1.9,2.2,2.8)
MF123 <- TrapezoidalFuzzyNumber(1.9,2.3,3.1,3.3)
MF124 <- TrapezoidalFuzzyNumber(3.1,3.4,4.1,4.2)
PA12 <- c(1,2,3,4)
data.fuzzified <- GFUZZ(data, 1, 2, PA12, "Identical")
formula = X2 ~ X1
res <- FANOVA(formula, dataset = data, method ="distance", data.fuzzified = data.fuzzified,
sig = 0.05, distance.type = "wabl")</pre>
```

FANOVA.approximation Computes a FANOVA model by an approximation

Description

Computes a FANOVA model by an approximation

Usage

```
FANOVA.approximation(
   formula,
   dataset,
   data.fuzzified,
   sig,
   breakpoints = 100,
   int.method = "int.simpson",
   plot = TRUE
)
```

FANOVA.distance

Arguments

formula	a description of the model to be fitted.
dataset	the data frame containing all the variables of the model.
data.fuzzified	the fuzzified data set constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix.
sig	a numerical value representing the significance level of the test.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
int.method	the method of numerical integration. It is set by default to the Simpson method, i.e. int.method="int.simpson".
plot	fixed by default to "TRUE". plot="FALSE" if a plot of the fuzzy number is not required.

Value

Returns a list of all the arguments of the function, the total, treatment and residuals sums of squares, the coefficients of the model, the test statistics with the corresponding p-values, and the decision made.

FANOVA.distance Computes a FANOVA model by a convenient metric

Description

Computes a FANOVA model by a convenient metric

Usage

```
FANOVA.distance(
   formula,
   dataset,
   data.fuzzified,
   sig,
   distance.type,
   i = 1,
   j = 1,
   theta = 1/3,
   thetas = 1,
   p = 2,
   q = 0.5,
   breakpoints = 100
)
```

Arguments

a description of the model to be fitted.
the data frame containing all the variables of the model.
the fuzzified data set constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix.
a numerical value representing the significance level of the test.
type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
a positive integer such that $1 \le p < infinity$, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

Returns a list of all the arguments of the function, the total, treatment and residuals sums of squares, the coefficients of the model, the test statistics with the corresponding p-values, and the decision made.

FANOVA.exact

Computes a FANOVA model by an exact calculation

Description

Computes a FANOVA model by an exact calculation

FANOVA.summary

Usage

```
FANOVA.exact(
   formula,
   dataset,
   data.fuzzified,
   sig,
   breakpoints = 100,
   int.method = "int.simpson",
   plot = TRUE
)
```

Arguments

formula	a description of the model to be fitted.
dataset	the data frame containing all the variables of the model.
data.fuzzified	the fuzzified data set constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix.
sig	a numerical value representing the significance level of the test.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
int.method	the method of numerical integration. It is set by default to the Simpson method, i.e. int.method="int.simpson".
plot	fixed by default to "TRUE". plot="FALSE" if a plot of the fuzzy number is not required.

Value

Returns a list of all the arguments of the function, the total, treatment and residuals sums of squares, the coefficients of the model, the test statistics with the corresponding p-values, and the decision made.

FANOVA.summary	Prints the summary of the estimation of a FANOVA metric-based
	model

Description

Prints the summary of the estimation of a FANOVA metric-based model

Usage

```
FANOVA.summary(res)
```

Arguments

res

a result of a call of the function FANOVA, where method = "distance".

Returns a list of summary statistics of the estimated model given in res, shown in a FANOVA table. In addition, the F-statistics with their p-values, and the decision are given.

fci.ml

Estimates a fuzzy confidence interval by the Likelihood method

Description

Estimates a fuzzy confidence interval by the Likelihood method

Usage

```
fci.ml(
   data.fuzzified,
   t,
   distribution,
   sig,
   mu = NA,
   sigma = NA,
   step = 0.05,
   margin = c(5, 5),
   breakpoints = 100,
   plot = TRUE
)
```

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
t	a given numerical or fuzzy type parameter of the distribution.
distribution	a distribution chosen between "normal", "poisson", "Student" or "Logistic".
sig	a numerical value representing the significance level of the test.
mu	if the mean of the normal distribution is known, mu should be a numerical value. Otherwise, the argument mu is fixed to NA.
sigma	if the standard deviation of the normal distribution is known, sigma should be a numerical value. Otherwise, the argument sigma is fixed to NA.
step	a numerical value fixed to 0.05, defining the step of iterations on the interval $[t-5; t+5]$.
margin	an optional numerical couple of values fixed to [5; 5], representing the range of calculations around the parameter t.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
plot	fixed by default to "FALSE". plot="FALSE" if a plot of the fuzzy number is not required.

fci.ml.boot

Value

Returns a matrix composed by 2 vectors representing the numerical left and right alpha-cuts. For this output, is.alphacuts = TRUE.

Examples

```
data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)
MF113 <- TrapezoidalFuzzyNumber(2,3,3,4)
PA11 <- c(1,2,3)
data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11)
Fmean <- Fuzzy.sample.mean(data.fuzzified)
fci.ml(data.fuzzified, t = Fmean, distribution = "normal", sig= 0.05, sigma = 0.62)</pre>
```

fci.ml.boot

Estimates a fuzzy confidence interval by the Likelihood method

Description

Estimates a fuzzy confidence interval by the Likelihood method

Usage

```
fci.ml.boot(
   data.fuzzified,
   t,
   distribution,
   sig,
   coef.boot,
   mu = NA,
   sigma = NA,
   step = 0.05,
   margin = c(5, 5),
   breakpoints = 100,
   plot = TRUE
)
```

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
t	a given numerical or fuzzy type parameter of the distribution.
distribution	a distribution chosen between "normal", "poisson", "Student" or "Logistic".
sig	a numerical value representing the significance level of the test.
coef.boot	a decimal representing the 1-sig-quantile of the bootstrap distribution of LR.

mu	if the mean of the normal distribution is known, mu should be a numerical value. Otherwise, the argument mu is fixed to NA.
sigma	if the standard deviation of the normal distribution is known, sigma should be a numerical value. Otherwise, the argument sigma is fixed to NA.
step	a numerical value fixed to 0.05, defining the step of iterations on the interval $[t-5; t+5]$.
margin	an optional numerical couple of values fixed to [5; 5], representing the range of calculations around the parameter t.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
plot	fixed by default to "FALSE". plot="FALSE" if a plot of the fuzzy number is not required.

Returns a matrix composed by 2 vectors representing the numerical left and right alpha-cuts. For this output, is.alphacuts = TRUE.

Examples

```
data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)
MF113 <- TrapezoidalFuzzyNumber(2,3,3,4)
PA11 <- c(1,2,3)
data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11)
Fmean <- Fuzzy.sample.mean(data.fuzzified)
fci.ml.boot(data.fuzzified, t = Fmean, distribution = "normal", sig= 0.05, sigma = 0.62,
coef.boot = 1.8225)
```

FMANOVA	Computes a Mult-FANOVA model by a convenient metric, an exact
	calculation or an approximation

Description

Computes a Mult-FANOVA model by a convenient metric, an exact calculation or an approximation

Usage

```
FMANOVA(
   formula,
   dataset,
   data.fuzzified,
   sig = 0.05,
   method,
   distance.type = "DSGD",
```

FMANOVA

```
index.var = NA,
i = 1,
j = 1,
theta = 1/3,
thetas = 1,
p = 2,
q = 0.5,
breakpoints = 100,
int.method = "int.simpson",
plot = TRUE
)
```

formula	a description of the model to be fitted.
dataset	the data frame containing all the variables of the model.
data.fuzzified	the fuzzified data set constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix.
sig	a numerical value representing the significance level of the test.
method	the choices are the following: "distance", "exact", "approximation".
distance.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
index.var	the column index of the considered variable for which the output will be printed. It is an argument of the Mult-FANOVA models by the exact and the approxima- tion methods only.
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
int.method	the method of numerical integration. It is set by default to the Simpson method, i.e. int.method="int.simpson".

plot fixed by default to "TRUE". plot="FALSE" if a plot of the fuzzy number is not required.

Value

Returns a list of all the arguments of the function, the total, treatment and residuals sums of squares, the coefficients of the model, the test statistics with the corresponding p-values, and the decision made.

Examples

FMANOVA.approximation Computes a Mult-FANOVA model by an approximation

Description

Computes a Mult-FANOVA model by an approximation

Usage

```
FMANOVA.approximation(
  formula,
  dataset,
  data.fuzzified,
  sig = 0.05,
  breakpoints = 100,
  index.var = NA,
  int.method = "int.simpson",
  plot = TRUE
)
```

Arguments

formula	a description of the model to be fitted.
dataset	the data frame containing all the variables of the model.
data.fuzzified	the fuzzified data set constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix.
sig	a numerical value representing the significance level of the test.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
index.var	the column index of the considered variable for which the output will be printed. It is an argument of the Mult-FANOVA models by the exact and the approxima- tion methods only.
int.method	the method of numerical integration. It is set by default to the Simpson method, i.e. int.method="int.simpson".
plot	fixed by default to "TRUE". plot="FALSE" if a plot of the fuzzy number is not required.

Value

Returns a list of all the arguments of the function, the total, treatment and residuals sums of squares, the coefficients of the model, the test statistics with the corresponding p-values, and the decision made.

FMANOVA.distance Computes a Mult-FANOVA model by a convenient metric

Description

Computes a Mult-FANOVA model by a convenient metric

Usage

```
FMANOVA.distance(
    formula,
    dataset,
    data.fuzzified,
    distance.type,
    sig = 0.05,
    i = 1,
    j = 1,
    theta = 1/3,
    thetas = 1,
    p = 2,
    q = 0.5,
    breakpoints = 100
)
```

Arguments

formula	a description of the model to be fitted.
dataset	the data frame containing all the variables of the model.
data.fuzzified	the fuzzified data set constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix.
distance.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
sig	a numerical value representing the significance level of the test.
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p < infinity$, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

Returns a list of all the arguments of the function, the total, treatment and residuals sums of squares, the coefficients of the model, the test statistics with the corresponding p-values, and the decision made.

FMANOVA.exact

Computes a Mult-FANOVA model by an exact calculation

Description

Computes a Mult-FANOVA model by an exact calculation

Usage

```
FMANOVA.exact(
   formula,
   dataset,
   data.fuzzified,
   sig = 0.05,
   breakpoints = 100,
   int.method = "int.simpson",
   index.var = NA,
   plot = TRUE
)
```

Arguments

formula	a description of the model to be fitted.
dataset	the data frame containing all the variables of the model.
data.fuzzified	the fuzzified data set constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix.
sig	a numerical value representing the significance level of the test.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
int.method	the method of numerical integration. It is set by default to the Simpson method, i.e. int.method="int.simpson".
index.var	the column index of the considered variable for which the output will be printed. It is an argument of the Mult-FANOVA models by the exact and the approxima- tion methods only.
plot	fixed by default to "TRUE". plot="FALSE" if a plot of the fuzzy number is not required.

Value

Returns a list of all the arguments of the function, the total, treatment and residuals sums of squares, the coefficients of the model, the test statistics with the corresponding p-values, and the decision made.

FMANOVA.interaction.summary

Prints the summary of the estimation of the interaction in a Mult-FANOVA metric-based model

Description

Prints the summary of the estimation of the interaction in a Mult-FANOVA metric-based model

Usage

FMANOVA.interaction.summary(res)

Arguments

res

a result of a call of the function FMANOVA, where method = "distance".

Value

Returns a list of summary statistics of the estimated model given in res, shown in a FANOVA table. In addition, the F-statistics with their p-values, and the decision are given.

FMANOVA.summary	Prints the summary of the estimation of a Mult-FANOVA metric-based
	model

Description

Prints the summary of the estimation of a Mult-FANOVA metric-based model

Usage

FMANOVA.summary(res)

Arguments res

a result of a call of the function FMANOVA, where method = "distance".

Value

Returns a list of summary statistics of the estimated model given in res, shown in a FANOVA table. In addition, the F-statistics with their p-values, and the decision are given.

Ftests

Calculates multiple tests corresponding to the fuzzy response variable

Description

Calculates multiple tests corresponding to the fuzzy response variable

Usage

Ftests(test)

Arguments

test a result of a call of the function FMANOVA.

Ftests

FTukeyHSD

Value

Returns a table of the following different indicators "Wilks", "F-Wilks", "Hotelling-Lawley trace" and "Pillai Trace".

Examples

FTukeyHSD	Calculates	the	Tukey	HSD	test	corresponding	to	the fuzzy	response
	variable								

Description

Calculates the Tukey HSD test corresponding to the fuzzy response variable

Usage

```
FTukeyHSD(test, variable, cont = c(1, -1), conf.level = 0.95)
```

Arguments

test	a result of a call of the function FMANOVA.
variable	the name of a variable in the data set.
cont	the contrasts of the model. It is set by default to $c(1,-1)$.
conf.level	the confidence level of the test. It is set by default to 0.95.

Value

Returns a table of comparisons of means of the different levels of a given factor, two by two. The table contains the means of populations, the lower and upper bounds of the confidence intervals, and their p-values.

Examples

```
FUZZ
```

Fuzzifies a variable modelled by trapezoidal or triangular fuzzy numbers

Description

Fuzzifies a variable modelled by trapezoidal or triangular fuzzy numbers

Usage

FUZZ(data, mi, si, PA)

Arguments

data	a data set.
mi	the index of the main-item containing the concerned variable.
si	the index of the sub-item of a given main-item mi.
PA	a vector of the linguistic terms of the considered variable.

Value

A fuzzification matrix composed by 4 columns c(p,q,r,s), and m lines, i.e. number of observations. No NA is allowed.

Examples

```
data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)
MF113 <- TrapezoidalFuzzyNumber(2,3,3,3)
PA11 <- c(1,2,3)
data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11)
is.trfuzzification(data.fuzzified)</pre>
```

32

Fuzzy.CI.ML.test

Computes a fuzzy inference test by the fuzzy confidence intervals method calculated by the Likelihood method

Description

Computes a fuzzy inference test by the fuzzy confidence intervals method calculated by the Likelihood method

Usage

```
Fuzzy.CI.ML.test(
 data.fuzzified,
 Н0,
 Η1,
  t,
 mu = NA,
  sigma = NA,
  sig,
  distribution,
  coef.boot,
  distance.type = "DSGD",
  i = 1,
  j = 1,
  theta = 1/3,
  thetas = 1,
  p = 2,
  q = 0.5,
  breakpoints = 100,
  step = 0.05,
 margin = c(5, 5),
 plot = TRUE
)
```

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
НØ	a trapezoidal or a triangular fuzzy number representing the fuzzy null hypothe- sis.
H1	a trapezoidal or a triangular fuzzy number representing the fuzzy alternative hypothesis.
t	a given numerical or fuzzy type parameter of the distribution.
mu	if the mean of the normal distribution is known, mu should be a numerical value. Otherwise, the argument mu is fixed to NA.

sigma	if the standard deviation of the normal distribution is known, sigma should be a numerical value. Otherwise, the argument sigma is fixed to NA.
sig	a numerical value representing the significance level of the test.
distribution	a distribution chosen between "normal", "poisson", "Student" or "Logistic".
coef.boot	a decimal representing the 1-sig-quantile of the bootstrap distribution of LR.
distance.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
step	a numerical value fixed to 0.05, defining the step of iterations on the interval [t-5; t+5].
margin	an optional numerical couple of values fixed to [5; 5], representing the range of calculations around the parameter t.
plot	fixed by default to "FALSE". plot="FALSE" if a plot of the fuzzy number is not required.

Returns a list composed by the arguments, the fuzzy confidence intervals, the fuzzy decisions, the defuzzified values and the decision made.

Examples

```
data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)
MF113 <- TrapezoidalFuzzyNumber(2,3,3,4)
PA11 <- c(1,2,3)
data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11)</pre>
```

Fuzzy.CI.test

```
Fmean <- Fuzzy.sample.mean(data.fuzzified)
H0 <- TriangularFuzzyNumber(2.2,2.5,3)
H1 <- TriangularFuzzyNumber(2.5,2.5,5)
coef.boot <- 3.494829
(res <- Fuzzy.CI.ML.test(data.fuzzified, H0, H1, t = Fmean, sigma=0.7888,
coef.boot = coef.boot, sig=0.05, distribution="normal", distance.type="GSGD"))
res$decision</pre>
```

Fuzzy.CI.test	Computes a fuzzy inference test by the traditional fuzzy confidence in-
	tervals

Description

Computes a fuzzy inference test by the traditional fuzzy confidence intervals

Usage

```
Fuzzy.CI.test(
  type,
  Н0,
  Η1,
  t,
  s.d,
  n,
  sig,
  distribution,
  distance.type = "DSGD",
  i = 1,
  j = 1,
  theta = 1/3,
  thetas = 1,
  p = 2,
  q = 0.5,
  breakpoints = 100,
  plot = TRUE
)
```

type	a category betwenn "0", "1" and "2". The category "0" refers to a bilateral test, the category "1" for a lower unilateral one, and "2" for an upper unilateral test.
Н0	a trapezoidal or a triangular fuzzy number representing the fuzzy null hypothe- sis.
H1	a trapezoidal or a triangular fuzzy number representing the fuzzy alternative hypothesis.
t	a given numerical or fuzzy type parameter of the distribution.

s.d	a numerical value for the standard deviation of the distribution.
n	the total number of observations of the data set.
sig	a numerical value representing the significance level of the test.
distribution	a distribution chosen between "normal", "poisson", "Student" or "Logistic".
distance.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
plot	a logical rule "TRUE" or "FALSE" for defining whether to plot the correspond- ing graphs or not.

Returns a list composed by the arguments, the fuzzy confidence intervals, the fuzzy decisions, the defuzzified values and the decision made.

Examples

```
H0 <- TriangularFuzzyNumber(2.9,3,3.1)
H1 <- TriangularFuzzyNumber(3,3,5)
res <- Fuzzy.CI.test(type = 0, H0, H1, t = TriangularFuzzyNumber(0.8,1.80,2.80), s.d = 0.79,
n = 10, sig = 0.05, distribution = "normal", distance.type="GSGD")</pre>
```

Fuzzy.decisions

Description

Computes the fuzzy decisions of a fuzzy inference test by the traditional fuzzy confidence intervals

Usage

```
Fuzzy.decisions(
  type,
 Н0,
 Н1,
  t,
  s.d,
 n,
  sig,
 distribution,
 distance.type = "DSGD",
  i = 1,
  j = 1,
  theta = 1/3,
  thetas = 1,
  p = 2,
  q = 0.5,
 breakpoints = 100
)
```

type	a category betwenn "0", "1" and "2". The category "0" refers to a bilateral test, the category "1" for a lower unilateral one, and "2" for an upper unilateral test.
Н0	a trapezoidal or a triangular fuzzy number representing the fuzzy null hypothe- sis.
H1	a trapezoidal or a triangular fuzzy number representing the fuzzy alternative hypothesis.
t	a given numerical or fuzzy type parameter of the distribution.
s.d	a numerical value for the standard deviation of the distribution.
n	the total number of observations of the data set.
sig	a numerical value representing the significance level of the test.
distribution	a distribution chosen between "normal", "poisson", "Student" or "Logistic".
distance.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".

i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Returns a list composed by the arguments, the fuzzy confidence intervals and their complements, the fuzzy decisions and the defuzzified values.

Examples

```
H0 <- alphacut(TriangularFuzzyNumber(2.9,3,3.1), seq(0,1, 0.01))
H1 <- alphacut(TriangularFuzzyNumber(3,3,5), seq(0,1,0.01))
t <- alphacut(TriangularFuzzyNumber(0.8,1.80,2.80), seq(0,1,0.01))
res <- Fuzzy.decisions(type = 0, H0, H1, t = t, s.d = 0.79, n = 10, sig = 0.05,
distribution = "normal", distance.type = "GSGD")</pre>
```

Fuzzy.decisions.ML Computes the fuzzy decisions of a fuzzy inference test by the fuzzy confidence intervals by the likelihood method

Description

Computes the fuzzy decisions of a fuzzy inference test by the fuzzy confidence intervals by the likelihood method

Usage

```
Fuzzy.decisions.ML(
   data.fuzzified,
   H0,
   H1,
```

Fuzzy.decisions.ML

```
t,
coef.boot,
mu = NA,
sigma = NA,
sig,
distribution,
distance.type = "DSGD",
i = 1,
j = 1,
theta = 1/3,
thetas = 1,
p = 2,
q = 0.5,
breakpoints = 100,
step = 0.05,
margin = c(5, 5),
plot = FALSE
```

Arguments

)

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
HØ	a trapezoidal or a triangular fuzzy number representing the fuzzy null hypothesis.
H1	a trapezoidal or a triangular fuzzy number representing the fuzzy alternative hypothesis.
t	a given numerical or fuzzy type parameter of the distribution.
coef.boot	a decimal representing the 1-sig-quantile of the bootstrap distribution of LR.
mu	if the mean of the normal distribution is known, mu should be a numerical value. Otherwise, the argument mu is fixed to NA.
sigma	if the standard deviation of the normal distribution is known, sigma should be a numerical value. Otherwise, the argument sigma is fixed to NA.
sig	a numerical value representing the significance level of the test.
distribution	a distribution chosen between "normal", "poisson", "Student" or "Logistic".
distance.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.

thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
step	a numerical value fixed to 0.05, defining the step of iterations on the interval [t-5; t+5].
margin	an optional numerical couple of values fixed to [5; 5], representing the range of calculations around the parameter t.
plot	fixed by default to "FALSE". plot="FALSE" if a plot of the fuzzy number is not required.

Returns a list composed by the arguments, the fuzzy confidence intervals, the fuzzy decisions, the defuzzified values and the decision made.

Examples

```
data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)
MF113 <- TrapezoidalFuzzyNumber(2,3,3,4)
PA11 <- c(1,2,3)
data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11)
H0 <- alphacut(TriangularFuzzyNumber(2.9,3,3.1), seq(0,1, 0.01))
H1 <- alphacut(TriangularFuzzyNumber(3,3,5), seq(0,1,0.01))
t <- alphacut(TriangularFuzzyNumber(0.8,1.80,2.80), seq(0,1,0.01))
coef.boot <- 3.470085
res <- Fuzzy.decisions.ML(data.fuzzified, H0, H1, t = t, coef.boot = coef.boot,
sigma = 0.79, sig = 0.05, distribution = "normal", distance.type = "GSGD")
```

Fuzzy.Difference Calculates the difference between two fuzzy numbers

Description

Calculates the difference between two fuzzy numbers

Usage

```
Fuzzy.Difference(X, Y, alphacuts = FALSE, breakpoints = 100)
```

Arguments

Х	a fuzzy number of any type.
Υ	a fuzzy number of any type.
alphacuts	fixed by default to "FALSE". No alpha-cuts are printed in this case.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

If the parameter alphacuts="TRUE", the function returns a matrix composed by 2 vectors representing the left and right alpha-cuts. For this output, is.alphacuts = TRUE. If the parameter alphacuts="FALSE", the function returns a trapezoidal fuzzy number given by the quadruple (p,q,r,s), such that $p \le q \le r \le s$.

Examples

X <- TrapezoidalFuzzyNumber(5,6,7,8)
Y <- TrapezoidalFuzzyNumber(1,2,3,4)
Fuzzy.Difference(X,Y)</pre>

Fuzzy.exact.variance Calculates the exact variance

Description

Calculates the exact variance

Usage

```
Fuzzy.exact.variance(data.fuzzified, breakpoints = 100, plot = FALSE)
```

Arguments

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
plot	fixed by default to "FALSE". plot="TRUE" if a plot of the fuzzy number is required.

Value

The numerical alpha-cuts of the estimated fuzzy variance.

Fuzzy.exact.variance.poly.left

Gives the polynomial forms of the numerical alpha-cuts modelling the exact variance

Description

Gives the polynomial forms of the numerical alpha-cuts modelling the exact variance

Usage

```
Fuzzy.exact.variance.poly.left(data.fuzzified, breakpoints = 100)
```

Arguments

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function	
	GFUZZ, or a similar matrix. No NA are allowed.	
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.	

Value

A table composed by the coefficients of the second order equations of the left side, given at the corresponding definitions domains.

```
Fuzzy.exact.variance.poly.right
Gives the polynomial forms of the numerical alpha-cuts modelling the
exact variance
```

Description

Gives the polynomial forms of the numerical alpha-cuts modelling the exact variance

Usage

```
Fuzzy.exact.variance.poly.right(data.fuzzified, breakpoints = 100)
```

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Fuzzy.p.value

Value

A table composed by the coefficients of the second order equations of the right side, given at the corresponding definitions domains.

Fuzzy.p.value Computes the fuzzy p-value of a given fuzzy hypothesis test

Description

Computes the fuzzy p-value of a given fuzzy hypothesis test

Usage

```
Fuzzy.p.value(
  type,
 Н0,
 Η1,
  t,
  s.d = 1,
 n,
  sig,
 distribution,
 distance.type = "DSGD",
  i = 1,
  j = 1,
  theta = 1/3,
  thetas = 1,
 p = 2,
 q = 0.5,
 breakpoints = 100
)
```

type	a category betwenn "0", "1" and "2". The category "0" refers to a bilateral test, the category "1" for a lower unilateral one, and "2" for an upper unilateral test.
HØ	a trapezoidal or a triangular fuzzy number representing the fuzzy null hypothe- sis.
H1	a trapezoidal or a triangular fuzzy number representing the fuzzy alternative hypothesis.
t	a given numerical or fuzzy type parameter of the distribution.
s.d	a numerical value for the standard deviation of the distribution.
n	the total number of observations of the data set.
sig	a numerical value representing the significance level of the test.

distribution	a distribution chosen between "normal", "poisson", "Student" or "Logistic".
distance.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p < infinity$, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Returns the defuzzified p-value and the decision made.

Examples

```
H0 <- TriangularFuzzyNumber(2.2,2.5,3)
H1 <- TriangularFuzzyNumber(2.5,2.5,5)
Fuzzy.p.value(type=1, H0, H1, t=TriangularFuzzyNumber(0.8,1.8,2.8),
s.d=0.7888, n=10, sig=0.05, distribution="normal", distance.type="GSGD")</pre>
```

Fuzzy.p.value.mean	Computes the fuzzy p-value of a given fuzzy hypothesis test for the
	mean

Description

Computes the fuzzy p-value of a given fuzzy hypothesis test for the mean

Fuzzy.p.value.mean

Usage

```
Fuzzy.p.value.mean(
  data.fuzzified,
  type,
  H0,
  H1,
  s.d = 1,
  sig,
  distribution,
 distance.type = "DSGD",
  i = 1,
  j = 1,
  theta = 1/3,
  thetas = 1,
 p = 2,
  q = 0.5,
 breakpoints = 100
)
```

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
type	a category betwenn "0", "1" and "2". The category "0" refers to a bilateral test, the category "1" for a lower unilateral one, and "2" for an upper unilateral test.
НØ	a trapezoidal or a triangular fuzzy number representing the fuzzy null hypothe- sis.
H1	a trapezoidal or a triangular fuzzy number representing the fuzzy alternative hypothesis.
s.d	a numerical value for the standard deviation of the distribution.
sig	a numerical value representing the significance level of the test.
distribution	a distribution chosen between "normal", "poisson" or "Student".
distance.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.

р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

fuzzy.predicted.values

Value

Returns the defuzzified p-value and the decision made.

Examples

```
data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)</pre>
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)</pre>
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)</pre>
MF113 <- TrapezoidalFuzzyNumber(2,3,3,4)</pre>
PA11 <- c(1,2,3)
data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11)</pre>
H0 <- TriangularFuzzyNumber(2.2,2.5,3)
H1 <- TriangularFuzzyNumber(2.5,2.5,5)
Fuzzy.p.value.mean(data.fuzzified, type=1, H0, H1, s.d=0.7888, sig=0.05,
distribution="normal", distance.type="GSGD")
```

fuzzy.predicted.values

Calculates the fuzzy predicted values

Description

Calculates the fuzzy predicted values

Usage

```
fuzzy.predicted.values(dataset, coef.model)
```

Arguments

dataset	the data frame containing all the variables of the model.
coef.model	the coefficients of the model.

Value

Returns a matrix containing the alpha-cuts of the fuzzy prediced values.

46

fuzzy.residuals Calculates the fuzzy residuals

Description

Calculates the fuzzy residuals

Usage

fuzzy.residuals(data.fuzzified, predicted.values)

Arguments

data.fuzzified the fuzzified data set constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix.

predicted.values

the fuzzy predicted values constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix.

Value

Returns a matrix containing the alpha-cuts of the fuzzy residuals.

Fuzzy.sample.mean Calcu	lates the fuzzy sample mean	
-------------------------	-----------------------------	--

Description

Calculates the fuzzy sample mean

Usage

```
Fuzzy.sample.mean(data.fuzzified, breakpoints = 100, alphacuts = FALSE)
```

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
alphacuts	fixed by default to "FALSE". No alpha-cuts are printed in this case.

If the parameter alphacuts="TRUE", the function returns a matrix composed by 2 vectors representing the numerical left and right alpha-cuts. For this output, is.alphacuts = TRUE. If the parameter alphacuts="FALSE", the function returns a trapezoidal fuzzy number given by the quadruple (p,q,r,s).

Examples

```
mat <- matrix(c(1,2,2,3,3,4,4,5), ncol =4)
Fuzzy.sample.mean(mat)</pre>
```

Fuzzy.sample.variance.approximation

Fuzzy sample variance (approx) - general

Description

Fuzzy sample variance (approx) - general

Usage

Fuzzy.sample.variance.approximation(data.fuzzified, appro.id)

Arguments

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function
	GFUZZ, or a similar matrix. No NA are allowed.

appro.id an integer between 1 and 5 giving the method of approximation chosen.

Value

A numerical value.

Fuzzy.sample.variance.approximation1
 Fuzzy sample variance (approx) - method 1

Description

Fuzzy sample variance (approx) - method 1

Usage

Fuzzy.sample.variance.approximation1(data.fuzzified)

48

Arguments

data.fuzzified a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.

Value

A numerical value.

Description

Fuzzy sample variance (approx) - method 2

Usage

Fuzzy.sample.variance.approximation2(data.fuzzified)

Arguments

data.fuzzified a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.

Value

A numerical value.

Description

Fuzzy sample variance (approx) - method 3

Usage

Fuzzy.sample.variance.approximation3(data.fuzzified)

Arguments

data.fuzzified a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.

A numerical value.

Description

Fuzzy sample variance (approx) - method 4

Usage

Fuzzy.sample.variance.approximation4(data.fuzzified)

Arguments

data.fuzzified a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.

Value

A numerical value.

Description

Fuzzy sample variance (approx) - method 5

Usage

Fuzzy.sample.variance.approximation5(data.fuzzified)

Arguments

data.fuzzified a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.

Value

A numerical value.

Fuzzy.Square

Description

Calculates numerically the square of a fuzzy number

Usage

```
Fuzzy.Square(F1L, breakpoints = 100, plot = FALSE)
```

Arguments

F1L	a fuzzy number.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
plot	fixed by default to "FALSE". plot="TRUE" if a plot of the fuzzy number is required.

Value

A matrix composed by 2 vectors representing the numerical left and right alpha-cuts. For this output, is.alphacuts = TRUE.

Examples

X <- TrapezoidalFuzzyNumber(1,2,3,4)
Fuzzy.Square(X, plot=TRUE)</pre>

Fuzzy.Square.poly.left

Gives the polynomial expression of the left alpha-levels of the numerical square of a fuzzy number

Description

Gives the polynomial expression of the left alpha-levels of the numerical square of a fuzzy number

Usage

```
Fuzzy.Square.poly.left(F1L, breakpoints = 100)
```

F1L	a fuzzy number.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build
	the numerical alpha-cuts. It is fixed to 100 by default.

52

Value

A table containing print the related polynoms at the corresponding definition domains.

Examples

X <- TrapezoidalFuzzyNumber(1,2,3,4)</pre> Fuzzy.Square.poly.left(X)

```
Fuzzy.Square.poly.right
```

Gives the polynomial expression of the right alpha-levels of the numerical square of a fuzzy number

Description

Gives the polynomial expression of the right alpha-levels of the numerical square of a fuzzy number

Usage

```
Fuzzy.Square.poly.right(F1L, breakpoints = 100)
```

Arguments

F1L	a fuzzy number.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build
	the numerical alpha-cuts. It is fixed to 100 by default.

Value

A table containing print the related polynoms at the corresponding definition domains.

Examples

```
X <- TrapezoidalFuzzyNumber(1,2,3,4)</pre>
Fuzzy.Square.poly.right(X)
```

Fuzzy.variance

Description

Calculates the variance by a chosen method: distance, exact or approximation

Usage

```
Fuzzy.variance(
   data.fuzzified,
   method,
   dist.type = "DSGD",
   i = 1,
   j = 1,
   theta = 1/3,
   thetas = 1,
   p = 2,
   q = 0.5,
   breakpoints = 100,
   int.method = "int.simpson",
   plot = FALSE
)
```

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
method	choices are the following: "distance", "exact", "approximation1", "approxi-mation2", "approximation3", "approximation4", "approximation5".
dist.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d theta star and the d GSGD distances.

р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, q is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
int.method	the integration method could be one of the following four methods: "int.0", "int.t", "int.ct" and "int.simpson".
plot	fixed by default to "FALSE". plot="TRUE" if a plot of the fuzzy number is required.

If the parameter method = "distance", returns a numerical value. If else, returns the numerical α -cuts of the estimated fuzzy variance.

Examples

```
data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)
MF113 <- TrapezoidalFuzzyNumber(2,3,3,3)
PA11 <- c(1,2,3)
data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11)
Fuzzy.variance(data.fuzzified, method = "approximation5", plot=TRUE)
Fuzzy.variance(data.fuzzified, method = "distance")
```

GaussianBellFuzzyNumber

Creates a Gaussian two-sided bell fuzzy number

Description

Creates a Gaussian two-sided bell fuzzy number

Usage

```
GaussianBellFuzzyNumber(
  left.mean,
  left.sigma,
  right.mean,
  right.sigma,
  alphacuts = FALSE,
  margin = c(5, 5),
  step = 0.01,
  breakpoints = 100,
  precision = 4,
  plot = FALSE
)
```

Arguments

left.mean	a numerical value of the parameter mu of the left Gaussian curve.
left.sigma	a numerical value of the parameter sigma of the left Gaussian curve.
right.mean	a numerical value of the parameter mu of the right Gaussian curve.
right.sigma	a numerical value of the parameter sigma of the right Gaussian curve.
alphacuts	fixed by default to "FALSE". No alpha-cuts are printed in this case.
margin	an optional numerical couple of values representing the range of calculations of the Gaussian curve written as [mean - 3*sigma; mean + 3*sigma] by default.
step	a numerical value fixing the step between two knots dividing the interval [mean - 3*sigma; mean + 3*sigma].
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
precision	an integer specifying the number of decimals for which the calculations are made. These latter are set by default to be at the order of $1/10^{4}$.
plot	fixed by default to "FALSE". plot="TRUE" if a plot of the fuzzy number is required.

Value

If the parameter alphacuts="TRUE", the function returns a matrix composed by 2 vectors representing the left and right alpha-cuts. For this output, is.alphacuts = TRUE. If the parameter alphacuts="FALSE", the function returns a list composed by the Class, the mean, the sigma, the vectors of the left and right alpha-cuts.

Examples

```
GBFN <- GaussianBellFuzzyNumber(left.mean = -1, left.sigma = 1,
right.mean = 2, right.sigma = 1, alphacuts = TRUE, plot=TRUE)
is.alphacuts(GBFN)
```

GaussianFuzzyNumber Creates a Gaussian fuzzy number

Description

Creates a Gaussian fuzzy number

Usage

```
GaussianFuzzyNumber(
  mean,
  sigma,
  alphacuts = FALSE,
  margin = c(5, 5),
```

```
step = 0.01,
breakpoints = 100,
precision = 4,
plot = FALSE
)
```

Arguments

mean	a numerical value of the parameter mu of the Gaussian curve.
sigma	a numerical value of the parameter sigma of the Gaussian curve.
alphacuts	fixed by default to "FALSE". No alpha-cuts are printed in this case.
margin	an optional numerical couple of values representing the range of calculations of the Gaussian curve written as [mean - 3*sigma; mean + 3*sigma] by default.
step	a numerical value fixing the step between two knots dividing the interval [mean - 3*sigma; mean + 3*sigma].
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
precision	an integer specifying the number of decimals for which the calculations are made. These latter are set by default to be at the order of $1/10^4$.
plot	fixed by default to "FALSE". plot="TRUE" if a plot of the fuzzy number is required.

Value

If the parameter alphacuts="TRUE", the function returns a matrix composed by 2 vectors representing the left and right alpha-cuts. For this output, is.alphacuts = TRUE. If the parameter alphacuts="FALSE", the function returns a list composed by the Class, the mean, the sigma, the vectors of the left and right alpha-cuts.

Examples

```
GFN <- GaussianFuzzyNumber(mean = 0, sigma = 1, alphacuts = TRUE, plot=TRUE)
is.alphacuts(GFN)</pre>
```

GFL	IZZ
-----	-----

Fuzzifies a variable modelled by any type of fuzzy numbers

Description

Fuzzifies a variable modelled by any type of fuzzy numbers

Usage

```
GFUZZ(data, mi, si, PA, spec = "Identical", breakpoints = 100)
```

56

GLOB.EVAL

Arguments

data	a data set.
mi	the index of the main-item containing the concerned variable.
si	the index of the sub-item of a given main-item mi.
PA	a vector of the linguistic terms of the considered variable.
spec	specification of the fuzzification matrix. The possible values are "Identical" and "Not Identical".
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. breakpoints is fixed to 100 by default.

Value

A numerical fuzzification array of 3 dimensions (m,n,2), with m lines, n columns and no NA.

Examples

```
data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)
MF113 <- TrapezoidalFuzzyNumber(2,3,3,3)
PA11 <- c(1,2,3)
data.fuzzified <- GFUZZ(data,mi=1,si=1,PA=PA11)</pre>
```

GLOB.EVAL

Calculates the global evaluation of a linguistic questionnaire

Description

Calculates the global evaluation of a linguistic questionnaire

Usage

```
GLOB.EVAL(
  Full_Database,
 MI,
  bmi,
  SI,
  b_jkt,
  p_ind = rep(1/nrow(Full_Database), nrow(Full_Database)),
  distance.type,
  i = 1,
  j = 1,
  theta = 1/3,
  thetas = 1,
  p = 2,
  q = 0.5,
  breakpoints = 100
)
```

Arguments

Full_Database	the data set to evaluate.
MI	a numerical value representing the total number of main-items dividing the lin- guistic questionnaire.
bmi	an array referring to the initial weights of the main-items.
SI	an array representing the total numbers of sub-items per main-item.
b_jkt	a matrix of MI rows and max(SI) columns expressing the initial weights of each sub-item of a given main-item.
p_ind	a vector of the relative sampling weights of the units, for which $length(p_ind) = nrow(data)$. If the weights are not relative, the following expression should be applied on the vector: $\frac{p_{ind}}{\sum_{i=1}^{n} p_{ind}}.$
	If no sampling weights are used, the vector of weights is reduced to a vector of values 1, i.e. $rep(1, nrow(data))$.
distance.type	type of distance chosen from the family of distances, set by default to the signed distance. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

A data set of individual evaluations, for which the number of observations is exactly the same as the initial data set.

Examples

data <- matrix(c(3,4,2,3,3,2,4,3,3,4,3,4,4,2,5,3,4,4,3,3,3,4,4,3, 3,3,4,3,3,3,3,4,4,3,5,3,4,3,3,3), ncol = 4)

```
data <- as.data.frame(data)</pre>
MI <- 2
SI1 <- 2
SI2 <- 2
SI <- c(SI1,SI2)
b_j <- c(1/2,1/2)
b_jk <- matrix(c(0.5,0.5,0.5,0.5),nrow=2)</pre>
PA11 <- c(1,2,3,4,5)
PA12 <- c(1,2,3,4,5)
PA21 <- c(1,2,3,4,5)
PA22 <- c(1,2,3,4,5)
# _____
MF111 <- TrapezoidalFuzzyNumber(0,2,2,7)</pre>
MF112 <- TrapezoidalFuzzyNumber(2,7,7,15)</pre>
MF113 <- TrapezoidalFuzzyNumber(7,15,15,23)</pre>
MF114 <- TrapezoidalFuzzyNumber(15,23,23,28)</pre>
MF115 <- TrapezoidalFuzzyNumber(23,28,28,30)</pre>
MF11 <- GFUZZ(data, 1, 1, PA11, spec="Identical", breakpoints = 100)</pre>
# _____
MF121 <- TrapezoidalFuzzyNumber(0,2,2,7)</pre>
MF122 <- TrapezoidalFuzzyNumber(2,7,7,15)</pre>
MF123 <- TrapezoidalFuzzyNumber(7,15,15,23)</pre>
MF124 <- TrapezoidalFuzzyNumber(15,23,23,28)</pre>
MF125 <- TrapezoidalFuzzyNumber(23,28,28,30)</pre>
MF12 <- GFUZZ(data, 1, 2, PA12, spec="Identical", breakpoints = 100)</pre>
# -----
MF211 <- TrapezoidalFuzzyNumber(0,2,2,7)</pre>
MF212 <- TrapezoidalFuzzyNumber(2,7,7,15)</pre>
MF213 <- TrapezoidalFuzzyNumber(7,15,15,23)</pre>
MF214 <- TrapezoidalFuzzyNumber(15,23,23,28)</pre>
MF215 <- TrapezoidalFuzzyNumber(23,28,28,30)</pre>
MF21 <- GFUZZ(data, 2, 1, PA21, spec="Identical", breakpoints = 100)
# -----
MF221 <- TrapezoidalFuzzyNumber(0,2,2,7)</pre>
MF222 <- TrapezoidalFuzzyNumber(2,7,7,15)</pre>
MF223 <- TrapezoidalFuzzyNumber(7,15,15,23)</pre>
MF224 <- TrapezoidalFuzzyNumber(15,23,23,28)</pre>
MF225 <- TrapezoidalFuzzyNumber(23,28,28,30)</pre>
MF22 <- GFUZZ(data, 2, 2, PA22, spec="Identical", breakpoints = 100)
# ------
range <- matrix(c(0,0,0,0,28,28,28,28), ncol=2)</pre>
ind.eval <- IND.EVAL(data,MI,b_j,SI,b_jk, range = range, distance.type ="DSGD.G")
GLOB <- GLOB.EVAL(data, MI, b_j, SI, b_jk, distance.type ="GSGD")
```

GLOB.EVAL.mean

Calculates the weighted mean of the set of individual evaluations

Description

Calculates the weighted mean of the set of individual evaluations

Usage

```
GLOB.EVAL.mean(ind.eval, weight = rep(1, length(ind.eval)))
```

Arguments

ind.eval	the set of individual evaluations.
weight	a vector of the relative sampling weights of the units, for which $length(weight) =$
	length(ind.eval), set by default to $rep(1, length(ind.eval))$.

Value

An integer.

Examples

```
data <- matrix(c(3,4,2,3,3,2,4,3,3,4,3,4,4,2,5,3,4,4,3,3,3,4,4,3,</pre>
3,3,4,3,3,3,3,4,4,3,5,3,4,3,3,3), ncol = 4)
data <- as.data.frame(data)</pre>
MI <- 2
SI1 <- 2
SI2 <- 2
SI <- c(SI1,SI2)
b_j <- c(1/2,1/2)
b_jk <- matrix(c(0.5,0.5,0.5,0.5),nrow=2)</pre>
PA11 <- c(1,2,3,4,5)
PA12 <- c(1,2,3,4,5)
PA21 <- c(1,2,3,4,5)
PA22 <- c(1,2,3,4,5)
# ------
MF111 <- TrapezoidalFuzzyNumber(0,2,2,7)</pre>
MF112 <- TrapezoidalFuzzyNumber(2,7,7,15)</pre>
MF113 <- TrapezoidalFuzzyNumber(7,15,15,23)</pre>
MF114 <- TrapezoidalFuzzyNumber(15,23,23,28)</pre>
MF115 <- TrapezoidalFuzzyNumber(23,28,28,30)</pre>
MF11 <- GFUZZ(data, 1, 1, PA11, spec="Identical", breakpoints = 100)</pre>
# ------
MF121 <- TrapezoidalFuzzyNumber(0,2,2,7)</pre>
MF122 <- TrapezoidalFuzzyNumber(2,7,7,15)</pre>
MF123 <- TrapezoidalFuzzyNumber(7,15,15,23)</pre>
MF124 <- TrapezoidalFuzzyNumber(15,23,23,28)</pre>
MF125 <- TrapezoidalFuzzyNumber(23,28,28,30)</pre>
MF12 <- GFUZZ(data, 1, 2, PA12, spec="Identical", breakpoints = 100)</pre>
# ------
MF211 <- TrapezoidalFuzzyNumber(0,2,2,7)</pre>
MF212 <- TrapezoidalFuzzyNumber(2,7,7,15)</pre>
MF213 <- TrapezoidalFuzzyNumber(7,15,15,23)</pre>
MF214 <- TrapezoidalFuzzyNumber(15,23,23,28)</pre>
MF215 <- TrapezoidalFuzzyNumber(23,28,28,30)</pre>
MF21 <- GFUZZ(data, 2, 1, PA21, spec="Identical", breakpoints = 100)</pre>
# -----
MF221 <- TrapezoidalFuzzyNumber(0,2,2,7)</pre>
```

GSGD

```
MF222 <- TrapezoidalFuzzyNumber(2,7,7,15)
MF223 <- TrapezoidalFuzzyNumber(7,15,15,23)
MF224 <- TrapezoidalFuzzyNumber(15,23,23,28)
MF225 <- TrapezoidalFuzzyNumber(23,28,28,30)
MF22 <- GFUZZ(data, 2, 2, PA22, spec="Identical", breakpoints = 100)
# -------
range <- matrix(c(0,0,0,0,28,28,28,28), ncol=2)
ind.eval <- IND.EVAL(data,MI,b_j,SI,b_jk, range = range, distance.type ="DSGD.G")
GLOB.mean <- GLOB.EVAL.mean(ind.eval)</pre>
```

GSGD

Calculates a distance between fuzzy numbers

Description

Calculates a distance between fuzzy numbers

Usage

GSGD(X, Y, i = 1, j = 1, thetas = 1, breakpoints = 100)

Arguments

Х	a fuzzy number.
Y	a fuzzy number.
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

A numerical value.

IND.EVAL

Description

Calculates the individual evaluations of a linguistic questionnaire

Usage

```
IND.EVAL(
  Full_Database,
 MI,
 bmi,
  SI,
 b_jkt,
 range,
 distance.type,
  i = 1,
  j = 1,
  theta = 1/3,
  thetas = 1,
 p = 2,
q = 0.5,
 breakpoints = 100,
  spec = "Identical"
)
```

Full_Database	the data set to evaluate.
MI	a numerical value representing the total number of main-items dividing the lin- guistic questionnaire.
bmi	an array referring to the initial weights of the main-items.
SI	an array representing the total numbers of sub-items per main-item.
b_jkt	a matrix of MI rows and max(SI) columns expressing the initial weights of each sub-item of a given main-item.
range	a vector of 2 elements giving the range of definition of the produced individ- ual evaluations. The range is usually chosen in the interval between 0 and the maximum of the support set of all the membership functions modelling the data set.
distance.type	type of distance chosen from the family of distances, set by default to the signed distance. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.

j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq.
q	a decimal value between 0 and 1, referring to the parameter of the metric $Delta_pq$
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
spec	specification of the fuzzification matrix. The possible values are "Identical" and "Not Identical".

A data set of individual evaluations, for which the number of observations is exactly the same as the initial data set.

Examples

```
data <- matrix(c(3,4,2,3,3,2,4,3,3,4,3,4,4,2,5,3,4,4,3,3,3,4,4,3,</pre>
3, 3, 4, 3, 3, 3, 3, 4, 4, 3, 5, 3, 4, 3, 3, 3, ncol = 4)
data <- as.data.frame(data)</pre>
MI <- 2
SI1 <- 2
SI2 <- 2
SI <- c(SI1, SI2)
b_j <- c(1/2,1/2)
b_jk <- matrix(c(0.5,0.5,0.5,0.5),nrow=2)</pre>
PA11 <- c(1,2,3,4,5)
PA12 <- c(1,2,3,4,5)
PA21 <- c(1,2,3,4,5)
PA22 <- c(1,2,3,4,5)
# ------
MF111 <- TrapezoidalFuzzyNumber(0,2,2,7)</pre>
MF112 <- TrapezoidalFuzzyNumber(2,7,7,15)</pre>
MF113 <- TrapezoidalFuzzyNumber(7,15,15,23)</pre>
MF114 <- TrapezoidalFuzzyNumber(15,23,23,28)</pre>
MF115 <- TrapezoidalFuzzyNumber(23,28,28,30)</pre>
MF11 <- GFUZZ(data, 1, 1, PA11, spec="Identical", breakpoints = 100)</pre>
# ------
MF121 <- TrapezoidalFuzzyNumber(0,2,2,7)</pre>
MF122 <- TrapezoidalFuzzyNumber(2,7,7,15)</pre>
MF123 <- TrapezoidalFuzzyNumber(7,15,15,23)</pre>
MF124 <- TrapezoidalFuzzyNumber(15,23,23,28)</pre>
```

```
MF125 <- TrapezoidalFuzzyNumber(23,28,28,30)</pre>
MF12 <- GFUZZ(data, 1, 2, PA12, spec="Identical", breakpoints = 100)</pre>
# ------
MF211 <- TrapezoidalFuzzyNumber(0,2,2,7)</pre>
MF212 <- TrapezoidalFuzzyNumber(2,7,7,15)</pre>
MF213 <- TrapezoidalFuzzyNumber(7,15,15,23)</pre>
MF214 <- TrapezoidalFuzzyNumber(15,23,23,28)</pre>
MF215 <- TrapezoidalFuzzyNumber(23,28,28,30)</pre>
MF21 <- GFUZZ(data, 2, 1, PA21, spec="Identical", breakpoints = 100)</pre>
# ------
MF221 <- TrapezoidalFuzzyNumber(0,2,2,7)</pre>
MF222 <- TrapezoidalFuzzyNumber(2,7,7,15)</pre>
MF223 <- TrapezoidalFuzzyNumber(7,15,15,23)</pre>
MF224 <- TrapezoidalFuzzyNumber(15,23,23,28)</pre>
MF225 <- TrapezoidalFuzzyNumber(23,28,28,30)</pre>
MF22 <- GFUZZ(data, 2, 2, PA22, spec="Identical", breakpoints = 100)</pre>
# ------
range <- matrix(c(0,0,0,0,28,28,28,28), ncol=2)</pre>
ind.eval <- IND.EVAL(data,MI,b_j,SI,b_jk, range = range, distance.type ="DSGD.G")</pre>
```

int.0

Numerical integration by the trivial method - method 1

Description

Numerical integration by the trivial method - method 1

Usage

int.0(cut, a = 0, b = 1)

Arguments

cut	a vector.
а	fixed by default to 0.
b	fixed by default to 1.

Value

An integer.

int.ct

Description

Numerical integration by the composite trapezoidal method - method 3

Usage

int.ct(cut, a = 0, b = 1)

Arguments

cut	a vector.
а	fixed by default to 0.
b	fixed by default to 1.

Value

An integer.

int.simpson Numerical integration by the Simpson method - method 4

Description

Numerical integration by the Simpson method - method 4

Usage

int.simpson(alpha, cut, a = 0, b = 1)

Arguments

alpha	a vector of alpha values between 0 and 1.
cut	a vector.
а	fixed by default to 0.
b	fixed by default to 1.

Value

An integer.

int.t

Description

Numerical integration - method 2

Usage

int.t(alpha, cut, a = 0, b = 1)

Arguments

alpha	a vector of alpha values between 0 and 1.
cut	a vector.
а	fixed by default to 0.
b	fixed by default to 1.

Value

An integer.

integrate.num Numerical integration by a particular method

Description

Numerical integration by a particular method

Usage

integrate.num(alpha, cut, method, a = 0, b = 1)

Arguments

alpha	a vector of alpha values between 0 and 1.
cut	a vector.
method	the integration method could be one of the following four methods: "int.0", "int.t", "int.ct" and "int.simpson".
а	fixed by default to 0.
b	fixed by default to 1.

Value

An integer.

is.alphacuts

Description

Verifies if a matrix is set of left and right alpha-cuts

Usage

```
is.alphacuts(data)
```

Arguments

data a matrix of 2 equal length columns with no NA.

Value

A value TRUE if the concerned object can be a set of numerical left and right alpha-cuts, FALSE otherwise.

Examples

mat <- matrix(c(1,2,3,7,6,5), ncol = 2)
is.alphacuts(mat)</pre>

is.balanced Verifies if a design is balanced

Description

Verifies if a design is balanced

Usage

```
is.balanced(ni)
```

Arguments

ni

a line array given by the contingency table related to the considered variable. Often written as a result of a call of the function table.

Value

Returns a logical decision TRUE or FALSE, to indicate if a given design is respectively balanced or not.

Examples

```
data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
ni <- t(table(data))
is.balanced(ni)</pre>
```

is.fuzzification Verifies if a matrix is a fuzzification matrix

Description

Verifies if a matrix is a fuzzification matrix

Usage

```
is.fuzzification(data)
```

Arguments data

an ar

an array of 3 dimensions c(m,n,2), with m lines, n columns. No NA are allowed.

Value

A value TRUE if the concerned object is a numerical fuzzification matrix, FALSE otherwise.

Examples

```
mat <- array(c(1,1,2,2,3,3,5,5,6,6,7,7),dim=c(2,3,2))
is.fuzzification(mat)</pre>
```

is.trfuzzification Verifies if a matrix is a fuzzification matrix of trapezoidal fuzzy numbers

Description

Verifies if a matrix is a fuzzification matrix of trapezoidal fuzzy numbers

Usage

```
is.trfuzzification(data)
```

Arguments

```
data a matrix of 4 columns (p,q,r,s), where p \le q \le r \le s. No NA are allowed.
```

68

Kurtosis

Value

A value TRUE if the concerned object is a trapezoidal or triangular fuzzification matrix, FALSE otherwise.

Examples

```
mat <- matrix(c(1,1,2,2,3,3,4,4),ncol=4)
is.trfuzzification(mat)</pre>
```

Kurtosis

Calculates the excess of kurtosis of a random fuzzy variable

Description

Calculates the excess of kurtosis of a random fuzzy variable

Usage

```
Kurtosis(
    data.fuzzified,
    dist.type,
    i = 1,
    j = 1,
    theta = 1/3,
    thetas = 1,
    p = 2,
    q = 0.5,
    breakpoints = 100
)
```

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
dist.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.

thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p < infinity$, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, q is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

A numerical value.

Examples

```
mat <- matrix(c(1,2,0.25,1.8,2,2.6,0.5,3,3,2.6,3.8,4,4,4.2,3.9,5), ncol =4)
Kurtosis(mat, dist.type = "GSGD")</pre>
```

```
Mid.Spr
```

Calculates a distance by the d_Mid.Spr between fuzzy numbers

Description

Calculates a distance by the d_Mid.Spr between fuzzy numbers

Usage

Mid.Spr(X, Y, i = 1, j = 1, theta = 1/3, breakpoints = 100)

Arguments

Х	a fuzzy number.
Y	a fuzzy number.
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

A numerical value.

Moment

Description

Calculates a central sample moment of a random fuzzy variable

Usage

```
Moment(
    data.fuzzified,
    k,
    dist.type,
    i = 1,
    j = 1,
    theta = 1/3,
    thetas = 1,
    p = 2,
    q = 0.5,
    breakpoints = 100
)
```

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
k	the order of the moment.
dist.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, q is fixed to 0.5.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

A numerical value.

Examples

```
mat <- matrix(c(1,2,2,3,3,4,4,5), ncol =4)
Moment(mat, k=4, dist.type = "GSGD")</pre>
```

nbreakpoints	Calculates the number of breakpoints of a numerical matrix of alpha-
	cuts

Description

Calculates the number of breakpoints of a numerical matrix of alpha-cuts

Usage

```
nbreakpoints(data)
```

Arguments

data a matrix of numerical alpha-cuts or a 3-dimensional array. No NA are allowed.

Value

A numerical positive integer.

Examples

```
X <- TrapezoidalFuzzyNumber(1,2,3,4)
alpha.X <- alphacut(X, seq(0,1,0.01))
nbreakpoints(alpha.X)</pre>
```

n_jk..

Description

Calculates the number of answers by a specific sub-item

Usage

n_jk..(x, varindex, PA, p_ind = rep(1, nrow(x)))

Arguments

х	the data set to evaluate.
varindex	index of a particular sub-item.
PA	set of possible linguistic terms.
p_ind	a vector of the relative sampling weights of the units, for which $length(p_ind) = nrow(data)$. If the weights are not relative, the following expression should be applied on the vector:
	$rac{p_{ind}}{\sum_{i=1}^n p_{ind}}.$

If no sampling weights are used, the vector of weights is reduced to a vector of values 1, i.e. rep(1, nrow(data)).

Value

A positive integer.

n_jkq.

Calculates the number of answers by a specific linguistic of a sub-item

Description

Calculates the number of answers by a specific linguistic of a sub-item

Usage

n_jkq.(x, varindex, q, p_ind = rep(1, nrow(x)))

Arguments

х	the data set to evaluate.
varindex	index of a particular sub-item.
q	index of a particular linguistic term.
p_ind	a vector of the relative sampling weights of the units, for which $length(p_ind) = nrow(data)$. If the weights are not relative, the following expression should be applied on the vector: $\frac{p_{ind}}{\nabla n}$.
	$\overline{\sum_{i=1}^n p_{ind}}$.
	If no compline weights are used, the wester of weights is reduced to a vester of

If no sampling weights are used, the vector of weights is reduced to a vector of values 1, i.e. rep(1, nrow(data)).

Value

A positive integer.

p.value.fisher	Calculates the p-value of fuzzy observations taken from a Fisher dis- tribution

Description

Calculates the p-value of fuzzy observations taken from a Fisher distribution

Usage

```
p.value.fisher(
  type,
 Н0,
 Η1,
  t,
 n,
 r,
  s.d,
  sig,
 dist.type,
  i = 1,
  j = 1,
  theta = 1/3,
  thetas = 1,
 p = 2,
 q = 0.5,
  breakpoints = 100
)
```

p.value.fisher

Arguments

type	a category betwenn "0", "1" and "2". The category "0" refers to a bilateral test,
type	the category "1" for a lower unilateral one, and "2" for an upper unilateral test.
HØ	a trapezoidal or a triangular fuzzy number representing the fuzzy null hypothe- sis.
H1	a trapezoidal or a triangular fuzzy number representing the fuzzy alternative hypothesis.
t	a given numerical or fuzzy type parameter of the distribution.
n	first degree of freedom.
r	second degree of freedom.
s.d	a numerical value for the standard deviation of the distribution.
sig	a numerical value representing the significance level of the test.
dist.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

Returns the defuzzified p-value and the decision made.

p.value.log

Description

Calculates the p-value of fuzzy observations taken from a Logistic distribution

Usage

```
p.value.log(
  type,
  Н0,
  Н1,
  t,
  n,
  s.d,
  sig,
  dist.type,
  i = 1,
  j = 1,
  theta = 1/3,
  thetas = 1,
  p = 2,
q = 0.5,
  breakpoints = 100
)
```

type	a category betwenn "0", "1" and "2". The category "0" refers to a bilateral test, the category "1" for a lower unilateral one, and "2" for an upper unilateral test.
Н0	a trapezoidal or a triangular fuzzy number representing the fuzzy null hypothe- sis.
H1	a trapezoidal or a triangular fuzzy number representing the fuzzy alternative hypothesis.
t	a given numerical or fuzzy type parameter of the distribution.
n	the total number of observations of the data set.
s.d	a numerical value for the standard deviation of the distribution.
sig	a numerical value representing the significance level of the test.
dist.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.

j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Returns the defuzzified p-value and the decision made.

p.value.mean.log	Calculates the p-value of fuzzy observations taken from a logistic dis-
	tribution for the mean

Description

Calculates the p-value of fuzzy observations taken from a logistic distribution for the mean

Usage

```
p.value.mean.log(
 data.fuzzified,
  type,
 Н0,
 Н1,
  s.d,
  sig,
 dist.type,
  i = 1,
  j = 1,
  theta = 1/3,
  thetas = 1,
 p = 2,
 q = 0.5,
 breakpoints = 100
)
```

Arguments

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
type	a category betwenn "0", "1" and "2". The category "0" refers to a bilateral test, the category "1" for a lower unilateral one, and "2" for an upper unilateral test.
НØ	a trapezoidal or a triangular fuzzy number representing the fuzzy null hypothe- sis.
H1	a trapezoidal or a triangular fuzzy number representing the fuzzy alternative hypothesis.
s.d	a numerical value for the standard deviation of the distribution.
sig	a numerical value representing the significance level of the test.
dist.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

Returns the defuzzified p-value and the decision made.

p.value.mean.normal	Calculates the p-value of fuzzy observations taken from a normal dis-
	tribution for the mean

Description

Calculates the p-value of fuzzy observations taken from a normal distribution for the mean

p.value.mean.normal

Usage

```
p.value.mean.normal(
    data.fuzzified,
    type,
    H0,
    H1,
    s.d,
    sig,
    dist.type,
    i = 1,
    j = 1,
    theta = 1/3,
    thetas = 1,
    p = 2,
    q = 0.5,
    breakpoints = 100
```

)

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
type	a category betwenn "0", "1" and "2". The category "0" refers to a bilateral test, the category "1" for a lower unilateral one, and "2" for an upper unilateral test.
HØ	a trapezoidal or a triangular fuzzy number representing the fuzzy null hypothesis.
H1	a trapezoidal or a triangular fuzzy number representing the fuzzy alternative hypothesis.
s.d	a numerical value for the standard deviation of the distribution.
sig	a numerical value representing the significance level of the test.
dist.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.

р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

p.value.mean.poisson

Value

Returns the defuzzified p-value and the decision made.

p.value.mean.poisson	Calculates the p-value of fuzzy observations taken from a Poisson dis-
	tribution for the mean

Description

Calculates the p-value of fuzzy observations taken from a Poisson distribution for the mean

Usage

```
p.value.mean.poisson(
    data.fuzzified,
    type,
    H0,
    H1,
    sig,
    dist.type,
    i = 1,
    j = 1,
    theta = 1/3,
    thetas = 1,
    p = 2,
    q = 0.5,
    breakpoints = 100
)
```

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
type	a category betwenn "0", "1" and "2". The category "0" refers to a bilateral test, the category "1" for a lower unilateral one, and "2" for an upper unilateral test.
HØ	a trapezoidal or a triangular fuzzy number representing the fuzzy null hypothe- sis.

H1	a trapezoidal or a triangular fuzzy number representing the fuzzy alternative hypothesis.
sig	a numerical value representing the significance level of the test.
dist.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Returns the defuzzified p-value and the decision made.

p.value.mean.Student Calculates the p-value of fuzzy observations taken from a Student distribution for the mean

Description

Calculates the p-value of fuzzy observations taken from a Student distribution for the mean

Usage

```
p.value.mean.Student(
   data.fuzzified,
   type,
   H0,
   H1,
   sig,
```

```
dist.type,
i = 1,
j = 1,
theta = 1/3,
thetas = 1,
p = 2,
q = 0.5,
breakpoints = 100
)
```

Arguments

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
type	a category betwenn "0", "1" and "2". The category "0" refers to a bilateral test, the category "1" for a lower unilateral one, and "2" for an upper unilateral test.
HØ	a trapezoidal or a triangular fuzzy number representing the fuzzy null hypothe- sis.
H1	a trapezoidal or a triangular fuzzy number representing the fuzzy alternative hypothesis.
sig	a numerical value representing the significance level of the test.
dist.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

Returns the defuzzified p-value and the decision made.

82

p.value.normal

Description

Calculates the p-value of fuzzy observations taken from a normal distribution

Usage

```
p.value.normal(
  type,
  Н0,
  Η1,
  t,
  n,
  s.d,
  sig,
  dist.type,
  i = 1,
  j = 1,
  theta = 1/3,
  thetas = 1,
  p = 2,
q = 0.5,
  breakpoints = 100
)
```

type	a category betwenn "0", "1" and "2". The category "0" refers to a bilateral test, the category "1" for a lower unilateral one, and "2" for an upper unilateral test.
Н0	a trapezoidal or a triangular fuzzy number representing the fuzzy null hypothe- sis.
H1	a trapezoidal or a triangular fuzzy number representing the fuzzy alternative hypothesis.
t	a given numerical or fuzzy type parameter of the distribution.
n	the total number of observations of the data set.
s.d	a numerical value for the standard deviation of the distribution.
sig	a numerical value representing the significance level of the test.
dist.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.

j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Returns the defuzzified p-value and the decision made.

p.value.poisson	Calculates the p-value of fuzzy observations taken from a Poisson dis- tribution
	induiton

Description

Calculates the p-value of fuzzy observations taken from a Poisson distribution

Usage

```
p.value.poisson(
  type,
  Н0,
  Н1,
  t,
  n,
  sig,
  dist.type,
  i = 1,
  j = 1,
  theta = 1/3,
  thetas = 1,
  p = 2,
  q = 0.5,
  breakpoints = 100,
  s.d = 1
)
```

p.value.poisson

Arguments

type	a category betwenn "0", "1" and "2". The category "0" refers to a bilateral test, the category "1" for a lower unilateral one, and "2" for an upper unilateral test.
HØ	a trapezoidal or a triangular fuzzy number representing the fuzzy null hypothe- sis.
H1	a trapezoidal or a triangular fuzzy number representing the fuzzy alternative hypothesis.
t	a given numerical or fuzzy type parameter of the distribution.
n	the total number of observations of the data set.
sig	a numerical value representing the significance level of the test.
dist.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p < infinity$, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
s.d	a numerical value for the standard deviation of the distribution.

Value

Returns the defuzzified p-value and the decision made.

p.value.Student

Description

Calculates the p-value of fuzzy observations taken from a Student distribution

Usage

```
p.value.Student(
  type,
 Н0,
 Η1,
  t,
 n,
  sig,
 dist.type,
  i = 1,
  j = 1,
  theta = 1/3,
  thetas = 1,
  p = 2,
 q = 0.5,
 breakpoints = 100,
 s.d = 1
)
```

type	a category betwenn "0", "1" and "2". The category "0" refers to a bilateral test, the category "1" for a lower unilateral one, and "2" for an upper unilateral test.
HØ	a trapezoidal or a triangular fuzzy number representing the fuzzy null hypothesis.
H1	a trapezoidal or a triangular fuzzy number representing the fuzzy alternative hypothesis.
t	a given numerical or fuzzy type parameter of the distribution.
n	the total number of observations of the data set.
sig	a numerical value representing the significance level of the test.
dist.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.

R

j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, p is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
s.d	a numerical value for the standard deviation of the distribution.

Value

Returns the defuzzified p-value and the decision made.

R

Calculates the indicator of information's rate of the data base

Description

Calculates the indicator of information's rate of the data base

Usage

R(x, p_ind, b_jk, SI)

x	the data set to evaluate.
p_ind	a vector of the relative sampling weights of the units, for which $length(p_ind) = nrow(data)$. If the weights are not relative, the following expression should be applied on the vector: p_{ind}
	$rac{P^{ina}}{\sum_{i=1}^{n} p_{ind}}.$
	If no sampling weights are used, the vector of weights is reduced to a vector of values 1, i.e. $rep(1, nrow(data))$.
b_jk	a matrix of length(b_j) rows and max(SI) columns expressing the initial weights of each sub-item of a given main-item.
SI	an array representing the total numbers of sub-items per main-item.

A numerical value giving the indicator of information's rate of the complete linguistic questionnaire. Note that the obtained value is interpreted as the more it tends to the value 1, the less the complete questionnaire contains missing values.

Examples

```
data <- matrix(c(3,4,2,3,3,2,4,3,3,4,3,4,4,2,5,3,4,4,3,3,3,4,4,3,
3,3,4,3,3,3,3,4,4,3,5,3,4,3,3,3), ncol = 4)
data <- as.data.frame(data)
p_ind <- c(0.1,0.05,0.05,0.2,0.1,0.05,0.1,0.1,0.2,0.05)
SI1 <- 2
SI2 <- 2
SI <- c(SI1,SI2)
b_jk <- matrix(c(0.5,0.5,0.5,0.5),nrow=2)
R(data, p_ind, b_jk, SI)
```

Rho1

Calculates a distance by the Rho1 between fuzzy numbers

Description

Calculates a distance by the Rho1 between fuzzy numbers

Usage

Rho1(X, Y, breakpoints = 100)

Arguments

Х	a fuzzy number.
Y	a fuzzy number.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

A numerical value.

Rho2

Description

Calculates a distance by the Rho2 between fuzzy numbers

Usage

Rho2(X, Y, breakpoints = 100)

Arguments

Х	a fuzzy number.
Υ	a fuzzy number.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

A numerical value.

Rhop

Calculates a distance by the d_Rhop between fuzzy numbers

Description

Calculates a distance by the d_Rhop between fuzzy numbers

Usage

Rhop(X, Y, p, breakpoints = 100)

Arguments

Х	a fuzzy number.
Y	a fuzzy number.
р	a positive integer such that $1 \le p$ < infinity, referring to the parameter of the Rho_p and Delta_pq.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

A numerical value.

Ri

Calculates the indicator of information's rate of the data base for a given unit

Description

Calculates the indicator of information's rate of the data base for a given unit

Usage

Ri(x, i, b_jk, SI)

Arguments

x	the data set to evaluate.
i	an observation index.
b_jk	a matrix of length(b_j) rows and max(SI) columns expressing the initial weights of each sub-item of a given main-item.
SI	an array representing the total numbers of sub-items per main-item.

Value

A numerical value giving the indicator of information's rate of the complete linguistic questionnaire for a particular observation. Note that the obtained value is interpreted as the more it tends to the value 1, the less the observation i contains missing values.

Examples

```
data <- matrix(c(3,4,2,3,3,2,4,3,3,4,3,4,4,2,5,3,4,4,3,3,3,4,4,3,
3,3,4,3,3,3,3,4,4,3,5,3,4,3,3,3), ncol = 4)
data <- as.data.frame(data)
SI1 <- 2
SI2 <- 2
SI <- c(SI1,SI2)
b_jk <- matrix(c(0.5,0.5,0.5),nrow=2)
Ri(data, 7, b_jk, SI)
```

Sample.variance

Description

Calculates the sample variance by a convenient metric

Usage

```
Sample.variance(
    data.fuzzified,
    dist.type,
    i = 1,
    j = 1,
    theta = 1/3,
    thetas = 1,
    p = 2,
    q = 0.5,
    breakpoints = 100
)
```

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
dist.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, q is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

A numerical value.

SEQ. ORDERING Calculates the sequential sums of squares by a convenient metric

Description

Calculates the sequential sums of squares by a convenient metric

Usage

SEQ.ORDERING(scope, data, f.response)

Arguments

scope	a description of the complete fitting model.
data	the data frame containing all the variables of the model.
f.response	the vector of distances of the fuzzy response variable to the fuzzy origin.

Value

Returns a list of the new sets of sums of squares, as well as the coefficients, the residuals and the fitted.values.

SEQ.ORDERING.APPROXIMATION Calculates the sequential sums of squares by an approximation

Description

Calculates the sequential sums of squares by an approximation

Usage

```
SEQ.ORDERING.APPROXIMATION(scope, data, f.response)
```

Arguments

scope	a description of the complete fitting model.
data	the data frame containing all the variables of the model.
f.response	the vector of distances of the fuzzy response variable to the fuzzy origin.

Value

Returns a list of the new sets of sums of squares, as well as the coefficients, the residuals and the fitted.values.

SEQ. ORDERING. EXACT Calculates the sequential sums of squares by an exact calculation

Description

Calculates the sequential sums of squares by an exact calculation

Usage

SEQ.ORDERING.EXACT(scope, data, f.response)

Arguments

scope	a description of the complete fitting model.
data	the data frame containing all the variables of the model.
f.response	the vector of distances of the fuzzy response variable to the fuzzy origin.

Value

Returns a list of the new sets of sums of squares, as well as the coefficients, the residuals and the fitted.values.

SGD

Calculates a distance by the SGD between fuzzy numbers

Description

Calculates a distance by the SGD between fuzzy numbers

Usage

SGD(X, i = 1, j = 1, breakpoints = 100)

Arguments

Х	a fuzzy number.
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

A numerical value.

Skewness

Description

Calculates the skewness of a random fuzzy variable

Usage

```
Skewness(
    data.fuzzified,
    dist.type,
    i = 1,
    j = 1,
    theta = 1/3,
    thetas = 1,
    p = 2,
    q = 0.5,
    breakpoints = 100
)
```

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
dist.type	type of distance chosen from the family of distances. The different choices are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
thetas	a decimal value between 0 and 1, representing the weight given to the shape of the fuzzy number. By default, thetas is fixed to 1. This parameter is used in the calculations of the d_theta star and the d_GSGD distances.
р	a positive integer such that $1 \le p <$ infinity, referring to the parameter of the Rho_p and Delta_pq. By default, p is fixed to 2.
q	a decimal value between 0 and 1, referring to the parameter of the metric Delta_pq. By default, q is fixed to 0.5.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

square

Value

A numerical value.

Examples

```
mat <- matrix(c(1,2,0.25,1.8,2,2.6,0.5,3,3,2.6,3.8,4,4,4.2,3.9,5), ncol =4)
Skewness(mat, dist.type = "GSGD")</pre>
```

square

Square a number

Description

Takes any numerical value and squares it.

Usage

square(x)

Arguments

Х

A numeric value to be squared

Value

The square of the input

tr.gfuzz	Fuzzifies a variable modelled by trapezoidal or triangular fuzzy numbers

Description

Fuzzifies a variable modelled by trapezoidal or triangular fuzzy numbers

Usage

tr.gfuzz(data, breakpoints = 100)

data	a matrix of 4 columns (p,q,r,s), where $p \le q \le r \le s$. No NA are allowed.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build
	the numerical alpha-cuts. breakpoints is fixed to 100 by default.

A 3-dimensional array with dimensions (m,n,2), i.e. m lines, n columns, with no NA.

Examples

data <- matrix(c(1,1,2,2,3,3,4,4),ncol=4)
data.tr <- tr.gfuzz(data)</pre>

wabl

Calculates a distance by the d_wabl between fuzzy numbers

Description

Calculates a distance by the d_wabl between fuzzy numbers

Usage

wabl(X, Y, i = 1, j = 1, theta = 1/3, breakpoints = 100)

Arguments

Х	a fuzzy number.
Υ	a fuzzy number.
i	parameter of the density function of the Beta distribution, fixed by default to $i = 1$.
j	parameter of the density function of the Beta distribution, fixed by default to $j = 1$.
theta	a numerical value between 0 and 1, representing a weighting parameter. By default, theta is fixed to 1/3 referring to the Lebesgue space. This measure is used in the calculations of the following distances: d_Bertoluzza, d_mid/spr and d_phi-wabl/ldev/rdev.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.

Value

A numerical value.

Weighted.fuzzy.mean Calculates the weighted fuzzy sample mean

Description

Calculates the weighted fuzzy sample mean

Usage

```
Weighted.fuzzy.mean(
   data.fuzzified,
   weight,
   breakpoints = 100,
   alphacuts = FALSE
)
```

Arguments

data.fuzzified	a fuzzification matrix constructed by a call to the function FUZZ or the function GFUZZ, or a similar matrix. No NA are allowed.
weight	a weighting vector of the same length of the fuzzification matrix. No NA allowed.
breakpoints	a positive arbitrary integer representing the number of breaks chosen to build the numerical alpha-cuts. It is fixed to 100 by default.
alphacuts	fixed by default to "FALSE". No alpha-cuts are printed in this case.

Value

If the parameter alphacuts="TRUE", the function returns a matrix composed by 2 vectors representing the numerical left and right alpha-cuts. For this output, is.alphacuts = TRUE. If the parameter alphacuts="FALSE", the function returns a trapezoidal fuzzy number given by the quadruple (p,q,r,s).

Examples

```
mat <- matrix(c(1,2,2,3,3,4,4,5), ncol =4)
w <- c(1,3)
Weighted.fuzzy.mean(mat, w)</pre>
```

Index

adjusted.weight.MI,4 adjusted.weight.SI, 5 Bertoluzza, 6 boot.mean.algo1,7 boot.mean.algo2, 8 boot.mean.ml,9 cube. 10 D2, 11 Defuzz.FANOVA, 11 Delta.pq, 12 Delta_jki, 13 distance, 14 DSGD, 15 DSGD.G, 16 FANOVA, 16 FANOVA.approximation, 18 FANOVA.distance, 19 FANOVA.exact, 20 FANOVA.summary, 21 fci.ml, 22 fci.ml.boot, 23 FMANOVA, 24 FMANOVA.approximation, 26 FMANOVA.distance, 27 FMANOVA.exact, 28 FMANOVA.interaction.summary, 29 FMANOVA.summary, 30 Ftests, 30 FTukeyHSD, 31 FUZZ, 32 Fuzzy.CI.ML.test, 33 Fuzzy.CI.test, 35 Fuzzy.decisions, 37 Fuzzy.decisions.ML, 38 Fuzzy.Difference, 40 Fuzzy.exact.variance, 41

Fuzzy.exact.variance.poly.left, 42 Fuzzy.exact.variance.poly.right, 42 Fuzzy.p.value, 43 Fuzzy.p.value.mean, 44 fuzzy.predicted.values, 46 fuzzy.residuals, 47 Fuzzy.sample.mean, 47 Fuzzy.sample.variance.approximation, 48 Fuzzy.sample.variance.approximation1, 48 Fuzzy.sample.variance.approximation2, 49 Fuzzy.sample.variance.approximation3, 49 Fuzzy.sample.variance.approximation4, 50 Fuzzy.sample.variance.approximation5, 50 Fuzzy.Square, 51 Fuzzy.Square.poly.left, 51 Fuzzy.Square.poly.right, 52 Fuzzy.variance, 53 GaussianBellFuzzyNumber, 54 GaussianFuzzyNumber, 55 GFUZZ, 56 GLOB. EVAL, 57 GLOB.EVAL.mean, 59 GSGD, 61 IND.EVAL. 62 int.0,64 int.ct, 65 int.simpson, 65

int.t,66

integrate.num, 66

is.alphacuts, 67

is.balanced, 67
is.fuzzification, 68

INDEX

is.trfuzzification, 68 Kurtosis, 69 Mid.Spr, 70 Moment, 71 n_jk..,73 n_jkq.,73 nbreakpoints, 72 p.value.fisher,74 p.value.log, 76 p.value.mean.log, 77 p.value.mean.normal, 78 p.value.mean.poisson, 80 p.value.mean.Student, 81 p.value.normal, 83 p.value.poisson, 84 p.value.Student, 86 R, 87 Rho1, 88 Rho2, 89 Rhop, 89 Ri, <mark>90</mark> Sample.variance, 91 ${\tt SEQ.ORDERING, 92}$ SEQ.ORDERING.APPROXIMATION, 92 SEQ.ORDERING.EXACT, 93 SGD, 93 Skewness, 94 square, 95 tr.gfuzz,95 wabl, 96 Weighted.fuzzy.mean,97